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Abstract 

 
Using grid systems efficiently has to face many challenges. One of them is the efficient exchange 
of data between distant components exacerbated by the diversity of existing protocols for 
communicating participants. Grid computing will reach its vast potential if and only if, the 
underlying networking infrastructure is able to transfer data across quite long distances in a very 
effective manner. Experiences show that advanced distributed applications executed in existing 
large scale computational grids are often able to use only a small fraction of available bandwidth. 
The reason for such a poor performance is the TCP, which works only in low bandwidth and low 
delay networks. Several new transport protocols have been introduced, but a very few are widely 
used in grid computing applications, these protocols can be categorized in three broad categories 
viz. TCP based, UDP based and Application layer protocols. We study these protocols and 
present its performance and research activities that can be done in these protocols. 
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1. INTRODUCTION 

GRID computing [1, 2] is a technology for coordinating large scale resource sharing and problem 
solving among various autonomous group. Grid technologies are currently distinct from other 
major technical trends such as internet, enterprise distributed networks and peer to peer 
computing. Also it has some embracing issues in QoS, data management, scheduling, resource 
allocation, accounting and performance. 
 
Grids are built by various user communities to offer a good infrastructure which helps the 
members to solve their specific problems which are called a grand challenge problem. A grid 
consists of different types of resources owned by different and typically independent 
organizations which results in heterogeneity of resources and policies. Because of this, grid 
based services and applications experience a different resource behavior than expected. 
Similarly, a distributed infrastructure with ambitious service put more impact on the capabilities of 
the interconnecting networks than other environments. 
 
Grid High Performance Network Group [3] works on network research, grid infrastructure and 
development. In their document the authors listed six main functional requirements, which are 
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considered as mandatory requirements for grid applications. They are: i) high performance 
transport protocol for bulk data transfer, ii) performance controllability, iii) dynamic network 
resource allocation and reservation, iv) security, v) high availability and vi) multicast to efficiently 
distribute data to group of resources. 
 
New trends of data communication protocols are needed for grid, because of these reasons,        
i) networks emerging with long fat network [LFN], high bandwidth and long delay such as 
LambdaGrid [4], OptiPuter [5] , CANARIE [6] and sensor networks for grid [7], ii) communication 
patterns which are shifting from one-to-one communication to many-to-one and many-to-many 
communication and iii) there is an unique type of communication needs in transport 
characteristics for each grid application, such as rate, loss ratio and delay. For all these data 
communications, standard transport protocols such as TCP [8] and UDP [9] are not always 
sufficient, for example, traditional TCP reacts adversely when there is an increase in bandwidth 
and delay leading to poor performance in high BDP networks [10]. It is still a challenge for grid 
applications to use the bandwidth available, due to the limitations of current and today’s network 
transport protocols. 
 
For instance, a remote digital image processing application may use unreliable fixed rate data 
transfer, where as a fast message parsing application can demand reliable data transfer with 
minimum delay, and a wireless grid application can demand for minimized data traffic to prolong 
battery life. As TCP acts as reliable transport protocol and UDP with no guarantees, these two 
protocols cannot provide the optimal mix of communications attributes for different grid 
application. More number of transport protocols have been developed and proposed over the last 
3 decades. In this paper, we study the various variants of such transport protocols based on TCP 
and UDP, and compare the protocols in various points for grid computing. Each protocols is 
reviewed based on the i)operation, ii)operation mode, iii)implementation, iv)congestion control, 
v)fairness, vi)throughput, vii)TCP friendly, viii)security, xi)quality of service and x)usage scenario. 
 
Section II highlights the issues in designing high performance protocols and briefs how TCP and 
UDP play an important role in implementing grid computing protocols. Section III surveys the 
various protocols, for bulk data transfer, high speed, and high bandwidth delay and with high 
performance with TCP as base. Section IV surveys UDP based protocols. Section V deals with 
application layer protocols and Section VI concludes paper with summary. 
 

2. ISSUES IN COMMUNICATION PROTOCOLS FOR GRID COMPUTING 

The emerging high-performance grid can have a wide range of network infrastructures and 
different communication patterns for different types of applications, these combinations and 
factors made researchers to develop a new data communication protocols especially for grid 
environments. For these applications, available standard protocols (TCP and UDP) are not 
sufficient, because of their properties and lack of flexibility. Performance of TCP not only depends 
on transfer rate, but also on the product of round-trip delay and transfer rate. This 
bandwidth*delay product measures the amount of data that would fill the pipe, and that amount of 
data is the buffer space required at sender and receiver side to obtain maximum throughput on 
the TCP connection over the path. TCP performance problems arise when the bandwidth*delay 
product becomes large. Three fundamental performance problems with the TCP over high 
bandwidth delay network paths are; i) window size limit, ii) recovery from losses, and iii) round-trip 
measurement. 
 
In grid high performance research document [3], it summarizes the networking issues available in 
grid applications and gives some consideration for designing a protocol for grid computing, they 
are: i) slow start, ii) congestion control, iii) ACK clocking, iv) connection setup and teardown and 
in [11] author lists some parameters which relates to TCP performance in high speed networks, 
they are: i) cwnd increase function, ii) responsiveness requirements, iii) scalability and iv) network 
dynamics. In [12] some general set of transport attributes are listed for grid computing,                 
i) connection oriented vs. connectionless, ii) reliability, iii) latency and jitter, iv) sequenced vs. 
unsequenced, v) rate shaping vs. best effort, vi) fairness and vii) congestion control. The rapid 
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growth of network infrastructures and communication methods made the grid community to 
demand enhanced and diverse transport functionality. Because of these growth in network 
environment, QoS guarantees and its properties depends on these parameters, i) type of link        
(dedicated or shared), ii) communication methods (point-to-point or multipoint-to-point) and          
iii) application requirements.  
 
