
Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 168

A Novel Approach for Efficient Resource Utilization and
Trustworthy Web Service

Marimuthu K k.marimuthu@vit.ac.in
Assistant Professor/School of Computing
Science and Engineering
VIT University
Vellore, 632014, India

Ganesh Gopal D ganeshgopal@vit.ac.in
Assistant Professor/School of Computing
Science and Engineering
VIT University
Vellore, 632014, India

Abstract

Many Web services are expected to run with high degree of security and dependability. To
achieve this goal, it is essential to use a Web-services compatible framework that tolerates not
only crash faults, but Byzantine faults as well, due to the untrusted communication environment in
which the Web services operate. In this paper, we describe the design and implementation of
such a framework, called RET-WS (Resource Efficient and Trustworthy Execution -Web
Service).RET-WS is designed to operate on top of the standard SOAP messaging framework for
maximum interoperability with resource efficient way to execute requests in Byzantine-fault-
tolerant replication that is particularly well suited for services in which request processing is
resource-intensive. Previous efforts took a failure masking all-active approach of using all
execution replicas to execute all requests; at least 2t + 1 execution replicas are needed to mask t
Byzantine-faulty ones. We describe an asynchronous protocol that provides resource-efficient
execution by combining failure masking with imperfect failure detection and checkpointing. It is
implemented as a pluggable module within the Axis2 architecture, as such, it requires minimum
changes to the Web applications. The core fault tolerance mechanisms used in RET-WS are
based on the well-known Castro and Liskov's BFT algorithm for optimal efficiency with some
modification for resource efficient way. Our performance measurements confirm that RET-WS
incurs only moderate runtime overhead considering the complexity of the mechanisms.

Keywords: Distributed Systems, Fault Tolerance, Byzantine Faults, Resource Efficient.

1. INTRODUCTION

 Driven by business needs and the availability of the latest Web services technology, we have
seen increasing reliance on services provided over the Web. We anticipate a strong demand for
robust and practical fault tolerance middleware for such Web services. Considering the untrusted
communication environment in which these services operate, arbitrary faults (crash faults as well
as Byzantine faults [13]) must be tolerated to ensure maximum service dependability. Middleware
that provides such type of fault tolerance with resource efficient way is often termed as Resource
Efficient and Trustworthy execution Protocol [12] (RET) middleware.

There exist a well-known high quality research prototype [6] that provides Byzantine fault
tolerance for generic client-server applications (similar prototypes are available, but they are often
tied to a specific application, such as storage [19]). In fact, Merideth et al. [15] have used it
directly for Web services fault tolerance. However, argue against such an approach primarily for
two reasons. First and foremost, the prototype uses proprietary messaging protocols (directly on
top of IP multicast by default). This is incompatible with the design principles of Web services,

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 169

which call for transport independence and mandate SOAP-based communications. The use of
proprietary messaging protocols compromises the interoperability of Web services. Second, this
prototype lacks direct support for Web services, which requires the use of a wrapper to mediate
the two components. The mediation can be achieved either through an additional socket
communication, which wastes precious system resources and is inefficient, or through a Java
Native Interface (the vast majority of Web services are implemented in Java, and the BFT
prototype is implemented in C++), which is difficult to program and error-prone.

We believe that any type of middleware for Web services must use standard Web services
technologies and must follow the design principles of Web services, and fault tolerance
middleware for Web services is no exception. With this guideline in mind, we designed and
implemented RET-WS, a Byzantine fault tolerance framework for Web services. To avoid
reinventing the wheel and to best utilize existing Web services technology, we decide to build
RET-WS by extending Sandesha2 [3], which is an implementation of the Web Service Reliable
Messaging (WS-RM) standard [4] for Apache Axis2 [2] in Java. In RET-WS, all fault tolerance
mechanisms operate on top of the standard SOAP messaging framework for maximum
interoperability. RET-WS inherits Sandesha2's pluggability, and hence, it requires minimum
changes to the Web applications (both the client and the service sides). The core fault tolerance
mechanisms in RET-WS are based on the well-known Castro and Liskov's BFT algorithm [6] for
optimal runtime efficiency. The performance evaluation of a working prototype of RET-WS shows
that it indeed introduces only moderate runtime overhead verses the original Sandesha2
framework considering the complexity of the Byzantine fault tolerance mechanisms.

