
Amir Azimi Alasti Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, Mir Kamal Mirnia, Mehdi
Bahrbegi, Elnaz Safarzadeh & Ali Ebrahimi

International Journal of Computer Science and Security, (IJCSS), Volume (4): Issue (6) 589

A New System for Clustering and Classification of Intrusion
Detection System Alerts Using Self-Organizing Maps

Amir Azimi Alasti Ahrabi amir.azimi.alasti@gmail.com
Department of Computer
Islamic Azad University, Shabestar Branch
Tabriz, East Azerbaijan, Iran

Ahmad Habibizad Navin ah_habibi@iaut.ac.ir
Department of Computer
Islamic Azad University, Science and Research Branch
Tabriz, East Azerbaijan, Iran

Hadi Bahrbegi hadi.bahrbegi@gmail.com
Department of Computer
Islamic Azad University, Shabestar Branch
Tabriz, East Azerbaijan, Iran

Mir Kamal Mirnia mirnia-kam@tabrizu.ac.ir
Department of Computer
Islamic Azad University, Science and Research Branch
Tabriz, East Azerbaijan, Iran

Mehdi Bahrbegi m.bahribayli@gmail.com
Department of Computer
Islamic Azad University, Shabestar Branch
Tabriz, East Azerbaijan, Iran

Elnaz Safarzadeh elnaz_safarzadeh@yahoo.com
Department of Computer
Islamic Azad University, Shabestar Branch
Tabriz, East Azerbaijan, Iran

Ali Ebrahimi ali.ebrahimi1781@gmail.com
Department of Computer
Islamic Azad University, Shabestar Branch
Tabriz, East Azerbaijan, Iran

Abstract

Intrusion Detection Systems (IDS) allow to protect systems used by
organizations against threats that emerges network connectivity by increasing.
The main drawbacks of IDS are the number of alerts generated and failing. By
using Self-Organizing Map (SOM), a system is proposed to be able to classify
IDS alerts and to reduce false positives alerts. Also some alert filtering and
cluster merging algorithm are introduce to improve the accuracy of the proposed
system. By the experimental results on DARPA KDD cup 98 the system is able to
cluster and classify alerts and causes reducing false positive alerts considerably.

Amir Azimi Alasti Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, Mir Kamal Mirnia, Mehdi
Bahrbegi, Elnaz Safarzadeh & Ali Ebrahimi

International Journal of Computer Science and Security, (IJCSS), Volume (4): Issue (6) 590

Keywords: IDS, alert clustering, SOM, false positive alert reduction, alert classification.

1. INTRODUCTION

An IDS is a device that monitors system and/or network activities for malicious activities or policy
violations and produces alerts to a Management Station. IDSs are generally divided into two
categories based on detection method: Signature based IDSs and anomaly based IDSs [1]. In
IDS there are two major problems namely generating many alerts and high rate of false positive
alerts. Alert management methods are used to manage with these problems. One of the methods
of alert management is clustering the alerts. According to recent researches, clustering the alerts
is an NP-Complete problem [21].

In this paper by using SOM the proposed system classifies and clusters the alerts and also
detects false positive alerts. Two algorithms are used in this system to filter alerts to train the
SOM better and to merge generated clusters to reduce the number of clusters depending on the
types of the attacks. Moreover to obtain a better result from SOM a preprocessing process is
applied to the alerts during train and test phases.

The subject is introduced briefly in Section 1. Section 2reviews related works, section 3 explains
the suggested system for classifying and clustering the alerts, the experimental results are shown
in section 4 and finally section 5 is a conclusion and feature works.

2. RELATED WORKS

K. Julisch [2] proposed a clustering technique witch based on forming a generalized view of false
alerts. This technique is for discovering root causes of false positive alerts. Julisch notice that a
small number of root causes implies 90% of alerts. by identifying and removing this root causes
total number of alerts come down to 82%.