2.1. Need of High Performance Communication Protocol 

 

2.2.1. Increasing Capabilities 

Increasing in computing power has a doubling time of 18 months, storage device capacity 
doubles every 12 months and communication speed doubles every 9 months. The difference in 
rate of increase creates a situation in all areas, although significant power available, because of 
traditional implementation tradeoff method changes. This increasing capability has resulted in 
work to define new ways to interconnect and manage computing resources. 
 
2.2.2. New Application Requirements 
New applications are being developed in physics, biology, astronomy, visualization, digital image 
processing, meteorology etc. Many of the anticipated applications have communication 
requirements between a small numbers of sites. This presents a very different requirement than 
presented by “typical” Internet use, where the communication is among many sites. Applications 
can be defined in three classes: 1) lightweight “classical” Internet applications (mail, browsing),   
2) medium applications (business, streaming, VPN) and 3) heavyweight applications (e-science, 
computing, data grids, and virtual presence). The total bandwidth estimate for all users of each 
class of network application is 20 Gb/sec for the lightweight Internet, 40 Gb/sec for all users of the 
intermediate class of applications and 100 Gb/sec for the heavyweight applications. Note that the 
heavyweight applications use significantly more bandwidth than the total bandwidth of all 
applications on the classical Internet. Different application types value different capabilities. 
Lightweight applications give importance to interconnectivity, middleweight applications to 
throughput and QoS, while the heavyweight applications to throughput and performance.  
 
An example of heavyweight application, the Large Hadron Collider (LHC) in CERN, has 
requirements well beyond what is available now. The LHC produce and distribute gigantic 
amounts of data. The data rates from the LHC in CERN are estimated to be in the order 100 to 
1500 Megabytes per second. Dedicated fiber will carry data from the Atlas Collector in CERN to 
the initial storage and computing devices around the world, bypassing the Internet. Another 
example of heavyweight application are the CAVE Research Network, a work being done at the 
Electronic Visualization Lab (EVL) at the University of Illinois at Chicago which uses very large 
communication rates to implement total immersion projects. Other examples include the Electron 
Microscopy work being done at the University of California San Diego (UCSD) and Osaka. 
 
TCP works well on the commodity internet, but has been found to be inefficient and unfair to 
concurrent flows as bandwidth and delay increase [13, 14, 15, 16]. Its congestion control 
algorithm needs very long time to probe the bandwidth and recover from loss in high BDP links. 
Moreover, the existence of random loss on the physical link, the lack of a buffer on routers, and 
the existence of concurrent bursting flows prevent TCP from utilizing high bandwidth with a single 
flow. Furthermore, it exhibits a fairness problem for concurrent flows with different round trip times 
(RTTs) called RTT bias. The success of TCP is mainly due to its stability and the wide presence 
of short lived, web-like flows on the Internet. However, the usage of network resources in high 
performance data intensive applications is quite different from that of traditional internet 
applications. First, the data transfer often lasts a very long time at very high speeds. Second, the 
computation, memory replication, and disk I/O at the end hosts can cause bursting packet loss or 
time-outs in data transfer. Third, distributed applications need cooperation among multiple data 
connections. Finally, in high performance networks, the abundant optical bandwidth is usually 
shared by a small number of bulk sources. These constraints made the researchers to design a 
new transport protocol for high performance domains. 
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2.2. Congestion Control 
Moving bulk data quickly over high-speed data network is a requirement for many applications. 
These applications require high bandwidth link between network nodes. To maintain the stability 
of internet, all applications should be subjected to congestion control. TCP is well-developed, 
extensively used and widely available Internet transport protocol. TCP is fast, efficient and 
responsive to network congestion conditions, but one objection to using TCP congestion control 
is that TCP’s AIMD congestion back-off algorithm [17], which is too abrupt in decreasing the 
window size, thus it hurts the data rate. 
 
The performance of the congestion control system, TCP algorithm and the link congestion signal 
algorithm has many facets and these variables can impact the Quality of Service (QoS). A variety 
of merits described they are: 
 Fairness: The Jain index [18] is a popular fairness metric that measures how equally the 
sources sharing a single bottleneck link. A value of 1 indicates perfectly equal sharing and 
smaller values indicate worse fairness. 
 Throughput: Throughput is simply the data rate, typically in Mbps, delivered to the 
application. For a single source this should be close to the capacity of the link. When the BDP is 
high, that is, when the link capacity or RTT or both are high, some protocols are unable to 
achieve good throughput. 
 Stability: The stability metric measures the variations of the source rate and/or the queue 
length in the router around the mean values when everything else in the network is held fixed. 
Stability is typically measured as the standard deviation of the rate around the mean rate, so that 
a lower value indicates better performance. If a protocol is unstable, the rate can oscillate 
between exceeding the link capacity, and thus resulting in poor delay jitter and throughput 
performance. 
 Responsiveness: measures how fast a protocol reacts to a change in network operating 
conditions. If the source rates take long time to converge to a new level, say after the capacity of 
the link changes, either the link may become underutilized or the buffer may overflow. The 
responsiveness metric measures the time or the number of round trips to obtain the right rate. 
 Queuing delay: Once congestion window is greater than the BDP, the link is well utilized 
and however, if the congestion window is increased more, queuing delay builds up. Different TCP 
and AQM protocol combinations operate on how to minimize the Queuing Delay. 
 Loss recovery: packet loss can be a result because of overflowing buffers, which 
indicates network congestion, and also of transmission error, such as bit errors over a wireless 
channel. It is desirable that, when packet loss occurs due to transmission error, the source 
continues to transmit uninterrupted. However, when the loss is due to congestion, the source 
should slow down. Loss recovery is typically measured as the throughput that can be sustained 
under the condition of a certain random packet loss caused by transmission error. Loss based 
protocols typically cannot distinguish between congestion and transmission error losses.  
 
