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Abstract 

 

In this paper, an improved parallel elliptic curve processor is designed and 
modeled. We adjusted the Jacobian coordinates system by interacting point 
double and point add operations. This modified coordinates is parallelized using 
four multipliers similar to older parallel architectures. We implemented the 
components of the proposed design using FPGA with parametric features, in 
terms of number of parallel multipliers, number of parallel adders and width of 
input operands. The remodeled design is compared to other similar designs i.e. 
parallel Jacobian coordinates and parallel standard projective coordinates 
yielding better performance. Results showed that this proposed modified 
Jacobian design gave higher speed and cost (AT2) showing attractive research 
direction. 

 
Keywords: Cryptography hardware, Elliptic curve cryptography; Jacobian coordinate system; Parallel 
multipliers architecture; Projective coordinate cryptosystems 

 

 

1. INTRODUCTION  

Elliptic curves were first proposed as a basis for public key cryptography in the mid 1980s 
independently by Koblitz [1] and Miller [2]. Elliptic curve cryptography (ECC) algorithm is practical 
than existing security algorithms [3,4]. Because of this fact, it showed real attraction to portable 
devices (handheld devices) manufacturers and the security of their systems. In fact, through 
these devices, any one can access either email, or do bank transaction or buy any thing on 
internet using credit cards with high security standards. Elliptic curve algorithm is promising to be 
the best choice of these handhelds or similar devices because of low computing power (low 
battery consumption) and fast execution. ECC further gives very high security as compared to 
similar crypto systems with less size of key. For example, 160 bit ECC system is believed to 
provide same level of security as 1024 bit RSA [5,6]. Also, the rate at which ECC key sizes 
increase in order to obtain increased security is much slower than the rate at which integer based 
discrete logarithm (DL) or RSA key sizes increase for the same level increase in security [7]. 
 
Elliptic curves provide a public key crypto-system based on the difficulty of the elliptic curve 
discrete logarithm problem, which is so called because of its similarity to the discrete logarithm 
problem (DLP) over the integers modulo a prime p [3,4,8]. This similarity means that most 
cryptographic procedures carried out using a cryptosystem based on the DLP over the integers 
modulo p can also be carried out in an elliptic curve cryptosystem. ECCs can also provide a 
faster implementation than RSA or DL systems, and use less bandwidth and power [9]. These 
issues are crucial in lightweight applications, i.e. smart cards [10]. 
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An elliptic curve over a Galois field with p elements, GF(p), where p is prime and p > 3 may be 
defined as the points (x,y) satisfying the curve equation E: y

2
=x

3
+ax+b (mod p) , where a and b 

are constants satisfying 4a
3
+27b

2
≠0 (mod p). In addition to the points satisfying the curve 

equation E, a point at infinity (φ) is also defined. With a suitable definition of addition and doubling 
of points [2], this enables the points of an elliptic curve to form a group with addition and doubling 
of points being the group operation, and the point at infinity being the identity element. We then 
further define scalar multiplication of a point P by a scalar k as being the result of adding the point 
P to itself k times (i.e. kP = P + P + P + · · · + P (k- times)). The elliptic curve discrete logarithm 
problem is then defined as to compute scalar k such that Q = kP; given the prime modulus p, the 
curve constants a and b, and two points P and Q. This problem is infeasible for secure elliptic 
curves [1,2], and thus scalar multiplication is the basic cryptographic operation of an elliptic curve. 
Scalar multiplication involves mainly three modular operations: addition, multiplication and 
inversion, where the modular addition operation is the simplest and least to be worried about [11]. 
 
The other two ECC scalar multiplication modular operations are inversion and multiplication. 
Inversion is known to be the complex and very expensive operation [7], its cost is reduced by 
converting the normal (x,y) affine coordinate system to projective coordinate system (X,Y,Z), 
which will add-up more modular multiplications to the process; i.e. it will increase the number of 
multiplications in both ECC point doubling and adding processes operations to reduce the 
inversion complexity. Thus, modular multiplication is considered to be the repetitive arithmetic 
ECC scalar multiplication operation to be focused on.  
 