Cuppens in his Mirador project used an expert system for clustering. By this method the alerts are
entered to database with XML format and then to decide whether these be merged into a cluster
the expert system algorithm is used [4, 5]. Jianxin Wang, et al, have used genetic algorithm for
clustering alerts from IDS [10]. Also two clustering algorithms, based on GA and IGA are
compared together [11]. Wang applied GA and IGA instead of Julisch's algorithm for "root cause"
clustering. To distinguish malicious traffic from normal traffic the SOM is used [7, 8]. Also it has
been proved [7, 8] that SOM-based IDS can handle two situations by discovering new attacks.
Hayoung, et al. used SOM for real time detection of attacks in IDSs [9].

Maheyzah Md Siraj, et al. compared the clustering algorithms, EM, SOM, K-means and FCM on
Darpa 2000 dataset [3]. The results show that EM algorithm is the best for clustering. Since the
alerts received by SOM are not filtered thus the result for the SOM could be in doubt.

The main features of the proposed system are obtaining results with high accuracy which is due
to filtering alerts and merging the generated clusters and also to reduce the number of false
positive alerts considerably.

3. CLUSTERING AND CLUSSIFICATION SYSTEM
The proposed system is shows in Figure 1. schematically. The system depends on produced
alerts directly by IDS. To generate alerts, Snort tool [12] with Darpa 98 dataset [13] is used. Snort
is an open source signature based IDS which gets Darpa 98 online traffic and then generates
alert log files. The alert log files are used as the inputs of the system.

Amir Azimi Alasti Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, Mir Kamal Mirnia, Mehdi
Bahrbegi, Elnaz Safarzadeh & Ali Ebrahimi

International Journal of Computer Science and Security, (IJCSS), Volume (4): Issue (6) 591

FIGURE 1: Alert clustering and classification system.

2.1 Labeling Unit
In Darpa 98 dataset, there are some tcpdump.list files for each online traffic flow which contains
information of attacks. Labeling unit gets the alert and tcpdump.list files returning a list of labeled
alerts involving type of attack for each alert.

An algorithm is proposed to generate map between alerts and attacks by using a unique key. This
key consists source IP, destination IP, source port, destination port and ICMP code/type. The
algorithm is shown in Figure 2.

FIGURE 2: The algorithm of alerts labeling.

2.2 Normalization and Filtering Unit
Since Snort is a signature based IDS, it can’t detect some of attacks like Pod and Smurf. It means
that among the available attack type in Darpa 98 dataset, it can detect only eight cases with high
accuracy [22]. So this unit takes the list of acceptable attacks, selected attributes and labeled
alerts and then produces the list of filtered false and true positive alerts (Figure 1.). In
normalization process eight attributes are chosen among the collection of alert attributes [14]
stored in a vector named alert vector. The chosen attributes are: Signature ID, Signature Rev,

1. Input TCPDUMP list files.
2. Input alert log files.
3. Create an empty AttackList set.
4. Create an empty AlertList set.
5. For each row in TCPDUMP list files:

5.1. If the row is a labeled attack then add the row to the AttackList set.
6. For each row in alert log files:

6.1.Create key with the five attributes: source ip, destination ip, source
port, destination port, ICMP code/type.
6.2. If the key exists in AttackList set then label the selected row with the
type of found attack from AttackList set.
Else
Label the selected row with the False Positive attack type.
6.3. Add the selected row to the AlertList set.

8. Return the AlertList set.

Amir Azimi Alasti Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, Mir Kamal Mirnia, Mehdi
Bahrbegi, Elnaz Safarzadeh & Ali Ebrahimi

International Journal of Computer Science and Security, (IJCSS), Volume (4): Issue (6) 592

Source IP, Destination IP, Source Port, Destination Port, Datagram length and Protocol. One of
the similar alerts based on values of the alert vector is selected in filtering process. Experiment
shows that filtering the similar alerts wouldn't remove two alerts with two different types of attack.