2. LITERATURE SURVEY

2.1. Byzantine Fault Tolerance

A Byzantine fault is an arbitrary fault that occurs during the execution of an algorithm by a
distributed system. It encompasses both omission failures (e.g., crash failures, failing to receive a
request, or failing to send a response) and commission failures (e.g., processing a request
incorrectly, corrupting local state, and/or sending an incorrect or inconsistent response to a
request.) The early solutions were described by Lamport, Shostak, and Pease in 1982. One
solution considers scenarios in which messages may be forged, but which will be Byzantine-fault-
tolerant as long as the number of traitorous generals does not equal or exceed one third.

A second solution requires unforgeable signatures (in modern computer systems, this may be
achieved in practice using public key cryptography but maintains Byzantine fault tolerance in the
presence of an arbitrary number of traitorous generals.

The Query/Update (Q/U) protocol is a new tool that enables construction of fault-scalable
Byzantine fault-tolerant services. The optimistic quorum-based nature of the Q/U protocol allows
it to provide better throughput and fault-scalability than replicated state machines using
agreement-based protocols Moreover, the performance of the Q/U protocol decreases by only
36% as the number of Byzantine faults tolerated increases from one to five, whereas the
performance of the replicated state machine decreases by 83%[20].
The Q/U protocol [21], describing the weakness of approaches and show how to adapt Byzantine
quorum protocols, which had previously been mostly limited to a restricted read/write interface
[22], to implement Byzantine-fault-tolerant state machine replication. This is achieved through a
client-directed process that requires one round of communication between the client and the
replicas when there is no contention and no failures.

A Byzantine faulty process may behave arbitrarily, in particular, it may disseminate different
information to other processes, which constitutes a serious threat to the integrity of a system.
Since a Byzantine faulty process may also choose not to respond to requests, it can exhibit crash
fault behavior as well (i.e., crash faults can be considered as a special case of Byzantine faults).
Byzantine fault tolerance (BFT) refers to the capability of a system to tolerate Byzantine faults.

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 170

For a client-server system, RET can be achieved by replicating the server and by ensuring all
server replicas to execute the same request in the same order. The latter means that the server
replicas must reach an agreement on the set of requests and their relative ordering despite
Byzantine faulty replicas and clients. Such an agreement is often referred to as Byzantine
agreement [13].

Byzantine agreement algorithms had been too expensive to be practical until Castro and Liskov
invented the BFT algorithm mentioned earlier [6]. The BFT algorithm is designed to support
client-server applications running in an asynchronous distributed environment with a Byzantine
fault model. The implementation of the algorithm contains two parts. At the client side, a
lightweight library is responsible to send the client's request to the primary replica, to retransmit
the request to all server replicas on the expiration of a retransmission timer (to deal with the
primary faults), and to collect and vote on the replies. The main RET algorithm is executed at the
server side by a set of 3f+1 replicas to tolerate f Byzantine faulty replicas. One of the replicas is
designated as the primary while the rest are backups.

As shown in FIGURE 1, the normal operation of the (server side) RET algorithm involves three
phases. During the first phase (called pre-prepare phase), the primary multicasts a pre-prepare
message containing the client’s request, the current view and a sequence number assigned to
the request to all backups.