This work extends our previous work of parallelizing the modular multiplications operations within 
the elliptic curve scalar multiplication process using four modular multipliers. We remodeled the 
Jacobian coordinate system by interacting the two ECC point doubling and adding processes. We 
implemented the components of the proposed parallel scalar multiplication design using Field 
Programmable Gate Arrays (FPGA) with parametric features, in terms of number of parallel 
multipliers, number of parallel adders, and width of input operands. The results compared timing 
of the modular multiplication (digit serial), modular adder and total time needed to perform scalar 
multiplication for three designs i.e. parallel Jacobian coordinates, parallel standard projective 
coordinates, and this proposed remodeled hardware designs. Analysis showed that this proposed 
enhanced Jacobian model via four parallel multipliers and two adders gave better AT

2
 cost than 

existing scalar multiplication designs.  
 
The flow or the rest of the paper is as follows. The next section will give a short overview of 
several attempts and hardware ECC designs related to this work. Section 3 describes the ECC 
scalar multiplication algorithm in some details.  Then, the ECC affine and projective coordinates 
systems are described in Section 4. In Section 5, we describe our proposed design that we 
extend in this paper. Sections 6 and 7 are for describing our proposed design for scalar 
multiplication in ECC and its components FPGA implementations. For displaying the results and 
analysis, we reserved Section 8. Finally, we concluded with the achievements remarks and future 
work in Section 9.  
 

2. RELATED WORK 

Several hardware implementations to compute ECC scalar multiplication have been reported in 
the literature. Every technique has its pros and cons and requires fitting based on the application 
need. Many designs were dedicated for GF(2

m
) computation since it does not suffer the carry 

propagation problem. For example, in 1993, Agnew et al. [12] implemented ECC over GF(2
155

) 
normal basis finite field to be simple and gain efficient solution through an optimal multiplier. Their 
design used a programmable control processor that achieved high performance but limited to the 
finite field it is designed for. In 1998, Rosner [13] worked on his thesis to develop a reconfigurable 
ECC crypto engine. His thesis hardware was dedicated for Galois fields GF(2

n
)m in standard 
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base representations implemented using FPGAs. His work proved that a full point multiplication 
on ECC can be implemented on FPGAs although it is built for GF(2

n
)
m
. 

 
In 2000, Torii and Yokoyama [6] used efficient hardware techniques to implement ECC on a 
digital signal processor (DSP). Their techniques improved modular multiplications based on 
Montgomery's multiplication method [14] but specified for pipeline processing on DSP. They 
devised an improved method for computing the number of multiplications and additions which 
enhanced computing the point doubling operation. Their ideas have been interesting but 
restricted to their targeted DSP hardware. In the same year, Bednara et al. [15] presented a focus 
on field multiplications hardware analysis for ECC FPGA hardware implementation. They 
analyzed Montgomery field multipliers utilizing lookup tables to gain more efficiency. Their study 
compared Massey-Omura multipliers with LFSR in terms of area and speed. They evaluated 
different curve coordinate representations with respect to the number of operations within the 
fields. The best coordinate system matching their FPGA design was reported. 
 
In 2004, Saqib et al. [16] described a parallel architecture for Computing Scalar Multiplication 
using Hessian Elliptic Curves over F(2

191
) on FPGA. The design aimed to be parallel in all levels 

and as general as possible without assuming any hardware type to gain the best possible speed. 
Their results have been interesting for GF(2

m
) parallel architecture. A year later, in 2005, Dyke 

and Langendoefer [17] implemented ECC using Karatsuba's method. Their implementation used 
iterative hardware accelerator for polynomial multiplication with extended Galois fields (GF), 
which resulted in reducing the area consumption for recursive applications. Their approach 
reduces the energy consumption to 60% of the original approach. However, cost for all this 
achievement is the increased execution time. In 2006, Al-Somani and Ibrahim [18] proposed high 
performance GF(2

m
) Elliptic Curve Crypto processor that is based on standard representation and 

uses three multipliers to perform parallel field multiplications. They used mixed coordinate 
systems in point operations to increase the performance. Their results showed better time 
complexity than existing designs by 76% when implemented on FPGA for GF(2