 In the past few years, more number of TCP variant were developed, that address the 
under-utilization problem most notably due to the slow growth of TCP congestion window, which 
makes TCP unfavorable for high BDP networks. Table 1 list some TCP variants addressing the 
conservative approach of TCP to update its congestion window under congestion condition. 
 

Congestion Control Approaches TCP Variants 

Loss-based TCP congestion control 
High Speed TCP, BIC TCP, Scalable TCP, CUBIC 
TCP and Hamilton TCP 

Delay-based congestion control TCP-Vegas, Fast-TCP 

Mixed loss-delay based TCP congestion control Compound TCP ,TCP Africa   
Explicit congestion Notification XCP 

  
TABLE 1: TCP Variants based on various congestion control approaches 

 
Loss based high speed algorithms are aggressive to satisfy bandwidth requirement but this 
aggressiveness causes TCP unfairness and RTT unfairness. Delay based approaches provide 
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RTT fairness but it is difficult to meet TCP fairness, where in third approach, a synergy of delay 
based and loss based approach address the problem in the two approaches.  
 
2.3. Previous Work 
Delivering communication performance in high bandwidth-delay product network is a major 
research challenge. Compared to shared, packet-switched IP networks, the key distinguishing 
characteristics of grid computing communications are: i) no internal network congestion and very 
small end system congestion, ii) small numbers of endpoints and iii) very high speed links i.e. 
more than 10GB.. Traditional TCP and its variants were developed for shared networks, where 
the bandwidth on internal links is a critical and has limited resource. As such, available 
congestion control techniques manage internal network contention, providing a reasonable 
balance of non-aggressive competition and end-to-end performance.  This results in slow start, 
causing TCP to take a long time to reach full bandwidth when RTT is large and takes a long time 
to recover from packet loss because of its AIMD control law. In [19, 20], a simulation-based 
performance analysis of HighSpeed TCP is presented and the fairness to regular TCP is 
analyzed. In [21], the author deals with the performance of Scalable TCP and analyzes the 
aggregate throughput of the standard TCP and Scalable TCP based on an experimental 
comparison. In [22], the performance of different TCP versions, such as HighSpeed TCP, 
Scalable TCP, and FAST TCP, are compared in an experimental test-bed environment. In all 
cases, the performance among connections of the same protocol sharing bottleneck link is 
analyzed and different metrics such as throughput, fairness, responsiveness, stability are 
presented. 
 
To provide good transport performance for network with high bandwidth-delay product optical 
network links, researchers have proposed many delay based TCP variations and recently,      
rate-based reliable transport protocols are proposed based on UDP. They explicitly measure 
packet loss, and adjust transmission rates in response. A number of delay based TCP variants 
are proposed for shared, packet-switched networks and few user level rate-based protocols, 
targeting different network scenarios and communication methods. Evaluation of these protocols 
are done using point to point single flow, parallel point to point flows, and multipoint convergent 
flows. From the evaluation results, rate-based protocols deliver high performance in high 
bandwidth-delay product networks, but because of their aggressiveness, there occurs high rate of 
packet loss when multiple flows exist.  
 

3. TCP BASED PROTOCOLS FOR GRID NETWORKS 

New challenges for TCP have been addressed by several research groups in the last 3 decades 
and, as a result, a number of new TCP variants have been developed. An overview and study of 
protocols that are designed for high speed bulk data transfer in high bandwidth delay networks 
are given here, and the TCP variants analyzed in this paper are summarized in Figure 1. 
 

 
 

FIGURE 1: TCP Variants 
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Emerging networks bring new challenges. First, the new architecture, heterogeneous networks, 
mobile and wireless environments exhibit different network characteristics requiring more 
attention on the dynamical aspects of the operation. As a consequence of this, the dynamic 
behavior of TCP flows has to be taken into consideration. On the one hand, it is obvious that the 
dynamic effects have significant impact on the performance and throughput of the TCP flows [23]. 
On the other hand, the fairness also needs to be reconsidered from the aspects of dynamic 
behavior. The performance analyses of various TCP variants are included in many papers [24, 
25, 26].  
 
3.1. Scalable TCP (S-TCP) 
Performance of today’s network is to be increased due to applications like distributed simulation, 
remote laboratories, and multi gigabyte data transfers. TCP fails to capture the available 
bandwidth in high performance network, because of two reasons: i) size of socket buffer at the 
end-hosts which limits the transfer rate and the maximum throughput and ii) packet loss causing 
multiplicative cwnd value decrease and additive increase of cwnd when in absence of loss, 
reduces the average throughput. To address these issues researchers focused in three 
approaches: i) modifying available TCP, ii) parallel TCP and iii) automatic buffer sizing.  
 
Modifying TCP congestion control scheme and also in routers, can lead to significant benefits for 
both applications and networks. Parallel TCP connection increases the aggregate throughput, but 
fails in maintaining fairness and also in increasing the window rate. Several researchers have 
proposed TCP modifications, mainly on congestion control schemes making TCP more effective 
in high performance paths. Kelly proposed Scalable TCP [21]. The main feature in the Scalable 
TCP is it adopts constant window increase and decrease factors in case of congestion and 
multiplicative increase in absence of congestion.  
 
