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Abstract 
 

The Elliptic Curve Cryptosystem (ECC) is an emerging alternative for 
traditional Public-Key Cryptosystem like RSA, DSA and DH.  It provides the 
highest strength-per-bit of any cryptosystem known today with smaller key sizes 
resulting in faster computations, lower power consumption and memory.  It also 
provides a methodology for obtaining high-speed, efficient and scalable 
implementation of protocols for authentication and key agreement.  This paper 
provides an introduction to Elliptic Curves and how they are used to create a 
secure and powerful cryptosystem. It provides an overview of the three hard 
mathematical problems that provide the basis for the security of public key 
cryptosystems used today: the Integer Factorization Problem (IFP), the Discrete 
Logarithm Problem (DLP), and the Elliptic Curve Discrete Logarithm Problem 
(ECDLP).  It explains the proposed protocol which is improved to reduce the 
storage requirements for establishing a shared secret key between two parties, 
to sign and verify a document and to establish a mutual authentication between 
two parties.  The result of implementation is also discussed. 
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1.   INTRODUCTION 

Elliptic Curve Cryptography (ECC) was first proposed by victor Miller [13] and independently by 
Neal Koblitz [10] in the mid-1980s and has evolved into a mature public-key cryptosystem.  
Compared to its traditional counterparts, ECC offers the same level of security using much 
smaller keys.  This result in faster computations and savings in memory, power and bandwidth 
those are especially important in constrained environments.  More significantly, the advantage of 
ECC over its competitors increases, as the security needs increase over time.  Recently the 
National Institute of standards and Technology (NIST) approved ECC for use by the U.S. 
government [12].  Several standards organizations, such as Institute of Electrical & Electronics 
Engineers (IEEE), American National Standards Institute (ANSI), Open Mobile Alliance (OMA) 
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and Internet Engineering Task Force (IETF), have ongoing efforts to include ECC as a required or 
recommended security mechanism. 

2.  ELLIPTIC CURVE CRYPTOGRAPHY 

At the foundation of every public-key cryptosystem is a hard mathematical problem that is 
computationally intractable.  The relative difficulty of solving that problem determines the security 
strength of the corresponding system.  The well known public-key cryptosystems like RSA, Diffie-
Hellman and Digital Signature Algorithm (DSA) can all be attacked using sub-exponential 
algorithms, but the best known attack on ECC requires exponential time.  For this reason, ECC 
can offer equivalent security with substantially smaller key sizes [1]. 
 
Public-key schemes are typically used to transport or exchange keys for symmetric-key ciphers.  
Since the security of a system is only as good as that of its weakest component, the work factor 
needed to break a symmetric key must match that needed to break the public-key system used 
for key exchange.  Table 1 shows NIST guidelines [11] on choosing computationally equivalent 
symmetric and public key sizes.   

 
 

Symmetric ECC RSA/DH/DSA 
MIPS Yrs to 

attack 
Protection 
Lifetime 

80 
112 
128 
192 
256 

 

160 
224 
256 
384 
512 

1024 
2048 
3072 
7680 
15360 

10
12

 
10

24
 

10
28

 
10

47
 

10
66

 
 

Until 2010 
Until 2030 
Beyond 2031 
Beyond 2031 
Beyond 2031 

 

Table 1: Equivalent key sizes (in bits) 
 

The use of 1024-bit RSA does not match the 128-bit or even 112-bit security level now used for 
symmetric ciphers.  This underscores the need to migrate to larger RSA key sizes in order to 
deliver the full security of symmetric algorithms with more than 80-bit keys.  Recent work by 
Shamir and Tromer [2] on integer factorization suggests that the migration needs to happen 
sooner than previously thought necessary.  They estimate that a specialized machine capable of 
breaking 1024-bit RSA in less than one year can be built for $10 - $15 million dollars.  
Consequently, RSA Laboratories now considers 1024-bit RSA to be unsafe for data that must be 
protected beyond 2010 and recommends larger key for longer term protection [3].  At higher key 
sizes, RSA performance issues become even more acute.  Since the performance advantage of 
ECC over RSA grows approximately as the cube of the key size ration, wider adoption of ECC 
seems inevitable. 
 