FIGURE 1: Normal operation of the RET algorithm

A backup verifies the request message the ordering information. If the backup accepts the
message, it multicasts to all other replicas a prepare message containing the ordering information
and the digest of the request being ordered. This starts the second phase, i.e., the prepare
phase. A replica waits until it has collected 2f prepare messages from different replicas (including

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 171

the message it has sent if it is a backup) that match the preprepare message before it multicasts
a commit message to other replicas, which starts the commit phase. The commit phase ends
when a replica has received 2f matching commit messages from other replicas. At this point, the
request message has been totally ordered and it is ready to be delivered to the server application
if all previous requests have already been delivered. If the primary or the client is faulty, a
Byzantine agreement on the ordering of a request might not be reached, in which case, a new
view is initiated, triggered by a timeout on the current view. A different primary is designated in a
round-robin fashion for each new view installed.

2.2. Web Services Reliable Messaging
The Web Services Reliable Messaging (WS-RM) standard describes a reliable messaging (RM)
protocol between two endpoints, termed as RM source (RMS) and RM destination (RMD). The
core concept introduced in WSRM is sequence. A sequence is a unidirectional reliable channel
between the RMS and the RMD. At the beginning of a reliable conversation between the two
endpoints, a unique sequence (identified by a unique sequence ID) must first be created (through
the create-sequence request and response). The sequence is terminated when the conversation
is over (through the terminate-sequence request and response). For each message sent over the
sequence, a unique message number must be assigned to it. The message number starts at 1
and is incremented by 1 for each subsequent message. The reliability of the messaging is
achieved by the retransmission and positive acknowledgement mechanisms. At the RMS, a
message sent is buffered and retransmitted until the corresponding acknowledgement from the
RMD is received, or until a pre defined retransmission limit has been exceeded. For efficiency
reason, the RMD might not send acknowledgement immediately upon receiving an application
message, and the acknowledgements for multiple messages can be piggybacked with another
application message in the response sequence, or be aggregated in a single explicit
acknowledgement message.

Because it is quite common for two endpoints to engage in two-way communications, the RMS
can include an Offer element in its create-sequence request to avoid an explicit new sequence
establishment sRET for the traffic in the reverse direction. Most interestingly, WS-RM defines a
set of delivery assurances, including AtMostOnce, AtLeastOnce, Exactly-Once, and InOrder. The
meanings of these assurances are self-explanatory. The InOrder assurance can be used together
with any of the first three assurances. The strongest assurance is ExactlyOnce combined with
InOrder delivery.

The WS-RM standard has been widely supported and there exist many implementations, most of
which are commercial. We choose to use Sandesha2 [3] for this research, due to its open-source
nature and its support for Axis2, the second generation open-source SOAP engine that supports
pluggable modules.

3. SYSTEM ARCHITECTURE
The overview of the RET-WS architecture is shown in FIGURE 2. RET-WS is implemented as an
Axis2 module. During the out-flow of a SOAP message, Axis2 invokes the RET-WS Out Handler
during the user phase, and invokes the Rampart (an Axis2 module that provides WS-Security [17]
features) handler for message signing during the security phase. Then, the message is passed to
the HTTP transport sender to send to the target endpoint. During the in-flow of a SOAP message,
Axis2 first invokes the default handler for preliminary processing (to find the target object for the
message based on the URI and SOAP action specified in the message) during the transport
phase, it then invokes the Rampart handler for signature verification during the security phase.
This is followed by the invocation of the RET-WS Global In Handler during the dispatch phase.
This handler performs tasks that should be done prior to dispatching, such as duplicate
suppression at the server side. If the message is targeted toward a RETWS- enabled service, the
RET-WS In Handler is invoked for further processing during the user-defined phase, otherwise,
the message is directly dispatched to the Axis2 message receiver. For clarity, FIGURE 2 shows
only a one-way flow of a request from the client to the replicated Web service. The response flow

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 172

is similar. Also not shown in FIGURE 2 are the multicast process and the internal components of
the RET-WS module.

Note that for the Rampart module to work (required by the RET algorithm to authenticate the
sender, so that a faulty replica cannot impersonate another correct replica), each replica has a
pair of public and private RSA keys. Similarly, each client must also possess a public and private
key pair. We assume that the public keys are known to all replicas and the clients, and the private
keys of the correct replicas and clients are kept secret. We further assume the adversaries have
limited computing power so that they cannot break the digital signatures of the messages sent by
correct replicas or clients.