Scalable TCP is designed in such a way that it automatically switches to traditional TCP stacks in 
low bandwidth and to incremental method at the time of high bandwidth available. STCP is a 
simple sender side modification to TCP congestion control, and it employs Multiplicative Increase 
Multiplicative Decrease (MIMD) technique. Using Scalable TCP, better utilization of a network link 
with the high bandwidth-delay product can be achieved. If STCP is mixed with regular TCP then 
STCP dominates the bandwidth for sufficiently large bandwidth-delay product region, which 
results in unfriendliness towards standard TCP. Congestion Window [cwnd] value is changed 
according to the equation shown below:  

 
       

Scalable TCP response function is calculated as   where ‘p’ is packet loss rate. 

 
Figure 2 shows the probing results of traditional and Scalable TCP. The main difference between 
the two depends on round trip time and rate, traditional TCP are proportional to sending rate and 
round trip time, where are in Scalable TCP it is proportional only to round trip time and not 
depends on rate.  
 

  

a. Traditional TCP with small capacity b. Scalable TCP with small capacity 
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c. Traditional TCP with large capacity d. Scalable TCP with large capacity 

 
FIGURE 2: Scaling properties Traditional TCP vs. Scalable TCP 

 
Table 2 shows the recovery time for standard TCP congestion control and Scalable TCP 
congestion control for various sending rates and packet loss in less than one RTT. 
 

Rate 
Recovery Time 

Standard TCP Scalable TCP 
1Mbps 1.7s 2.7s 
10Mbps 17s 3.0s 
100Mbps 2mins 4.7s 
1Gbps 28mins 2.7mins 
10Gbps 4hrs 43mins 1 hrs 24mins 

 
TABLE 2: Recovery Times 

 
The recovery time after packet loss is 13.42RTT, i.e. proportional to the RTT and independent of 
congestion window size. An STCP connection can recover even a large congestion window in a 
short time and so that it makes efficient use of the bandwidth in high-speed networks. For e.g. for 
a TCP connection with 1500 byte MTU and RTT value of 200ms, then for 10Gbps network, 
congestion window recovery time after packet loss for STCP is 1hrs 24mins whereas that for 
Standard TCP is approximately 4hrs 43mins. STCP can be used in high performance 
environment because of i) its efficient congestion control, ii) improved performance in high BDP 
and iii) increased throughput, but it does has fairness issue. 
 
3.2. High Speed TCP (HS-TCP) 
Networking applications such as multimedia web streaming seek more bandwidth and bulk-data 
transfer. These applications often operate over a network with high BDP, so the performance 
over these networks is a critical issue [27]. Recent experiences indicate that TCP has difficulty in 
utilizing high-speed connections, because of this, network applications are not able to take utilize 
the available bandwidth in high speed network [28]. The amount of packets that are needed to fill 
a gigabit pipe using present TCP is beyond the limit of currently achievable in fiber optics and the 
congestion control is not so dynamic, also most users are unlikely to achieve even 5 Mbps on a 
single stream wide-area TCP transfer, even the underlying network infrastructure can support 
rates of 100 Mbps or more.  
 
HSTCP (HighSpeed TCP) is a variant to the TCP, which is specifically designed for use in high 
speed, high bandwidth network. Congestion management allows the protocol to react and to 
recover from congestion and operate in a state of high throughput yet sharing the link fairly with 
other traffic.  
 
The performance of a TCP connection is dependent on the network bandwidth, round trip time, 
and packet loss rate. At present, TCP implementations can only reach the large congestion 
window, necessary to fill a pipe with a high bandwidth delay product, when there is an 
exceedingly low packet loss rate. Otherwise, random losses lead to significant throughput 
deterioration when the product of the loss probability and the square of the bandwidth delay are 



Suresh Jaganathan, Srinivasan A & Damodaram A 

International Journal of Computer Science and Security  (IJCSS), Volume (5) : Issue (2) : 2011          251 

larger than one. The HighSpeed TCP for large congestion window [29] was introduced as a 
modified version of TCP congestion control mechanism. It is designed to have different 
responses in very low congestion event rate, and also to have the standard TCP responses with 
low packet loss rates. Further, TCP behavior is unchanged when there is mild to heavy 
congestion and doesn’t increase the congestion collapse. 
 
HighSpeed TCP’s modified response function comes in effect with higher congestion window, 
and TCP behavior is unchanged when there is heavy congestion and doesn’t introduce any 
congestion collapse. HSTCP uses three parameters, WL, WH, and PH. To ensure TCP 
compatibility, when the congestion window is WL at most, HSTCP uses the standard TCP 
response function, and uses the HSTCP response function when congestion window is greater 
than WL. When the average congestion window is greater than WL, then the response function is 
calculated as follows: 

,  

 
HSTCP keeps average congestion window WH and WL, when packet loss rates are PH and PL, 
respectively. Recommended parameters are: WL = 38, WH = 83000 and PH = 10

−7
. Even though 

there is a loss rate in high-speed environments, it still allows acceptable fairness for the 
HighSpeed response function when compared with Standard TCP environments with packet drop 
rates of 10

-4
 or 10

-5
. The HSTCP response function is computed as shown below: 

 
 
HSTCP is more aggressive than standard TCP and a HighSpeed TCP connection would receive 
ten times the bandwidth of a standard TCP in an environment with packet drop rate of 10

-6
, which 

is unfair. The HighSpeed TCP response function is represented by new additive increase and 
multiplicative decrease parameters and these parameters modify the function parameters 
according to congestion window value.  
 
HighSpeed TCP performs well in high-speed long-distance links. It falls back to standard TCP 
behavior if the loss ratio is high. In case of burst traffic, its link utilization is improved but at the 
same time there are some issues regarding fairness. 
 