173
). Al-Somani et 

al. in [19] further implements another ECC coprocessor using two multipliers only, with similar 
ideas that gained good results too. In 2007, Fan et al. [20] proposed parallel computing 
architecture for ECC scalar multiplication by using two-dimensional parallelism. They improved 
the performance by 26% and 32%, exploiting only vertical or horizontal parallelism, respectively. 
Different projective coordinates and recoding the scalar with Non-Adjacent Format (NAF) [14] 
represented further improvements in the performance with similar ideas. Since we focus our work 
in this paper on GF(p) ECC, the GF(2) ECC arithmetic and hardware implementations is less 
concentrated on.   
 
Several ECC hardware designs were introduced for GF(p) scalar multiplications, for example, in 
2001, Orlando and Paar [21, 22] proposed an architecture for computation of point multiplication 
for the ECC define over GF(p). Their architecture is scalable over area and speed and can easily 
be implemented on FPGA's. The processor used Montgomery multiplier (MM) for modular 
multiplications. The MM relied on the pre-computation of frequently used values and on the use of 
multiple processing engines. In 2003, Ors et al. [23] described a hardware implementation of an 
arithmetic processor suitable for RSA and ECC, due to the fact that they are the commonly used 
types of Public Key Cryptography. They implemented their processor efficiently for bit-lengths in a 
systolic array architecture that consists special operational blocks for all operations, for example 
Montgomery Modular Multiplication, modular addition/subtraction, EC Point doubling/addition, 
modular multiplicative inversion, EC point multiplier, projective to affine coordinates conversion 
and Montgomery to normal representation conversion. Their design is so generic and flexible that 
suffered engineering inefficiency in its speed, area, and power consumption. 
 
In 2004, we [24] proposed a parallel architecture for GF(p) elliptic curve cryptographic processor. 
We used several multipliers adopting projective coordinates to reduce the inversion complexity 
within the ECC point operations. Our parallelization in [24] found that projecting ECC using 
Homogeneous Projective coordinates gave better results compared to Jacobian coordinates. 
Later, in 2005, Ansari, and Huapeng [25] introduced separating point addition and point doubling 
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operations using two parallel processors to compute kP operations (scalar ECC multiplications). 
They used a buffer to hold results of point doubling while point addition is still in operation. They 
have shown that their parallel processors methods raised the operations speed by 90% 
compared to the single processor methods. However, this ratio in [25] is found dependant on the 
selection of ECC coordinate system and cannot be generalized. Sozzani and Turcato, in 2005 
too, [26] proofed that ECC implementation in hardware is much faster than software 
implementation. They implemented ECC using hardware CMOS technology (VLSI HCMOS9 
library, STMicroelectronics) using some level of parallelization which gave some specific 
improvement. In the same year, Chen et al. [27] presented a concurrent algorithm to speed up 
the point multiplication for the ECC based cryptosystem. They have used extra memory space to 
store intermediate points. The proposed algorithm achieved 100% hardware utilization that 
depends on the presented time schedule. Their work is found improving a 2001 paper [28], which 
saved around 32.2% delay for 256 bits computation. A year later, in 2006, Mishra [29] proposed 
pipelining scheme for implementing the ECC. This scheme enhances the computation of scalar 
multiplication significantly based on accessing a multiplier for each pipe stage. The pipelining 
scheme works based on a key observation i.e. to start the subsequent operation without waiting 
for the previous step to complete. The idea is interesting but needs further elaboration, which is 
taking place as in the work future study.  
 