The main components of the RET-WS module are illustrated in FIGURE 3. The client side bears
a lot of similarity to the Sandesha2 client side module, with the exception of the addition of RET-
WS Voter, the replacement of Sandesha Sender by a Multicast Sender, and the replacement of
the Sandesha Out Handler by the RET-WS Out Handler. The server side contains more additions
and modifications to the Sandesha2 components. Furthermore, a set of actions are added to the
module configuration to allow total-ordering of messages, view change management and replica
state synchronization. Besides the Multicast Sender, the server side introduced a Total Order
Manager, and replaced the original Global In Handler, In Handler, and In-Order handler, by RET-
WS Global In Handler, RET-WS In Handler and Total Order Invoker, respectively. The storage
framework in Sandesha2 is not changed. The functions of these components (both Sandesha2
original and the modified or new components) are elaborated in the following subsections,
starting with the components dealing with the out-flow, and then the components for the in-flow.

FIGURE 2: The Overview of the RET-WS architecture

Note that even though what described in this section are specific to Axis2, we believe that our
Byzantine fault the tolerance mechanisms are generic enough to be ported to other Web services
infrastructure without great barrier.

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 173

3.1. RET-WS Out Handler
This handler performs out-flow processing for reliable messaging. In particular, it generates a
create-sequence request when the application sends the first message of a new sequence, and
sends a terminate-sequence request after the last message of a sequence is transmitted. The
difference between the RET-WS Out Handler and the original Sandesha Out Handler lies in the
creation and handling of the create-sequence message. In the original implementation, the
create-sequence message does not contain any element that can be used for the server side to
perform duplicate detection. If the create-sequence request contains an Offer element, it may be
used as a way to check for duplicate. However, not all create-sequence requests contain such an
element, because its existence is specified by the client application. To address this problem, we
propose to include a UUID string in the create-sequence request. The UUID is embedded in the
Create Sequence/any element, an optional element specified by the WS-RM standard to enable
extensibility.

FIGURE 3: The main components of the RET-WS modules

The addition of this UUID element also helps alleviate a tricky problem that would cause replica
inconsistency. The WS-RM standard does not specify how the sequence ID for the newly created
sequence should be determined. In Sandesha2, a UUID string is generated and used as the
sequence ID at the server side. If we allow each replica to generate the sequence ID unilaterally
in this fashion, the client would adopt the sequence ID present in the first create-sequence
response it receives. This would prevent the client from communicating with other replicas, and
would prevent the replicas from referring to the same sequence consistently when ordering the
application messages sent over this sequence. Therefore, we modified the create-sequence
request handling code to generate the sequence ID deterministically based on the client supplied
UUID and the Web service group endpoint information.

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 174

3.2. Multicast Sender
In RET-WS, the sequence between the client and the service provider endpoints is mapped
transparently to a virtual sequence between the client and the group of replicas. The same
sequence ID is used for the virtual sequence so that other components can keep referring to this
sequence regardless if it is a one-to-one or a one-to many (or many-to-one) sequence. The
mapping is carried out by the multicast sender.

To make the mapping possible, we assume that each service to be replicated bears a unique
group endpoint, in addition to the specific endpoint for each replica. Higher level components,
including the application, must use the group endpoint when referring to the replicated Web
service. When a message to the group endpoint is detected, including application messages and
RET-WS control messages, the multicast sender translates the group endpoint to a list of
individual endpoints and multicasts the message to these endpoints. We assume the mapping
information is provided by a configuration file. The Multicast Sender runs as a separate thread
and periodically poll the Out Message Queue for messages to send.

One additional change is the garbage collection mechanism. For point-to-point reliable
communication, it is sufficient to discard a buffered message as soon as an acknowledgement for
the message is received. However, this mechanism does not work for reliable multicast for
apparent reasons. Consequently, a message to be multicast is kept in the buffer until the
acknowledgements from all destinations have been collected, or a predefined retransmission limit
has been exceeded.