3.3. TCP Africa 
The limitations of standard TCP are apparent in networks with large bandwidth-delay-products, 
which are becoming increasingly common in the modern Internet. For example, supercomputer 
grids, high energy physics, and large biological simulations require efficient use of very high 
bandwidth Internet links, often with the need to transfer data between different continents. The 
desired congestion window used by standard TCP is roughly equal to the BDP of the connection. 
For high bandwidth-delay-product links, this desired congestion window is quite high, as high as 
80,000 packets for a 10 Gbps link with 100 ms RTT. 
 
TCP's deficiencies with a purely loss based protocol leads to super-aggressive protocols, which 
raises fairness and safety concerns. By contrast, delay based protocols, which make use of the 
wealth of in-formation about the network state that is provided by packet delays, can indeed 
achieve excellent steady state performance, as well as minimal self-induced packet losses. 
These delay-responsive protocols do not cause enough packet drops to the non-delay-responsive 
protocols to force them to maintain only their fair share. TCP-Africa, an Adaptive and Fair Rapid 
Increase Congestion Avoidance mechanism for TCP is proposed [30], to solve this problem which 
is a new delay sensitive congestion avoidance mode, which has scalability, aggressive behavior. 
 
TCP-Africa, a new delay sensitive two-mode congestion avoidance rule for TCP, promises 
excellent utilization, efficiency, and acquisition of available bandwidth, with significantly improved 
safety, fairness, and RTT bias properties. This new protocol uses an aggressive, scalable window 
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increase rule to allow quick utilization of available bandwidth, but uses packet round trip time 
measurements to predict eminent congestion events. Once the link is sensed to be highly utilized, 
the protocol reacts by resorting to the conservative congestion avoidance technique of standard 
TCP. 
 
TCP-Africa is a hybrid protocol that uses a delay metric to determine whether the bottleneck link 
is congested or not. In the absence of congestion, the fast mode, where it uses aggressive, 
scalable congestion avoidance rule. In the presence of congestion, the slow mode, it switches to 
the more conservative standard TCP congestion avoidance rule.  
 
TCP-Africa, in its scalable “fast” mode, quickly grabs available bandwidth. Once the delay 
increases, the protocol senses that the amount of available bandwidth is getting small. So, it 
switches to a conservative “slow” mode.  
 
TCP-Africa detects congestion using the following metric:  

 
The quantity  gives us an estimate of the queuing delay of the network. Since 

the overall round trip time is , the quantity ( )   

is the proportion of the round trip time that is due to queuing delay rather than propagation delay. 

TCP maintains an average sending rate of packets per second and in case of TCP algorithm 

it is  an estimate for the number of packets that the protocol currently has in the 

queue. The  parameter is a constant, usually set as a real number larger than one. The choice 
of α determines how sensitive the protocol is to delay. By tracking this metric, `TCP Africa can 
detect when its packet are beginning to en-queue at the bottleneck link, and thus, determine an 
opportune time to switch into slow growth mode. 
 
The congestion avoidance steps followed by the protocol are: 

 if (   

   

 else 
   

The function  is specified by a set of modified increase rules for TCP.  The 

Table 3 shows the experimental results of TCP Africa. 
 

RTT 
Ratio 

Throughput 
Ratio 

Packet 
Losses 

1 1.0132 440 
2 2.3552 581 
3 3.6016 529 

6 8.4616 336 

 
TABLE 3: TCP Africa Experimental Results 

 
Analysis of this protocol shows, switching to a one packet per RTT rate can greatly decrease the 
frequency of self inflicted packet loss. Thus, TCP-Africa can be quick to utilize available 
bandwidth, but slow when it comes to inducing the next congestion event. 
 
3.4. Fast TCP 
Advances in computing, communication, and storage technologies in global grid systems started 
to provide the required capacities and an effective environment for computing and science [31]. 
The key challenge to overcome the problem in TCP is, using Fast TCP congestion control 
algorithm which does not scale to this advancement. The currently deployed TCP implementation 
is a loss-based approach. It uses additive increase multiplicative decrease (AIMD) and it works 
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well at low speed, but additive increase (AI) is too slow and multiplicative decrease (MD) too 
drastic leading to low utilization of network resources. Moreover, it perpetually pushes the queue 
to overflow and also discriminates against flows with large RTTs. To address these problems, 
Fast TCP was designed, which adopts delay based approach.  
 
Fast TCP has three key differences: i) it is an equation based algorithm [32], ii) for measuring 
congestion, it uses queuing delay as a primary value, iii) has stable flow dynamics and achieves 
weighted fairness in equilibrium that it does not penalize long flows. The advantages of using 
queuing delay as the congestion measure are, i) queuing delay is estimated more accurately than 
loss probability, and also loss samples provide coarser information than queuing delay samples. 
This makes easier stabilize a network into a steady state with a high throughput and high 
utilization and ii) the dynamics of queuing delay have the right scaling with respect to network 
capacity. 
 
In Fast TCP, congestion is avoided by using maximum link utilization, which can be attained by 
adjusting the source’s sending rate so that resource is shared by all TCP connections. Fast TCP 
uses two control mechanisms for achieving its objective, they are: i) dynamically adjusting the 
send rate and ii) using aggregate flow rate to calculate congestion measure. Under normal 
network conditions, Fast TCP periodically updates the congestion window ‘w’ based on the 
average RTT according to below equation 

 
where , RTT is the current average round-trip time, baseRTT is the minimum RTT, and 

α is a protocol parameter that controls fairness and the number of packets each flow buffered in 
the network [33]. It is proved that, in the absence of delay, this algorithm is globally stable and 
converges exponentially to the unique equilibrium point where every bottleneck link is fully utilized 
and the rate allocation is proportionally fair. Table 4 shows the experimental results of FAST TCP 
for implementation in Linux v2.4.18. 
 