Elliptic Curve (EC) as algebraic and geometric entities that have been studied extensively for the 
past 150 years and from these studies has emerged a rich and deep theory. Neal Koblitz as 
applied to cryptography first proposed EC systems in 1985 independently from the university of 
Washington and victor miller.  EC are not ellipses. These are the curves described by cubic 
equations which are similar to those used for calculating the circumference of an ellipse. In 
simple, an ellipse curve is defined by an equation in z variables with coefficients. The cubic 
equations for EC’s take the form 
 

y
2
+axy+by=x

3
+cx

2
+dx+e      (1) 

 
Where a, b, c, d and e are coefficients and x and y are variables. For cryptography the variables 
and coefficients are restricted to elements in a finite field. ECC operates over a group of points on 
an elliptic curve defined over a finite field.  Its main cryptography operation is scalar multiplication, 
which computes Q = kP (a point P multiplied by an integer k resulting in another point Q on the 
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curve).  Scalar multiplication is performed through a combination of point-additions and point-
doublings.  The security of ECC relies on the difficulty of solving the Elliptic Curve Discrete 
Logarithmic Problem (ECDLP), which states that given P and Q = kP, it is hard to find k.  Besides 
the curve equation, an important elliptic curve parameter is base point, G, which is fixed for each 
curve.  In ECC, a large random integer k acts as private key, while the curve's base point G 
serves as the corresponding public key. 

 
Every elliptic curve offers strong security properties and for some curves the ECDLP may be 
solved efficiently [9].  Since a poor choice of the curve can compromise security, standards 
organizations like NIST and Standard for efficient Cryptography Group (SECG) have published a 
set of curves [4, 12] that possess the necessary security properties.  The use of these curves is 
also recommended as a means of facilitating interoperability between different implementations of 
a security protocol. 

3.  ELLIPTIC CURVE DIFFIE-HELLMAN 

 Elliptic Curve Diffie-Hellman protocol establishes a shared key between two parties.  The 
original Diffie-Hellman algorithm is based on the multiplicative group modulo p, while the Elliptic 
Curve Diffie-Hellman (ECDH) protocol is based on the additive elliptic curve group.  We assume 
that the underlying field GF(p) or GF(2

k
 ) is selected and the curve E with parameters a, b and the 

base point P is set up.  The order of the base point P is equal to n.  The standards often suggest 
that we select an elliptic curve with prime order and therefore any element of the group would be 
selected and their order will be the prime number n.  At the end of the protocol the communicating 
parties end up with the same value K which is a point on the curve.  A part of this value can be 
used as secret key to a secret-key encryption algorithm.  Figure 1 Shows ECDH protocol.  

 

 
 

Figure 1: Elliptic Curve Diffie-Hellman 
 
The improved version given in Figure 2 provides a little more flexibility in the sense that the 
established value can be pre- selected by the user and sent to the server.  The protocol steps can 
be modified slightly for sending a secret value from the server to the user. 

 
 

Figure 2: Elliptic Curve Diffie-Hellman (Improved) 
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4. ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM 

 An elliptic curve E defined over GF(p) or GF (2
k
) with large group of order n and a point P 

of large order is selected and made public to all the users.  Then, the following key generation 
primitive is used by each party to generate the individual public and private key pairs.  
Furthermore, for each transaction the signature and verification primitives are used.  The outline if 
the Elliptic Curve Digital Signature Algorithm (ECDSA) is given below, details of which can be 
found in [6]. 
 
4.1 ECDSA Key Generation 
 
The user A follows these steps: 

1. Select a random integer d ∈ [2, n-2]. 
2. Compute Q = d x P. 
3. The public and private key of the user A are (E, P, n, Q) and d, respectively. 
 
4.2 ECDSA Signature Generation 
 
The user A signs the message m using these steps: 

1. Select a random integer k ∈ [2, n-2]. 
2. Compute k x P = (x1, y1) and r = x1 mod n. 

     If x1 ∈ GF (2
k
), it is assumed that x1 is represented as a binary number. 

     If r = 0 then go to step 1. 
3. Compute k

-1
 mod n. 

4. Compute s = k
-1

 (H (m) + dr) mod n, Where H is the SHA. 
    If s=0 go to step1. 
5. The signature for the message m is the pair of integers(r,s). 
 