In 2007, Al-Khaleel et al. [7] introduced a technique for implementing ECC on FPGAs. It based its 
design on radix-4 modular multipliers, to allow for more efficient bit processing than radix-2. The 
hardware also exploited parallelism through proper scheduling and mapping of the algorithm. It 
presented area time tradeoff when adopting partitioning schemes and folded pipeline techniques. 
Chelton in 2008 [30] carried out a hardware development on ECC through application specific 
instruction set (ASIP) to gain high-performance using FPGA technology. They developed a 
combination of point-doubling operation and point addition operations based on the proposal in 
[31]. For gaining speed in the operation processes, the data path was pipelined allowing different 
levels of operation parallelism. The study showed the clock frequency increase and the optimal 
pipeline depth which changes by changing the FPGA platform. 
 
In this work, we propose a remodeled scalar ECC multiplication architecture that extends our 
research in [24]. We benefited from the work scheme in [25] inverting it. Instead of separating the 
point addition and point doubling operations, we mix them benefiting from the scheduling 
thoughts of [7, 30, 31]. We found that Jacobian coordinates is more appropriate when mixing and 
parallelizing in four multipliers turning around one achievement of [24]. To build a fair study, we 
implemented the components used in all designs in FPGA to be used for the compareson. We, 
then, compared this modified mixed ECC Jacobian coordinates structure with similar parallel 
projective coordinates structures, i.e. original Jacobian coordinates and standard one. The 
comparison showed promising results that open directions for interesting research. 
 

3. SCALAR MULTIPLICATION ALGORITHM 

The algorithm used for scalar multiplication is based on the binary method [34], since it is efficient 
for hardware implementation. The binary method algorithm is shown below: 
 

Inputs:  k: a constant , P: point on the elliptic curve 
Output: Q: another point on the elliptic curve, Q=k . P 
Define: w: number of bits in k, where ki is the i

th
 bit in k 

If kw-1:=1 then Q := P else Q := 0; 
for i:= w-2 down to 0 do 
        Q := Q + Q;    Point Doubling  
        If kw-1=1 then  Q := Q + P;    Point Addition 
Return Q; 
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Basically, the binary method algorithm scans the bits of the constant k, in our case, from most to 
least bit and doubles the current point Q each time. After each point double operation, if the 
current k bit is one, then the algorithm adds the current point Q to the base point P. Each point 
operation, double or add, involves three elementary operations: modular multiplication, modular 
addition and modular multiplicative inverse.  
 
Finding multiplicative inverses in the field GF(p) is extremely slow, and is generally avoided as 
much as possible [7]. The use of coordinate systems other than the Affine coordinate system (will 
be illustrated later) greatly reduces the number of inversions required in the operations of the 
scalar multiplication on the expense of extra multiplications. 
 
ECC use effectively point doubling and addition operations in arithmetic execution. From many 
years of research, optimize formulae are available for the operations. Especially, by eliminating 
the costly field inversion from the main loop of the scalar multiplication, fast operations is 
achieved by using projective coordinates [32]. However, as in [33], the operation in projective 
coordinate involves more scalar multiplication than in affine coordinate and ECC on projective 
coordinate will be efficient only when the implementation of scalar multiplication is much faster 
than multiplicative inverse operation. Therefore, transfer is needed from one coordinate to 
another for avoiding the inversion process cost. The following section is dedicated for illustration 
of the coordinate systems structure used for these purposes. 
 

4. THE COORDINATE SYSTEMS  

An elliptic curve can be represented by several coordinate systems [11]. Following are 
descriptions of three coordinates, i.e. affine coordinate, standard projective coordinate, and 
Jacobian projective coordinate procedures. 
  
4.1  Affine coordinate: 

Let E an elliptic curve over GF(p), has the following equation:  
E: y

2
=x

3
+ax+b (mod p) , where a and b are constants satisfying 4a

3
+27b

2
≠0 (mod p). 