Flow Transfer [Gb] Utilization Delay [ms] Throughput [Mbps] 
1 380 95% 180 925 
2 750 92% 180 1797 

7 15300 90% 85 6123 
9 3750 90% 85 7940 

10 21650 88% 85 8609 
 

TABLE 4: FAST TCP experimental results 
 

Fast TCP performs well in these areas: i) throughput, ii) fairness, iii) robust and iv) stability, but 
stability analysis was limited to a single link with heterogeneous sources and feedback delay was 
ignored. Further, many experimental scenarios were designed to judge the properties of Fast 
TCP but these scenarios are not very realistic. 
 
3.5. TCP-Illinois 
Several new protocols have been introduced to replace standard TCP in high speed networks. 
For all the protocols, the increase in window size initially slow, when the network is in absence of 
congestion, window size is small and in case congestion, the window size becomes large. As a 
result, the window size curve between two consecutive loss events is convex. This convex nature 
is not desirable. First, the slow increment in window size, at the time of absence of congestion is 
inefficient. Second, the fast increment in window size, at the time of congestion causes heavy 
loss. Heavy congestion causes more frequent timeouts, more synchronized window bakeoffs, and 
is more unfair to large RTT users. So the main problem with AIMD algorithm is the convexity of 
the window size curve. An ideal window curve should be concave, which is more efficient and 
avoids heavy congestion. To overcome and rectify this problem, a general AIMD algorithm is 
modified in such a way that it results in a concave window curve. 
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TCP-Illinois a variant of TCP congestion control protocol [34], developed at the University of 
Illinois at Urbana-Champaign, targeted at high-speed, long distance and long fat networks. It 
achieves high average throughput than the standard TCP, by modifying congestion control in 
sender side. It allocates the network resource fairly, a TCP friendly protocol and provides 
incentive for TCP users to switch. 
 
TCP-Illinois is a loss-delay based algorithm, which uses packet loss as the primary congestion 
signal, and it uses queuing delay as the secondary congestion signal to adjust the pace of 

window size [35]. Similar to the standard TCP, TCP-Illinois increases the window size W by α / W 

for each acknowledgment, and decreases W by βW for each loss event. Unlike the standard 

TCP, α and β are not constants. Instead, they are the functions of average queuing delay              

,  In detail  

 
 

 
 

,  

Suppose  is the maximum average queuing delay and denoted as , 

where  ,    . 

 
TCP-Illinois increases the throughput much more quickly than TCP when congestion is far and 
increases the throughput very slowly when congestion is imminent. As a result, the average 
throughput achieved is much larger than the standard TCP. It also has many other desirable 
features, like fairness, compatibility with the standard TCP, providing incentive for TCP users to 
switch, robust against inaccurate delay measurement.  
 
3.6. Compound TCP 
The physicists at CERN LHC conduct physics experiments that generate gigabytes of data per 
second, which are required to be shared among other scientists around the world. These bulk 
data has to move quickly over high speed data network, currently most of the applications use the 
TCP for this purpose. TCP is a reliable data transmission with congestion control algorithm, which 
takes care of congestion collapses in the network by adjusting the sending rate according to the 
available bandwidth of the network but in the to-day’s Internet environment, TCP substantially 
underutilizes network bandwidth over high-speed and long distance networks. 
 
Compound TCP (CTCP) is a synergy of delay-based and loss-based approach [36]. The sending 
rate of Compound TCP is controlled by both sender and receiver components. This delay-based 
component rapidly increases sending rate at the time of underutilized, but retreats slowly in a 
busy network when bottleneck queue is built. 
 
Compound TCP integrates a scalable delay-based component into the standard TCP congestion 
avoidance algorithm [37, 38]. This scalable delay-based component has a fast window increase 
function when the network is underutilized and reduces the sending rate when a congestion event 
is sensed. Compound TCP maintains the following state variables, , 

 and   TCP sending window is 

calculated as  where  is updated in the same way as 

controlled by standard TCP, whereas in CTCP, on arrival of an ACK,  is modified as: 
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  =  

 
CTCP efficiently uses the network resource and achieves high bandwidth utilization. In theory, 
CTCP can be very fast to obtain free network bandwidth, by adopting a rapid increase rule in the 
delay-based component, e.g. multiplicative increase.  
 
CTCP has similar or even improved RTT fairness com-pared to regular TCP. This is due to the 
delay-based component employed in the CTCP congestion avoidance algorithm. When 
compared to other TCP variants, fairness value is good for CTCP. Because of the delay-based 
component, CTCP can slowly reduce the sending rate when the link is fully utilized. Hence, there 
is no self-induced packet loss when compared to standard TCP, maintained good fairness to 
other competing TCP flows and opted for high performance computing protocol. 
 
3.7. CUBIC TCP 
Yet another variant of TCP, called CUBIC that enhances the fairness property, scalability and 
stability [39]. The main feature of CUBIC is that its window growth function is defined in real time 
so that its growth will be independent of RTT.  
 
CUBIC TCP is an enhanced version of Binary Increase Congestion Control shortly BIC [40]. It 
simplifies the BIC window control function and is TCP-friendliness and RTT fairness. As the name 
of the protocol represents, the window growth function of CUBIC is a cubic function in terms of 
the elapsed time accounting from the last loss event. The protocol keeps the window growth rate 
independent of RTT, which keeps the protocol TCP friendly under short and long RTTs. The 
congestion period of CUBIC is determined by the packet loss rate alone. As TCP’s throughput is 
defined by the packet loss rate as well as RTT, the throughput of CUBIC is defined only by the 
packet loss rate. Thus, when the loss rate is high and/or RTT is short, CUBIC can operate in a 
TCP mode. More specifically, the congestion window of CUBIC is determined by the following 
function: 

 
where C is a scaling factor, t is the elapsed time from the last window reduction, Wmax  is the 

window size just before the last window reduction, and  where β is a constant 

multiplication decrease factor applied for window reduction at the time of loss event (i.e., the 
window reduces to βWmax at the time of the last reduction). 
 