Note that in RET-WS, the client multicasts its requests to all replicas via the Multicast Sender
component. Even though it may be less efficient in some scenarios, such as when the client is
geographically farther away from the Web service and the Web service replicas are close to each
other, this design is more robust against adversary attacks since the clients do not need to know
which replica is currently serving as the primary. Without such information, the adversary can only
randomly pick up a replica to attack, instead of focusing on the primary directly. From the
availability perspective, the compromise of the primary can result in much severe performance
degradation than that of a backup. It is important to encapsulate internal state information as
much as possible to improve system robustness. Information encapsulation also reduces the
dependency between the clients and the Web services.

3.3. RET-WS Global In Handler
The Sandesha Global In Handler performs duplicate filtering on application messages. This is fine
for the server side, however, it would prevent the client from performing voting on the responses.
Therefore, the related code is modified so that no duplicate detection is done on the client side.
The other functionalities of this handler, e.g., generating acknowledgement for the dropped
messages, is not changed.

3.4. RET-WS In Handler
Axis2 dispatches all application messages targeted to the RET-WS-enabled services and the
RET-WS control messages to this handler. The RET-WS In Handler operates differently for the
client and the server sides.

At the client side, all application messages are passed immediately to the RET-WS Voter
component for processing. The rest of control messages are processed by the set of internal
message processors as usual.

At the server side, all application messages are handled by an internal application message
processor. Such messages are stored in the In Message Queue for ordering and delivery. All
RET-related control messages, such as pre-prepare, prepare, commit, and view change
messages, are passed to the Total Order Manager for further processing. The WS-RM-related
control messages such as create-sequence and terminate-sequence requests, are handled by

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 175

the internal message processors available from the original Sandesha2 module, with the
exception of the handling of sequence ID creation.

3.5. RET-WS Voter
This component only exists at the client side. The Voter verifies the authenticity of the application
messages received and temporarily stores the verified messages in its data structure. For each
request issued, the Voter waits until it has collected f + 1 identical response messages from
different replicas before it invokes the application message handler to process the response
message. When the processing is finished, the message is passed to the In Message Queue for
delivery.

3.6. Storage Manager
This component consists of the In Message Queue, the Out Message Queue, and a number of
other subcomponents for sequence management, acknowledgement and retransmission
management, and in-order delivery. This component comes with the Sandesha2 module. It is
instrumented only for the purpose of performance profiling.

3.7. Total Order Invoker
This component replaces the Sandesha InOrder Invoker. This invoker runs as a separate thread
to poll periodically the received application messages (stored in the In Message Queue) for
ordering and delivery. To be eligible for ordering, the message must be in-order within its
sequence, i.e., all previous messages in the sequence has been received and ordered (or being
ordered). If the message is eligible for ordering, the Total Order Manager is notified to order the
message. Note that only the primary initiates the ordering of application messages.

The Total Order Invoker asks the Total Order Manager for the next message to be delivered. If
there is a message ready for delivery, the Invoker retrieves the message from the In Message
Queue and delivers it to the Web service application logic via the Axis2 message receiver.

3.8. Total Order Manager
This component is responsible for imposing a total order on all application requests according to
the RET algorithm. To facilitate reliable communication among the replicas themselves, each
replica establishes a sequence with the rest of the replicas. The reliability of the control messages
sent over these sequences are guaranteed by the WS-RM mechanisms and the Multicast
Sender. For clarity, we first describe the RET algorithm assuming that a unique global sequence
number is assigned for each application message, then we elaborate on the batching mechanism
which is needed to ensure optimal runtime performance. Due to space limitation, the view change
and state transfer algorithms are omitted.

For each application request to be ordered, the Total Order Manager at the primary assigns the
next available global sequence number to the message and constructs a preprepare message.
The pre-prepare message contains the following information: The global sequence number n, the
current view number v, and the digest d of the application message m to be ordered. The pre-
prepare message is then passed to the Out Message Queue for sending.