Let P=(x1,y1), Q=(x2,y2), and P+Q=(x3,y3), be points of E(GF(p)) ,  
 

Addition formula: x3=λ2
-x1-x2, y3=λ(x1-x3)-y1, where λ=(y2-y1)/(x1-x2)  

Doubling formula: x3=λ2
-2x1, y3=λ(x1-x3)-y1, where λ=(3x1

2
+a)/(2y1)  

 
Addition time = 3 M + 6 S + 1 Inversion 
Doubling time = 3 M + 4 S + 1 Inversion 
    
4.2  Standard Projective coordinate: 

For standard projective coordinates, we set x=X/Y  and y=Y/Z, giving the equation: 
                            Ep : Y

2
Z=X

3
+aXZ

2
+bZ

3
(mod p) ,  

Let P=(X1,Y1,Z1), Q=(X2,Y2,Z2) and P+Q=(X3,Y3,Z3) be points of E(GF(p)) ,  
 
Addition formula: X3= vA ,  Y3= u(v

2
X1Z2 – A) – v

3
Y1Z2    , Z3=v

3
Z1Z2 

where, u = Y2Z1 – Y1Z2 ,  v = X2Z1 – X1Z2 ,  A = u
2
Z1Z2 – v

3
 – 2v

2
Y1Z2 

 
Doubling formula: X3= 2hs ,  Y3= w(4B-h) – 8s

2
Y1

2
    , Z3=8s

3
    

where, w = aZ1
2
+3X1

2
, s = Y1Z1, B = X1Y1s ,  h = w

2
-8B 

 
Addition time = 12 M + 2 S 
Doubling time = 7 M + 5 S 
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4.3  Jacobian  coordinate: 

For Jacobian coordinates, we set x=X/Z
2
 and y= Y/Z

3
, giving the equation: 

                            Ep : Y
2
=X

3
+aXZ

4
+bZ

6
(mod p) ,  

Let P=(X1,Y1,Z1), Q=(X2,Y2,Z2) and P+Q=(X3,Y3,Z3) be points of E(GF(p)) , 
 
Addition formula: X3=-H

3
-2U1H

2
+r

2
 ,  Y3=-S1ZH

3
+r(U1H

2
–X3)  , Z3=HZ1Z2 

where, U1=X1Z2
2
 , U2=X2Z1

2
 , S1=Y1Z2

3
 , S2=Y2Z1

3
 , H=U2-U1 , r=S2-S1  

 
Doubling formula: X3=T ,  Y3=-8Y1

4
+M(S-T) , Z3=2Y1Z1  

where, S = 4X1Y1
2
 ,  M=3X1

2
+aZ1

2
 ,  T= -2S+M

2
 

 
Addition time = 12 M + 4 S 
Doubling time = 4 M + 6 S 
 

5. PREVIOUS DESIGNS 

In [24], the two projective coordinates, standard (Section 4.2) and Jacobian (Section 4.3), have 
been implemented using parallel architecture, as shown in Figure 1. This design uses four 
modular multipliers to process inputs according to a proposed specific data path. The data path 
for projective coordinates addition and doubling are shown in Figure 2 and Figure 4, respectively. 
Similarly, Figure 3 and Figure 5 show respectively, the data path for addition and doubling, when 
Jacobian coordinates are implemented. Since the addition/subtraction is very fast compared to 
multiplication, one adder is used in this design. 
 
The two implementations of the coordinates were compared in [24] with respect to their critical 
paths and their hardware utilization. The study resulted in choosing the standard projective 
coordinate as the appropriate efficient choice for parallel designs. 
 