An important feature of CUBIC is that it keeps the epoch fairly long without losing scalability and 
network utilization. Generally, in AIMD, a longer congestion epoch means slower increase (or a 
smaller additive factor). However, this would reduce the scalability of the protocol, and also the 
network would be underutilized for a long time until the window becomes fully open.  
 
Unlike AIMD, CUBIC increases the window to Wmax very quickly and then holds the window there 
for a long time. This keeps the scalability of the protocol high, while keeping the epoch long and 
utilization high. This feature is unique in CUBIC. 
 
3.8. Xpress Transport Protocol (XTP) 
In near future, data transfer over network increases, thus requiring high speed protocols, 
standard TCP fails to utilize the available bandwidth, due to its congestion control algorithm. 
Some variants of congestion control algorithm are proposed, which improves the throughput, but 
has poor fairness. Xpress Transport Protocol (XTP) is a transport layer protocol for high-speed 
networks developed by XTP Forum [41] to replace TCP. XTP provides protocol options for error 
control, flow control, and rate control. Instead of separate protocols for each type of 
communication, XTP controls packet exchange prototype to produce different models, e.g. 
reliable datagram’s, transactions, unreliable streams, and reliable multicast connections. 
 
XTP provides for the reliable transmission of data in an inter-networked environment, with real 
time processing of the XTP protocol i.e., the processing time for incoming or outgoing packets is 
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no greater than transmission time. XTP contains error, flow and rate control mechanisms similar 
to those found in other more modem transport layer protocols in addition to multicast capability. 
Timer management is minimized in XTP as there is only one timer at the receiver, used in closing 
the context. Address translation, context creation, flow control, error control, rate control and host 
system interfacing can all execute in parallel. The XTP protocol is considered a lightweight 
protocol for several reasons. First, it is a fairly simple yet flexible algorithm. Second, packet 
headers are of fixed size and contain sufficient information to screen and steer the packet through 
the network. The core of the protocol is essentially contained in four fixed-sized fields in the 
header — KEY, ROUTE, SEQ and the command word. Additional mode bits and flags are kept to 
a minimum to simplify packet processing.   
 
Xpress Transport Protocol (XTP) is a next generation protocol, designed to be used in high-speed 
networks and for multimedia applications. It meets the data transfer requirements of many real 
time systems and has flexible transfer capabilities, in conjunction with various underlying high 
performance network technology. It provides good support for event-type distributed systems, in 
both LAN and other internetwork topologies. XTP has been attracting, as a most suitable protocol 
for high speed network applications. As it provides a wide range of options to the applications to 
select the different services they need, which makes XTP very attractive particularly for 
multimedia and other applications, when constrained by the limitations of current protocols.  
 
XTP is able to increase the performance due to its efficient control and error handling algorithms. 
When the network is more congested or in high speed networks, XTP shows significant higher 
throughput, maintaining the bandwidth under control and minimizing the CPU utilization. And also 
this protocol is designed so as to provide more flexibility to distributed applications, supports 
priority, transmission control rate, selective retransmission, works under UDP with reliable 
datagram, has rate and burst control, error and flow control, selective acknowledgement, which 
makes another suitable protocol for high performance computing. 
 
3.9. Summary 
Loss-based congestion control algorithms, like HS-TCP and Scalable TCP use packet loss as 
primary congestion signal, increase window size for each ACK and decrease window size for 
packet loss. The advantage of delay-based algorithms is that they achieve better average 
throughput, since they can keep the system around full utilization. As a comparison, the loss 
based algorithms purposely generate packet losses and oscillate between full utilization and 
under utilization. However, existing delay-based algorithms suffer from some inherent 
weaknesses. First, they are not compatible with standard TCP. FAST TCP yields non-unique 
equilibrium point if competing with other TCP variants. TCP Illinois gives the option to switch over 
standard TCP, but it increases the throughput slowly. CTCP has a very good embedded 
congestion control and avoidance algorithm in standard TCP, takes care of fairness value, has 
increased throughput, but fails in high speed high bandwidth networks and particularly for 
multimedia applications. XTP comes in picture, where it supports and delivers good transfer rate 
for multimedia applications in high speed networks. Table 5 presents the summary of TCP based 
protocols for high performance grid computing environment. 
 

Protocols Contributors Year Changes Done Remarks 

S-TCP Tom Kelly 2003 
Sender Side congestion 
Control  

Exploration is needed 

HS-TCP 
E. Souza, D. 
Agarwal 

2004 Congestion Control Loss ratio is high 

TCP Africa 
Ryan King, 
Richard Baraniuk, 
Rudolf Riedi 

2005 Delay based CC 
Simulation Results using 
ns2.27 + More overhead than 
TCP Reno 

Fast TCP Cheng Jin et.al. 2006 Delay based CC No realistic experiments  
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TCP  Illinois 
S. Liu, T. Basar, 
and R. Srikant 

2007 C-AIMD Algorithm 
Only Simulated Results using 
NS2 & Heterogenous users 

CTCP 
Tan, K.  Song, J.  
Zhang, Q.  
Sridharan, M. 