2.3 Preprocessing Unit
Some attributes in the alert vector are string type and some numerical type. In this unit the string
values are converted into numerical values and the range of the whole attributes is reduced. This
unit takes the list of false positive and filtered true positive alerts and produces train and test data.
(Figure 1)

By using (1) and (2) the string values are converted into numerical values.

4321

4321

255)255))255(((_

,...

XXXXVALIP

XXXXIP

+×+×+×=

= (1)

=

=

=

=

=

UDPprotocol

TCPprotocol

ICMPprotocol

Noneprotocol

valprotocol

,17

,10

,4

,0

_
 (2)

Since the differences in the range of the values will lose the accuracy of result, so the values of
alert vector should be normalized. By using (3, 4), we convert [Xmin, Xmax] into [0, 1] (Unit Range)
and into [0.1, 0.9] (Improved Unit Range).

minmax

min

xx

xx
UR

−

−
= (3)

1.08.0
minmax

min
+

−

−
×=

xx

xx
IUR (4)

2.4 SOM (Train/Classify) unit

• SOM
Self-organizing map [6] is a type of artificial neural networks that is trained using unsupervised
learning. SOM describes a mapping from a higher dimensional input space to a lower
dimensional map space. When a training example is fed to the network, its Euclidean distance to
all weight vectors are computed (5). The neuron with weight vector which is similar to the input
mostly is called the best matching unit (BMU). The weights of the BMU and neurons close to it in
the SOM lattice are adjusted toward the input vector. The magnitude of the change decreases
with time and with distance from the BMU.

∑
∈

−=−
Kk

kkk mxwmx
22 (5)

where K is the set of known (not missing) variables of sample vector x, xk and mk are kth
components of the sample and prototype vectors and wk is the kth weight value. In this paper, the
neighbour function

)
)(2

exp(
2

2

t

rr ic

σ

−
− (6)

is Gaussian, where rc is the location of unit c on the map grid and the σ(t) is the neighbourhood
radius at time t. And the learning algorithm

Amir Azimi Alasti Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, Mir Kamal Mirnia, Mehdi
Bahrbegi, Elnaz Safarzadeh & Ali Ebrahimi

International Journal of Computer Science and Security, (IJCSS), Volume (4): Issue (6) 593

,

)(

)(

)1(

1

)(

1

)(

∑

∑

=

=
=+

n

j

jic

n

j

jjic

i

th

xth

tm
 (7)

is batch, where c(j) is the BMU of sample vector xj, hi,c(j) the neighbourhood function (the
weighting factor), and n is the number of sample vectors.

• Training the SOM
Test data and train data are used as the input for this unit. For each feature, SOM makes the
corresponding maps and then construct U-matrix (unified matrix) based on all feature maps [9].
U-matrix method allows to get a more suitable information of the vector distribution. This method

is capable to classify all artificially generated data correctly [16]. The algorithm of SOM [17, 18,

19] is described in Figure 3 and can build U-matrix for normalized filtered alerts data in Figure 4.
In U-matrix the lighter color neurons mean the borders of clusters.

Since feature maps and U-matrix obtained through two normalization methods (UR and IUR) are
similar (the only difference is the range of corresponding feature maps and U-matrixes), thus
diagrams of UR are shown.

FIGURE 3: SOM Algorithm to Construct Maps quoted from [17, 18, 19].

1. Initialize the network.
For each node i set the initial weight vector wi(0) to be random.
Set the initial neighborhood Ni(0) to be large.