 
FIGURE 1: Elliptic Curve Processor Architecture [1] 
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FIGURE 2: Projecting (X,Y) To (X/Z,Y/Z) Adding Two Points Data Flow 

 

6. PROPOSED DESIGN 

The work proposed here found some interesting benefit from improving the Jacobian coordinate 
system for parallel hardware designing. Since ECC point add operation is not needed all times, 
i.e. required based on the value of scalar k (Section 3); and this add operation involves more 
modular multiplications than point double, we propose to transform some of the modular 
multiplications needed by the point addition procedure to be pre-computed within the point 
doubling phase. The idea also makes the most usage of the hardware by allowing the multipliers 
not used in the last stages of Jacobian point double operation (Figure 5) to be fully utilized. In 
fact, the hardware of Figure 1 is modified by proper scheduling and adding one more adder 
makes the remodeled point doubling operation computed in three multiplication times, as shown 
in Figure 6. The hardware is modified but not much, i.e. the hardware components will be normal 
with regard to four modular multipliers but adjusted with two modular adders instead of one. 
 
Our idea is to utilize the unused multipliers of the original parallel Jacobian procedure shown in 
Figure 5, to prepare some pre-multiplications, that may be needed later for the next operation, i.e. 
may be needed by if point addition operation is required. These pre-multiplications are U1=X3Z2

2
 

and U2=X2Z3
2
, as shown in Figure 6. As the Jacobian point doubling is rescheduled on three 

multiplication steps, interestingly the related point adding is rescheduled to be performed in three 
multiplication times too, as shown in Figure 7. 
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FIGURE 3: Jacobian Projecting (X,Y) To (X/Z

2
,Y/Z

3
) Adding Points Data Flow 

 

 

 
FIGURE 4: Projecting (X,Y) To (X/Z,Y/Z) Doubling A Point Data Flow 
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FIGURE 5: Jacobian Projecting (X,Y) To (X/Z

2
,Y/Z

3
) Doubling A Point Data Flow 

 

 
FIGURE 6: Proposed Data Flow For Doubling A Projective Point  

 

The top level overview of the new ECC procedure and the complete data transfer is shown in 
Figure 8. Observe that all second point values (X2, Y2, Z2, Z2

2
, Z2

3
) are initially not needed by the 

point doubling making them stored until their tern comes in the point addition. The F condition 
depends on the scalar value k to direct the procedure for point addition operation, if needed. The 
pre-computed values, U1 and U2, are needed only for point addition operation. If the k value 
directs the function F not to run point addition, the pre-computed values are to be ignored. Some 
variable are reallocated or reassigned to other registers after point doubling and point adding 
operations. These are found essential for proper mapping of data within the remodeled procedure 
to operate correct and efficient. 
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FIGURE 7: Proposed Data Flow For Adding a Projective Point 

 

  

 
FIGURE 8: Overview of Proposed Design Flow 
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7. HARDWARE IMPLEMENTATION 

The purpose of the hardware implementation is to give some common platform and fair 
comparison between our proposed architecture and similar previous designs. The focus in this 
study is not targeted toward the details of the architecture implementation; instead our aim is to 
extract the hardware time and area parameters of the main blocks to build a fair comparison 
study between the designs. Therefore, our implementation exploration here is going to be limited 
to the level needed to serve this comparison goal.  
 
We will implement the basic blocks of hardware that are commonly used to build all studied 
designs, i.e. our model here as well as similar previous architectures. The major common 
components needed by all designs are modular multiplier and modular adder. We described 
these designs in VHDL and synthesized them for Xilinx Spartan-3 FPGAs. The implementation 
features of the two basic components are detailed in this section. 

 
7.1 Modular Multiplier Implementation: 

The modular multiplier is designed to run Montgomery multiplication in binary format, which is 
proven to be the efficient operation, similar in principle to the work in [21,22,23]. The Montgomery 
multiplier algorithm is expressed as the following: 

end
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The main operation running this Montgomery multiplication is simply modular addition. This made 
the multiplier algorithm implemented using two cascaded Carry save adders (CSA) connected as 
shown in Figure 9. We found that these CSA elements are the fastest components in our 
implemented system; which made the decision of adjusting our system clock. The clock is 
dominated to the run the signals through two cascaded CSA plus their registering delay. For 

example, the time needed for an n×n multiplier to operate is: Tmod_mul=n×CLK + 3×CLK; where the 

additional term: 3×CLK is to compensate for the final propagate adder. The study assumed that 
the hardware number of bits used to be 160-bits, as needed by practical applications of ECC 

[5,6]. The results showed that for a 160×160 multiplier running with a clock period of 12ns, the 
multiplication can be performed in around 2us. 
 