The Total Order Manager uses a TotalOrderBean object to keep track of the ordering status for
each application message. When a pre- prepare message is created at the primary, the Manager
stores the message in the corresponding TotalOrderBean (a new TotalOrderBean is created on
the creation of the first pre-prepare message for each application message).

At the backup, the Total Order Manager accepts a preprepare message if the message is signed
properly, and it has not accepted a pre-prepare message for the same global sequence number n
in view v. If the backup accepts the preprepare message, it creates a TotalOrderBean for the
message and stores the pre-prepare message in the TotalOrderBean. The backup also
constructs a prepare message containing the following information: The global sequence number
n, the current view number v, the digest d of the application message m. The prepare message is

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 176

dropped to the Out Message Queue for sending and the TotalOrderBean is updated
correspondingly.

When a replica receives a prepare message, it verifies n and v, and compares the digest d with
that of the application message. It accepts the prepare message if the check is passed and
updates the TotalOrderBean. When a replica has collected 2f prepare messages from other
replicas, including the pre-prepare message received from the primary (if the replica is a backup),
it constructs a commit message with the same information as that of the prepare message, and
passes the commit message to the Out Message Queue for sending. Again, the TotalOrderBean
is updated for the sending of the commit message.

A replica verifies a commit message in the similar fashion to that for a prepare message. When a
replica has collected 2f correct commit messages for n in view v, the message m is committed to
the sequence number n in view v, i.e., a total order for m has now been established. A totally
ordered message can be delivered if all previously ordered messages have been delivered. We
now describe the batching mechanism. The primary does not immediately order an application
request when the message is in-order within its sequence if there are already k batches of
messages being ordered, where k is a tunable parameter and it is often set to 1. When the
primary is ready to order a new batch of messages, it assigns the next global sequence number
for a group of application requests, at most one per sequence, and the requests ordered must be
in-order within their own sequences.

4. IMPLEMENTATION
Our performance evaluation is carried out on a test bed consisting of Windows servers connected
by a 100Mbps Ethernet. Each server is equipped with a single Pentium V 2.8GHz processors and
1GB memory.

We focus on reporting the runtime overhead of our RET-WS framework during normal operation.
A backup failure virtually does not affect the operation of the RET-algorithm, and hence, we see
no noticeable degradation of runtime performance. However, when the primary fails, the client
would see a significant delay if it has a request pending to be ordered or delivered, due to the
timeout value set for view changes. The timeout is usually set to 2 seconds in our experiment
which is in a LAN environment. In the Internet environment, the timeout would be set to a higher
number. If there are consecutive primary failures, the delay would be even longer.

An echo test application is used to characterize the runtime overhead. The client sends a request
to the replicated Web service and waits for the corresponding reply within a loop without any
“think” time between two consecutive calls. The request message contains an XML document
with varying number of elements, encoded using AXIOM (Axis Object Model) [1]. At the replicated
Web service, the request is parsed and a nearly identical reply XML document is returned to the
client.

In each run, 1000 samples are obtained. The end-to-end latency for the echo operation is
measured at the client. The throughput is measured at the replicated Web service. In our
experiment, we keep the number of replicas to 4 (to tolerate a single Byzantine faulty replica),
and vary the request sizes in terms of the number of elements in each request, and the number of
concurrent clients.

In FIGURE 4, the end-to-end latency of the echo operation is reported for RET- replication with 4
replicas and a single client. For comparison, the latencies for two other configurations are also
included.

The first configuration involves no replication and no digital signing of messages. The second
configuration involves no replication, but with all messages digitally signed. The measurements
for the two configurations reveal the cost of digital signing and verification. As can be seen, such

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 177

cost ranges from 90ms for short messages to 130ms for longer messages. The latency overhead
of running RET- replication is significant.

For comparison, the latency for the no-replication configuration with and without digital signing of
messages are included as well However, the overhead is very reasonable considering the
complexity of the RET- algorithm. Comparing with the latency for the no replication-with-signing
configuration, the overhead ranges from 150ms for short messages to over 310ms for longer
messages.