2. Present the input.
Present x(t), the input pattern vector x at time t (0<t<n where n is the number of
iterations defined by the user) to all nodes in the network simultaneously.
x may be chosen at random or cyclically from the training data set.
3. Calculate the winning node.
Calculate node c with smallest distance between the weight vector and the input vector

 { })()(min)()(twtxtwtx
i

i
c

−=−

Hence
 { })()(minarg twtxc i−=

4. Update the weights.
Update weights for c and nodes with neighborhoods Nc(t).

,

)(

)(

)1(

1

)(

1

)(

∑

∑

=

=
=+

n

j

jic

n

j

jjic

i

th

xth

tm

Where c(j) is the BMU of sample vector xj, n is the number of sample vectors and hi,c(j)
the neighborhood function (the weighting factor)

)

)(2
exp().()(

2

2

t

rr
tth

ic

ci
σ

α
−

−=

5. Present the next input.
Decrease hci so that hci(t+1)< hci(t)

Reduce the neighborhood set so that Ni(t+1)⊂ Nci(t) i
∀

Repeat from step 2 choosing a new unique input vector x(t+1)≠x(j), j≤t

Until all iterations have been made (t=n).

Amir Azimi Alasti Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, Mir Kamal Mirnia, Mehdi
Bahrbegi, Elnaz Safarzadeh & Ali Ebrahimi

International Journal of Computer Science and Security, (IJCSS), Volume (4): Issue (6) 594

FIGURE 4: U-matrix and 8 Feature Maps.

• Clustering of U-matrix

For clustering of U-matrix, distance based U-matrix algorithm with 3 neuron neighbourhoods has
been used [20] (Figure. 6. b). To label the clusters, the number of corresponding labels is
calculated for each data vector in the cluster and the label with the higher density is supposed to
be the label of the cluster. Because there is too many clusters, clusters merging algorithm is
executed over clusters (Figure 5.). In this algorithm, the clusters with blank label are supposed to
be unknown. Unknown clusters are the borders of various parts of U-matrix. Figure 6. c. shows
merged clusters after execution of algorithm.

FIGURE 5: The cluster merging algorithm.

1. Input clustered U-matrix, U.
2. Creating of the initial clusters.

 Let C an empty set.
 For each attack type in U:
 Add CAttackType set to C.

3. Finding correspond clusters for each attack type in U.
 For each cluster in U:
 Let SomeClusterOfU = select a cluster from U.
AttackType= find the name of the SomeClusterOfU.
If AttackType is empty then AttackType = unknown.
 Add SomeClusterOfU to CAttackType.

4. Merging of the clusters.
For each cluster in C:
Merge all of the clusters in U correspond to the CAttackType
set.

Amir Azimi Alasti Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, Mir Kamal Mirnia, Mehdi
Bahrbegi, Elnaz Safarzadeh & Ali Ebrahimi

International Journal of Computer Science and Security, (IJCSS), Volume (4): Issue (6) 595

FIGURE 6: (a) U-matrix (b) Clustered U-matrix (c) Clustered U-matrix after merging algorithm. The number

of clusters in (b) was 253 and after merging algorithm in (c) reduced to 9 clusters.

• Classifyin

• g of Test Data
Test data is given to SOM in this unit. It is expected that all the given data vectors from alerts with
attack label are placed in the corresponding clusters. Data vectors from false positive alerts
should be placed in unknown cluster, otherwise network error should be high. This error shows
the distance between entered data vectors and found BMUs. If the error is more than threshold α
(α is a constant value) the corresponding data vector is supposed to be as a false positive alert
and classified as an unknown cluster.

4. EXPERIMENTAL RESULTS
Matlab software is used to implement the system and SOM toolbox is used to simulate SOM. The
map size is 30*60 with grid topology and neighborhood is hexagon. Training data contains 6053
data vectors or 70% of total filtered alert data vectors. In training phase only the data vectors of
true positive alerts are used. Since the SOM should be trained with the data vectors extracted
from true positive alerts, the data vectors of the false positive alerts are ignored in the training
phase. Test data includes 30% of the data vectors of labeled alerts; it means 2591 data vectors,
and 2591 data vectors of false positive alerts. The reason for adding the false positive alerts to
the test dataset is that always IDSs produce this type of alerts alongside true positive alerts. The
number of clusters is 9. Here we let α= 0.1 as a threshold value.