The CLK period is set to be equal to the longest path delay required by an iteration, which is:  
CLK  = Titeration=2TCSA+TREG 

So, the total delay for an n×n modular multiplier becomes: Ttotal=n(2TCSA+TREG)+TPCA 

 

The multiplier is designed, synthesized and tested through VHDL. It is implemented on FPGA 
using flexible parameterizble features. The design word size is arranged to be an input parameter 
(W) to the synthesizer. The VHDL code is first complied using value of W=4, which is used to 
build a functional (behavioral) simulation platform. Then, a timing simulation (after place and 
route) is tested. After that, the design is complied for W=160-bits, and the time required for the 
multiplication result to be ready is computed. The multiplication time found through this process is 
2.2usec, i.e. for our 160-bits experimentation.  
 
7.2 Modular Addition Implementation:  

During the ECC point add/double operations (Figures 6 and 7), an extra addition hardware 
module is needed beside the multipliers. This modular adder involves several hardware units, 
such as a controller, counter, shifter, Carry Propagate Adder (CPA), accumulator (ACC), and a 
multipliexor (Mux), connected as shown in Figure 10. Some occasions required the addition 
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operations to involve adding more than two operands, which lead the adder design to be 
optimized as follows: 

• First, the register of the accumulator (ACC) initializes its results to zero. 

• Then, all the required operands are added into ACC. 

• Finaly, ACC is reduced to accommodate the modular GF(p) requirement. 
 

 
FIGURE 9:  Block Diagram of the Modular Multiplier Unit 

 
For example, when I want this modular addition unit to compute the following: 

R = (a + 5×b) mod M 
the following operation sequence are executed: 

• ACC = 0 (at this stage registers of ACC are initialized to zero) 

• ACC = ACC + b (at this stage ACC equals b) 

• ACC = ACC+ 4 × b (simply b shifted by two bits and added to b making it equal to 5b) 

• ACC = ACC + a 

• Reduce ACC (compute ACC mod M) 
 
By measuring and analyzing the waveform of the VHDL simulation for the 160-bits modular adder 
in relation to the modular multiplication, we found that the time needed by the modular addition 

stage can be represented as: Tmod_add=0.18×Tmod_mul 

 

8. COMPARISONS AND ANALYSIS 

Using the implemented multiplication and addition units (Section 7) three ECC designs are 
compared. We compared the proposed design with two existing similar designs are all studied in 
relation to their area and time, as showed in Table 1. Since the basic components are the same 
implemented in FPGA, the comparison is believed to be fair and very close to reality. The study 
considered the area and timing of the internal registers, which cannot be avoided; an n-bits CSA 
is identical to an n-bits register. To make our study consistent with the previous study in [24], we 
assume the basic hardware unit as the multiplier. All other units are quantified relative to this 
multiplier unit, as follows: 

• One n-bits Register  ≈ 0.13 n×n multiplier 
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• One n-bits Adder  ≈ 0.40 n×n multiplier 
 

 
FIGURE 10:  Block diagram of the modular addition unit 

 
The timing (average cycles multiplication time) comparison counts the addition stages as well as 
the average multiplication number of cycles (see Table 1); i.e. the multiplication was the only 
factor in [24] where we added addition timing in this study for more realistic study. The average 
multiplication number of cycles is computed based on point addition and point doubling according 
to the ECC binary scalar multiplication algorithm described in Section 3. The multiplication time is 
computed by adding the total number of multiplications of point doubling procedure plus half the 
number of multiplications of point addition procedure. The point adding is half the point doubling 
assuming the value k in binary as half ones and half zeros as an average statistical data 
assumption (Section 3).  
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Parallel 
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Projective[1] 