FIGURE 4: The end-to-end latency

The increased overhead for larger messages is likely due to the CPU contention for processing of
the application requests (by the Web service) and the RET- replication mechanisms (by our
framework). Future work is needed to fully characterize the sources of the additional cost for
longer messages.

The latency cost for each step of processing in a request-reply round trip for a particular run with
a single client and 4 replicas is summarized in TABLE 1. Both the request and the reply contain
1000 elements. As can be seen, the major costs come from message ordering, request
multicasting, and message signing and verification.

5. SUMMARY OF RESULTS
A large number of high availability solutions for Web services have been proposed in the last
several years [5, 7- 11, 14-16, 18]. Most of them are designed to cope with crash faults only.
Furthermore, none of them has taken our approach, which integrates the replication mechanisms
into the SOAP engine for maximum interoperability. Thema [15] is the only complete BFT-
framework for Web services which we know. In [18], an alternative solution is proposed for BFT-
Web services, but no implementation details or performance evaluations are reported.

5.1 Comparative Evaluation
In the paper [15] they used automatic outcome with BAwCC protocol. All the messages are
protected with the timestamp. The end to end latency is measured at initiator only and the
throughput is measured at the coordinator. Moreover the test case uses only one replica at the

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 178

initiator and four at the coordinator. The latency overhead is less than 20%. Throughput reduction
is less than 20% when replication is enabled.
In our paper we used the SOAP for better operability. For the comparison we have taken the
messages with digital signature and without also for the better results. We use four replicas for
the better overhead and able to achieve that. The results show that both the latency overhead
and throughput has been improved comparatively.

Similar to our work, Thema [15] also relies on the BFT- algorithm to ensure total ordering of
application messages. However, a wrapper is used to interface with an existing implementation of
the RET- algorithm [6], which is based on IP multicast, rather than the standard SOAP/HTTP
transport, as such, it suffers from the interoperability problem we mentioned in the beginning of
this paper. This approach limits its practicality. That said, it does provide richer functionality than
our current RET-WS framework in that it supports multi-tiered applications and the interaction
between a replicated Web service as client and another non-replicated Web service as server
with resource efficient way. We plan to add similar functionality to RET-WS in the next stage of
our project.

In [18], attempts to address some problems in Thema when a replicated client interacts with a
replicated Web service which may have been compromised. It proposes to use the RET-
algorithm for the client replicas to reach consensus on the reply messages to avoid the situation
which different client replicas accept different reply messages for the same request made, when
the server is compromised. However, it is not clear to us the value of such an approach. If the
Web service has been compromised, the integrity of the service is no longer guaranteed, the
service could easily send the same wrong reply to all client replicas, which cannot be addressed
by the mechanism proposed in [18], and yet, the end-to-end latency is doubled as a result.

TABLE 1: Detailed latency measurement for a particular run with a single client and 4 replicas.

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 179

6. CONCLUSION
In this paper, we presented the design and implementation of RET-WS, a Byzantine fault
tolerance middleware framework for Web services with resource efficient way. It uses standard
Web services technology to build the Byzantine fault tolerance service, and hence, it is more
suitable to achieve interoperability. We also documented in detail the architecture and the major
components of our framework. We anticipate that such descriptions are useful to practitioners as
well as researchers working in the field of highly dependable Web services. Finally, our
framework has been carefully tuned to exhibit optimal performance, as shown in our performance
evaluation results. Future work will focus on the expansion of the feature set of RET-WS, such as
the support of multi-tiered Web services and transactional Web services.

7. REFERENCES
[1] Apache Axiom. http://ws.apache.org/commons/axiom/.

[2] Apache Axis2. http://ws.apache.org/axis2 /index.html.

[3] Apache Sandesha2. http://ws.apache.org/sandesha/sandesha2/index.html.

[4] R. Bilorusets et al. “Web Services Reliable Messaging Specification”,
 February 2005.