To evaluate the performance of the system, 8 criteria were used. (Table 1)

1-Classification Error (ClaE) is the number of alerts that are wrongly classified. 2-Classification
Error Rate (ClaER) is the percentage of wrongly classified alerts (8). 3-Classification Accuracy
Rate (ClaAR) is percentage of alerts that are accurately classified as they should be (9). 4-
Clustering Error (CluE) is the number of alerts from training data that are wrongly clustered. 5-
Clustering Error Rate (CluER) is the percentage of wrongly clustered alerts from train data (10).
6-False Positive Reduction Rate (FPRR) is percentage of false positive alerts that accurately
identified and reduced (11). 7-Average Network Hit Error (ANHE) is the average of BUMs error in
SOM for all test data (12). 8-Average Network Hit Error for True Positive (ANHETP) is the
average of BUMs error in SOM only with the true positive alerts (13).

ClaER=(ClaE ÷Total Number of Alerts Observed)×100 (8)
ClaAR=100–ClaER (9)
ClaER=(CluE÷Total Number of Alerts Observed From Train Data)×100 (10)
FPRR=100–(The Number of False Positive Alerts that Accurately Identified ÷ Total Number of
False Positive Alerts Observed)×100 (11)
ANHE=Sum of All BMUs Error÷Total Number of Alerts Observed (12)

Amir Azimi Alasti Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, Mir Kamal Mirnia, Mehdi
Bahrbegi, Elnaz Safarzadeh & Ali Ebrahimi

International Journal of Computer Science and Security, (IJCSS), Volume (4): Issue (6) 596

ANHETP=Sum of BMUs Error for All True Positive Alerts÷Total Number of Alerts Observed
 (13)

 ClaE ClaER ClaAR CluE CluER FPRR ANHE ANHETP
UR 672 12.97 87.03 23 0.38 87.34 0.073 0.011
IUR 33 0.64 99.36 23 0.38 99.71 0.091 0.003

TABLE 1: Proposed system performance metrics.

 ClaE FPRR ClaAR
UR 2109 59.70 59.30
IUR 2516 51.87 51.04

TABLE 2: Proposed system performance metrics without considering α threshold value.

As Table 1 shows, the best result is obtained by IUR scaling method which has 99.36% accuracy
and its false positive alerts reduction ratio is 99.71%. Because of the IUR method distributes
values of attributes of alert vectors as a uniform manner in a mentioned range, the acquired
results are better than other unit range method. When Table 1 and Table 2 are compared, you
can see the FPRR metric is improved after using α threshold in Table 2. If the result of
classification without using α threshold is accepted then gather may exist some incorrectly
classified false positive alert vectors. If α threshold is used as a maximum value of network error
and classified results have upper value of this threshold value then classification operation is
corrected for these alert vectors. Because of dependency between FPRR and ClaAR by
improving the result of FPRR metric, the ClaAR metric result is improved.

5. CONSLUSION & FUTURE WORK
In this paper a SOM based system is presented which is able to cluster and classify the alerts
with high accuracy. This system is also able to reduce number of false positive alerts
considerably.

If the SOM is trained by alerts for various types of attacks with proper filtering process and
preprocessing on the alerts, SOM becomes a suitable tool to classify alerts and reduce the false
positive alerts in the alert management systems for IDS.
In using SOM for a wide range of alerts with various types of attacks, ratio of error may be high
thus using hierarchal SOMs on each trained SOM of a special type of attack can be a solution of
this problem.

SOM can be used to find the correlations between alerts. Thus all of the alert vectors with several
common attributes placed on one or several neighbour neurons are supposed to be as the
related alerts.

6. REFERENCES
1. H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-detection systems.

COMPUT. NETWORKS, 31(8):805-822, 1999. 60 Conclusion And Future Work 61.