4.3 ECDSA Signature verification 
 
The user B verifies A's signature (r,s) on the message m by applying the following steps: 
1. Compute c = s

-1
 mod n and H(m). 

2. Compute u1 = H(m)c mod n and u2 = r c mod n. 
3. Compute u1 x P + u2 x Q = (x0, y0) and v = x0 mod n. 
4. Accept the signature if v = r. 
 

5.  PROPOSED PROTOCOL 
Almost in all the security protocols, we assume that there is a certification authority (CA) which 
creates and distributes certificates to the users and servers on their request.  These certificates 
contain a temporary identity assigned by the CA for the requesting party, the public key of the 
requesting party and the expiration date of the certificate.  The concatenated binary string is then 
signed by the CA's private key to obtain the certificate for the requesting party.  By using a 
certificate, the identity of a particular party is bound to its public key.  The acquisition of the 
certificate is performed when the users and servers first subscribe to the service.  The certificates 
are updated at regular intervals.  It is necessary to request service outside of users’ home 
networks.  In this case, the visited network checks the certificate's expiration date with the users’ 
home network in order to decide whether it needs to provide service to the requesting party.  
Thus, the authentication protocol should be designed in such a way that the users can easily be 
authenticated on-line via their home networks. 
 

5.1 Server initialization 
In order to receive a certificate, the Server sends its public key Qs and its user identity through a 
secure and authenticated channel to the CA.  The CA uses its private key to sign the hashed 
value of the concatenation of the public key, the temporary identity Is, and the certification 
expiration dates.  The CA then sends the signed message through the secure and authenticated 
channel to the user as shown in Figure 3. 
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Figure 3: Server Initialization 
 

5.2 User Initialization 
Establishing a secure channel from the CA to the server is a common and accepted assumption 
in almost all authentication protocol.  In practice the CA may use the postage system as the 
secure channel to distribute the signed messages and temporary identities stored within a 
smartcard.  The signed message is the certificate of the user which is used in future 
authentication and key generation process.  By repeating the very same process the user 
acquires the certificate as shown in figure 4. 
 

 
 

Figure 4: User Initialization 
 
The certificate consists of a pair of integers which is denoted as (rs, ss) for the server and (ru, su) 
for the user.  Here ru and rs are the x coordinates of the elliptic curve points Ru and Rs 

respectively.  As mentioned earlier, the proposed protocol is based on the ECDSA. 
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5.3 Mutual Authentication between User and Server 
The mutual authentication and key agreement protocols between the user and the server need to 
be executed in real-time.  The above two protocols User initialization and Sever initialization are 
combined together as a single protocol, which is given in Figure 5. In this protocol a secret-key 
encryption algorithm is used to encrypt the data in the protocol.  A conventional stream cipher or 
a block cipher in the cipher-block-chaining mode can be used.  The encryption and decryption 
operations using the key K acting on the plaintext M and the cipher text C are denoted as C= 
E(K,M) and M= D(K,C), respectively.   
 
In this protocol, whenever there is a service request either by the user or by the server, there is 
an immediate key exchange.  The initiated party will also be sending random challenge to the 
initiating party.  Sending the public keys does not introduce any threat to the security of the 
system.  Once both the sides have the other party's public key, they simultaneously generate a 
secret key to encrypt the data required to have a mutual authentication.  To protect the 
certificates, it is necessary to send the certificates in encrypted form.  To encrypt certificates the 
protocol uses a secret key cipher which is a mutually agreed secret key.  The server encrypts the 
concatenation of its certificate, the certificate expiration date and a random number which will be 
used to obtain the final mutual key of the communication.  The final content should also include 
the challenge if the server is the initiating party.  The certificates are usually sent in clear in 
almost all the other authentication protocols.  In the proposed protocol the encryption time of the 
certificate increases slightly.   
 
The encrypted message is then sent to the user.  The user then decrypts and obtains the 
certificate of the servers, the random number and the challenge which in this case sent by itself.  
Obtaining the original challenge value back from the server confirms the freshness of the 
message and prevents the reply attacks.  The user immediately encrypts the concatenation of its 
certificate, the certificate expiration date, and the random number.  This encrypted data is sent to 
the server. 
 