Parallel 

Jacobian 

Projective[1] 

Design 
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Design 
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of 
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=12 
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=9 
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=16 
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=16 

Total Area 

(multiplier size) 
2.18 5.96 5.57 6.48 6.88 

Average Cycles 

(Multiplication time) 
18.18 

5+1.26 

=6.26 

6.5+1.35 

=7.85 

4.5+1.53 

=6.03 

4.5+0.9 

=5.4 

Cost 

(different 

figure of 

merit values) 

AT 40 37 44 39 37 

AT
2 721 234 343 236 201 

A
2
T 86.4 222 244 253 256 

TABLE 1: Comparison Between Different Designs 

 
In this study, the area is figured by a number related to the number of multipliers, i.e. the adders 
and registers are given an area estimate relative to the multipliers which totals up to an area 
factor used for comparison reasons. All architectures are designed for 160 bits crypto 
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calculations, which is the common number of bits needed by most applications [5,6].  
 
The area factor and timing average estimate will be multiplied together to generate different cost 
figures, as in Table 1. These cost figures are just simple figure of merit values to be used for 

evaluation reasons. For example, the cost AT (AT = A×T), assumes that time and area is having 
similar balanced importance to the application. When timing is more important, the cost figure of 

merit AT is assumed to be further multiplied by time T making it AT
2
 (AT

2
 = A×T×T). On similar 

concept but with allowing for the application to have more importance to area than time, we 
included in this study the cost A

2
T, where the area is squared multiplied by the timing once. This 

new A
2
T cost is believed to be needed for applications with very limited hardware area such as 

smart cards and small mobile devices, where area is more important than speed. 
 
Based on the cost values, AT, AT

2
, and A

2
T, an appropriate design can be preferred. All cost 

figures for all designs are plotted in Figure 11, with some figures rescaled to fit in the graph. The 
benefit of the cost comparison is chose the preferred design and not in the cost figure value. Our 
proposed hardware is showing to have the best cost when time is having more priority over area, 
i.e. for AT

2
. When the area and time are having the same importance (AT cost), our proposed 

design is having similar cost to the parallel standard hardware as our design in [24], which is also 
the lowest preferred value. Here the proposed design is a bit faster the old design but with the 
benefit I n speed compensated for in the hardware area.  
 
The sequential hardware is preferred over all parallel designs when area is having more 
importance than time, as shown in A

2
T cost plotting in Figure 11. This remark is also including our 

proposed design in this study, which can be a drawback of this parallel design whenever the 
hardware area is important much more than the speed. 
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FIGURE 11: Different Cost Comparison of All Designs (rescaled to fit in the figure) 

 

9. CONCLUSION 

This study targeted speeding-up elliptic curve crypto (ECC) computations. We focused on ECC 
scalar multiplications adopting projective coordinates to reduce the inversion complexity effect. 
The study proposed remodeling Jacobian projective coordinate system tuned for parallel 
hardware implementation. We proposed merging ECC point adding and point doubling operations 
as a new modified method. The proposed hardware is similar to previous designs of four 
multipliers and an adder but with one more adder making it involve two addition units. 

AT 

AT
2 

A
2
T 
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The new architecture is compared to existing scalar multiplication designs. All designs' basic units 
are implemented similarly on FPGA to insure fair comparison and area time cost analysis. The 
cost evaluation involved three studies, i.e. AT, AT

2
 and A

2
T.  Our proposed design showed 

interesting performance results for AT and AT
2
 costs. The clear improvement is shown in the AT

2
 

cost, where area is not as important as the computation timing. We concluded that implementing 
the proposed Jacobian coordinate using four multipliers and two adders, yields better AT

2
 cost 

than existing scalar multiplication designs. The study is attractive for researchers to observe 
promising direction behind this research idea. 
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