2. K. Julisch, "Clustering intrusion detection alarms to support root cause analysis", ACM

Transactions on Information and System Security (TISSEC) , 2003, Volume 6 , Issue 4,
Pages: 443 – 471.

3. Maheyzah, M. S., Mohd Aizaini, M., and Siti Zaiton, M. H. (2009), “ Intelligent Alert Clustering

Model for Network Intrusion Analysis.”, Int. Jurnal in Advances Soft Computing and Its
Applications (IJASCA), Vol. 1, No. 1, July 2009, ISSN 2074-8523. pp. 33 - 48.

4. F. Cuppens. Managing alerts in a multi-intrusion detection environment. Proceedings of the

17th Annual Computer Security Applications Conference, 32, 2001.

Amir Azimi Alasti Ahrabi, Ahmad Habibizad Navin, Hadi Bahrbegi, Mir Kamal Mirnia, Mehdi
Bahrbegi, Elnaz Safarzadeh & Ali Ebrahimi

International Journal of Computer Science and Security, (IJCSS), Volume (4): Issue (6) 597

5. E. MIRADOR. Mirador: a cooperative approach of IDS. Poster present au me European
Symposium on Research in Computer Security (ESORICS). Toulouse, France, octobre,
2000.

6. Kohonen, T, "Self-Organized Maps", Springer series in information. Science Berlin

Heidelberg:1997.

7. Kiziloren, Tevfik, "Network traffic classification with Self-Organized Maps", Computer and

information sciences, 2007, page(s): 1-5.

8. Pachghare,V. K., "Intrusion Detection System Using Self Organized Maps", Intelligent Agent

& Multi-Agent Systems, 2009, page(s): 1-5.

9. Hayoung Oh, Kijoon Chae, "Real-Time Intrusion Detection System Based on Self-Organized

Maps and Feature Correlations", Third International Conference on Convergence and Hybrid
Information Technology, IEEE, 2008, vol. 2, Pages.1154-1158.

10. Wang, J., Wang, H., Zhao, G. 2006. A GA-based Solution to an NP-hard Problem of

Clustering Security Events. IEEE 2093- 2097.

11. Jianxin Wang, Baojiang Cui, " Clustering IDS Alarms with an IGA-based Approach", ICCCAS

2009, pp586-591.

12. Snort: The open source network intrusion detection system. Available: http://www.snort.org/.

13. MIT Lincoln Lab. (1998). DARPA 1998 Intrusion Detection Evaluation Datasets. Available:

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1998data.html

14. Snort Manual, www.snort.org/assets/82/snort_manual.pdf

15. Matlab Software, http://www.mathworks.com.

16. A. Ultsch, H. P. Siemon, " Kohonen's Self Organizing Feature Maps for Exploratory Data

Analysis", Proceedings of International Neural Networks Conference (INNC) (1990), pp. 305-
308.

17. Binh Viet Nguyen, "Self-Organizing Map for anomaly detection", Available in

http://www.cs.umd.edu/~bnguyen/papers/papers.html

18. SOM Toolbox for Matlab, Available in http://www.cis.hut.fi/projects/somtoolbox/.

19. Juha Vesanto, John Himberg, Esa Alhoniemi, and Juha Parhankangas, "SOM Toolbox for

Matlab 5", SOM Toolbox Team, Helsinki University of Technology, 2000.

20. Juha Vesanto and Esa Alhoniemi. Clustering of the Self-Organizing Map. IEEE Transactions

on Neural Networks, 11(2):586–600, March 2000.

21. Julisch, K.: Mining alarm clusters to improve alarm handling efficiency. In: Proceeding of the

17th Annual Computer Security Applications Conference, New Orleans, pp. 12–21 (2001)

22. S Terry Brugger and Jedidiah Chow, " An Assessment of the DARPA IDS Evaluation Dataset

Using Snort", UC Davis Technical Report CSE-2007-1, Davis, CA, 6 January 2007