[5] K. Birman. “Adding high availability and autonomic behavior to web services”.
 In Proceedings of the International Conference on Software Engineering,
 Scotland, UK, May 2004.

[6] M. Castro and B. Liskov. “Practical Byzantine fault tolerance”. In Proceedings
 of the Third Symposium on Operating Systems Design and Implementation,
 New Orleans,USA, February 1999.

[7] P. Chan, M. Lyu, and M. Malek. “Making services fault tolerant”. Lecture Notes in Computer
 Science, 4328:43–61, 2006.

[8] V. Dialani, S. Miles, L. Moreau, D. D. Roure, and M. Luck. “Transparent fault tolerance for
 web services based architecture”. Lecture Notes in Computer Science, 2400:889–898, 2002.

[9] G. Dobson. “Using WS-BPEL to implement software fault tolerance for Web services”. In
 Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced
 Applications, July 2006.

[10] A. Erradi and P. Maheshwari. “A broker-based approach for improving Web services
 reliability”. In Proceedings of the IEEE International Conference on Web Services, Orlando,
 FL, July 2005.

[11] C. Fang, D. Liang, F. Lin, and C. Lin. “Fault tolerant web services”. Journal of Systems
 Architecture, 53:21–38, 2007.

[12] H.V. Ramasamy, C. Cachin, A. Agbaria, and W.H. Sanders, “A Parsimonious Approach for

 Obtaining Resource efficiency and trustworthy Execution”, IEEE Transactions on
 Dependable and Secure Computing, vol. 4, no. 1, pp.1-17 january-march 2007.

[13] L. Lamport, R. Shostak, and M. Pease. “The Byzantine generals problem”. ACM
 transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

[14] N. Looker, M. Munro, and J. Xu. “Increasing web service dependability through consensus
 voting”. In Proceedings of the 29th Annual International Computer Software and Applications

Marimuthu K & Ganesh Gopal D

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011 180

 Conference, pages 66–69, 2005.

[15] M. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan. “Thema:
 Byzantine-fault-tolerant middleware for web services applications”. In Proceedings of the
 IEEE Symposium on Reliable Distributed Systems, pages 131–142,2005.

[16] L. Moser, M. Melliar-Smith, and W. Zhao. “Making web services dependable”. In
 Proceedings of the 1st International Conference on Availability, Reliability and Security,
 pages 440–448, Vienna University of Technology, Austria, April 2006.

[17] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. “Web Services Security: SOAP
 Message Security 1.0”. OASIS, oasis standard 200401 edition, March 2004.

[18] S. L. Pallemulle, I. Wehrman, and K. J. Goldman. “Byzantine fault tolerant execution of long-
 running distributed applications”. In Proceedings of the IASTED Parallel and Distributed
 Computing and Systems Conference, pages 528–523, November 2006.

[19] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. “Pond: the
 OceanStore prototype”. In Proceedings of the 2nd USENIX Conference on File and Storage
 Technologies,March 03.

[20]. Ken Birman, Robbert van Renesse, Werner Vogels1, Dept. of Computer Science, Cornell
 University. “Adding High Availability and Autonomic Behavior to Web Services” IEEE
 Proceedings(ICSE04).

[21] ABD-EL-MALEK, M., GANGER, G. R., GOODSON, G. R.,REITER, M. K., AND WYLIE, J. J.
 Fault-scalable byzantine fault-tolerant services. In SOSP ’05: Proceedings of the twentieth
 ACM symposium on Operating systems principles (New York,NY, USA, 2005), ACM Press,
 pp. 59–74

[22] MALKHI, D., AND REITER, M. Byzantine Quorum Systems.Journal of Distributed
 Computing 11, 4 (1998), 203–213.

[23] Wenbing Zhao, Honglei Zhang, Wenbing Zhao and Honglei Zhang “Byzantine Fault Tolerant
 Coordination for Web Services Business Activities” 2008 IEEE International Conference on
 Services Computing