 
 

Figure 5: Mutual Authentication between Server and User 
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Next, the user checks the validity of the certificate, and if it is invalid, the user aborts the 
communication.  On the other side, the server decrypts and checks whether the random number 
generated by the server and the time of the certificate are valid.  If not, it aborts.  This 
mechanism, specifically the use of random number, defeats spoofing attacks by the user side and 
also prevents unnecessary computation.  Then, the server checks the validity of the certificate 
and accordingly grants or aborts the service.  It may be a good approach to generate multiple 
random numbers in advance so that the protocol could save some time.  However, storing these 
multiple random numbers will increase the storage requirement of the protocol. This is the main 
drawback which is available in the existing protocols [7,8].  The above draw back is removed in 
the proposed protocol by applying the message compression technique.  A compression 
technique is applied to reduce the storage of the random numbers.   
 

5.3.1 Key Agreement 
Once the verification procedure is completed by the user and the server, then a secret key known 
by each side to encrypt the communication is to be generated.  A new key exchange step to 
agree on a unique key to be used for communication during each session.  We will use the 
previously generated random number which is known by both the sides to generate a new secret 
key without using the channel again.  Both the server and the user perform a scalar addition to 
obtain the new secret key; this key is used for encrypting the data sent through the channel.   
 
 

6.  IMPLEMENTATION RELATED ISSUES 
Elliptic curve cryptographic algorithms is defined over the finite filed GF(2

k
).  ECC applications 

require fast hardware and software implementations of the arithmetic operations in GF(2
k
) for 

large values of k.  An implementation method for this case was presented in [13], where the 
authors propose to use the logarithmic table lookup method for the ground field GF (2

n
) 

operations.  The filed GF(2
nm

) is then constructed using the polynomial basis, where the elements 
of GF(2

nm
) are polynomials of degree m-1 whose coefficient are from the ground filed GF(2

n
).  

The field multiplication is performed by first multiplying the input polynomials and reducing the 
resulting polynomial by a degree-m irreducible trinomial.   
 Here the similar methodology for implementing the arithmetic operations in GF(2

mn
) is 

used.  The only difference is that an optimal normal basis in GF(2
m
) to represent the elements of 

GF(2
nm

) by taking the ground filed GF(2
n
).  The resulting field operations, multiplication and 

squaring are quite efficient, and they do not involve modular reductions.  Our implementation 
results indicate that the arithmetic operations in the proposed method are faster than those which 
are given in [5]. 
 Addition, multiplication and inversion operations are implemented in GF(2

176
), and also 

the elliptic curve point doubling, addition, and multiplication operations over GF(2
176

).  The 
programs were written in C++ and executed on the PC with 548 MHz, Pentium III Processor, 
running Windows Xp.  The timing results are given below in the Figure 6.  The results of 
implementation were compared with the results of [7,8], which was implemented on the PC with 
300 MHz, Pentium II Processor.  It result shows that both the proposed protocol and the protocol 
given in [8] having the same timings but the proposed system takes a lower storage requirement 
for the user side the protocols proposed in [7]. 
 
 

Operation Proposed-Timings Timings given in [8] 

EC Addition 80µsec 80 µsec 

EC Doubling 80 µsec 80 µsec 

EC Multiplication 25 msec 25 msec 
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Protocols Storage 

Proposed 1120 bits 

Protocol Proposed in [7] 1440 bits 

 
Figure 6: Result comparison with [7] & [8] 

 

7.  CONSLUSION & FUTURE WORK 
The proposed protocol for Authentication and key agreement is based on ECC, which is a public-
key type.  The public key cryptography concept solves the key distribution and storage problems.  
The protocol provides certain security services like non-repudiation, anonymity of user and 
service expiration mechanism using time certificates.  The RSA-based protocols have significant 
problems in terms of the storage requirements.  The use of ECC will decrease the storage 
requirements for the execution of the protocols.  The use of ECC with compression techniques 
will further reduce the storage requirements and it is highly recommended for the future 
developments with regard to the network security protocols, the proposed protocol is a step in this 
direction.  The future work of this paper will be implementing the protocol in real-time and 
providing the performance results. 
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