2007 
synergy of delay-based 
and loss-based 
Congestion Control 

Implemented in windows OS+ 
effectively utilizes the link 
capacity 

CUBIC TCP 
Sangtae Ha, 
Injong Rhee, 
Lisong Xu 

2008 
Modifies the window 
value using a cubic 
function 

Linux Kernel 2.6.23.9 

XTP 

Diogo R. Viegas 
and  Rodrigo 
Mario A. R. 
Dantas and                
Michael A. Bauer 

2009 
Implements multicast 
options in standard 
protocol 

Multicast Communication 
Protocol  

 
TABLE 5: Summary of TCP Based Protocols for HPC 

 
4. UDP BASED PROTOCOLS FOR GRID NETWORKS 
UDP-based protocols provide much better portability and are easy to install. Although 
implementation of user level protocols needs less time to test and debug than in kernel 
implementations, it is difficult to make them as efficient, because user level implementations 
cannot modify the kernel code, there may be additional context switches and memory copies. At 
high transfer speeds, these operations are very sensitive to CPU utilization and protocol 
performance. In fact, one of the purposes of the standard UDP protocol is to allow new transport 
protocols to be built on top of it. For example, the RTP protocol is built on top of UDP and 
supports streaming multimedia. In this section we study some UDP based transport protocol for 
data intensive grid applications. Figure 3 gives some of the UDP variants that are analyzed in this 
paper. 

 
 

FIGURE 3: UDP Variants 

4.1 NETBLT 
Bulk data transmission is needed for more applications in various fields and it is must for grid 
applications. The major performance concern of a bulk data transfer protocols is high throughput. 
In reality, achievable end-to-end throughput over high bandwidth channels is often an order of 
magnitude lower than the provided bandwidth. This is because it is often limited by the transport 
protocols mechanism, so it is especially difficult to achieve high throughput and reliable data 
transmission across long delay, unreliable network paths.  
 
Throughput is often limited by the transport protocol and its flow control mechanism and it is 
difficult to achieve high throughput, reliable data transmissions across long delay network paths. 
To design a protocol, with high throughput, robust in long delay networks, a new flow control 
mechanism has to be implemented. NETBLT checks  the  validity  of  the  rate based  flow  
control  mechanism,  and  gains  implementation  and testing  experience  with  rate  control. 
 
Generally speaking, errors and variable delays are two barriers to high performance for all 
transport protocols. A new transport protocol, NETBLT [42, 43], was designed for high 
throughput, bulk data transmission application and to conquer the two barriers. NETBLT was first 
proposed in 1985 (RFC 969). The primary goal of the NETBLT is to get high throughout and 
robust in a long delay and high loss of network. Seeing the problems with window flow control 
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and timers, NETBLT builders decided that the goal can be achievable only by employing a new 
flow control mechanism by implementing and testing experience with rate control. 
 
NETBLT works by opening a connection between two clients (the sender and the receiver) 
transferring data in a series of large numbered blocks (buffers), and then closing the connection. 
NETBLT transfer works as follows: the sending client provides a buffer of data for the NETBLT 
layer to transfer. NETBLT breaks the buffer up into packets and sends the packets using the 
internet datagram’s. The receiving NETBLT layer loads these packets into a matching buffer 
provided by the receiving client. When the last packet in that buffer has arrived, the receiving 
NETBLT part will check to see if all packets in buffer have been correctly received or if some 
packets are missing. If there are any missing packets, the receiver requests to resend the 
packets. When the buffer has been completely transmitted, the receiving client is notified by its 
NETBLT layer. The receiving client disposes the buffer and provides a new buffer to receive more 
data. The receiving NETBLT notifies the sender that the new buffer is created for receiving and 
this continues until all the data has been sent. The experimental results show that NETBLT can 
provide the performance predictability than in parallel TCP.  
 
NETBLT protocol is tested in three different networks (RFC1030). The first network is a token ring 
with 10Mbit/second, served as a reference environment for possible performance. The second 
network is Ethernet with better performance and third in high bandwidth network. NETBLT's 
performance in Ethernet allowed the researchers to account it for high bandwidth network. The 
test used several parameters such as: i) burst interval, ii) burst size, iii) buffer size, iv)data packet 
size and v) number of outstanding buffers. Table 6 gives the performance details of NETBLT 
protocols, in three different networks. 
 

Networks  ���� Token Ring Ethernet Wideband 
Transfer Size 2 – 5 Million Bytes 2 – 5 Million Bytes 500 – 750 Kilobytes 
Data Packet Size 1990 Bytes 1438 Bytes 1432 Bytes 
Buffer Size 19900 Bytes 14380 Bytes 14320 Bytes 

Burst Size 5 Packets 5 Packets 5 Packets 
Burst Interval 40 ms 30 ms 55ms 

 
TABLE 6: Performance test results for NETBLT 

 

In NETBLT, one important area needs to be explored, i.e. dynamic selection and control of 
NETBLT's transmission parameters (burst size, burst interval) has to be studied. Some research 
work on dynamic rate control is going on, but more work needs to be done before integrating 
NETBLT in high performance computing. 
 
4.2 Reliable Blast UDP (RBUDP) 
RBUDP [44] is designed for extremely high bandwidth, dedicated or quality of service enabled 
networks, which require high speed bulk data transfer which is an important part. RBUDP has two 
goals: i) keeping the network buffer full during data transfer and ii) avoiding TCP’s per packet 
interaction and sending acknowledgements at the end of a transmission. 
 
Figure 4 shows the data transfer scheme of RBUDP. In the data transfer phase (1 to 2 in figure 4 
on sender side) RBUDP sends the entire payload to the receiver, using the receiver specified 
rate. Since the full payload is sent using UDP which is an unreliable protocol, some datagram’s 
may be lost, therefore the receiver has to keep a tally of datagram’s received in order to 
determine which has to be retransmitted. At the end, the sender sends an end signal by sending 
‘DONE’ via TCP (3 in figure 4 on receiver side) to the receiver and receiver acknowledges by 
sending a total number of received datagram’s sequence numbers to the sender (4 in figure 4 on 
sender side). The sender checks the acknowledgement and resends the missing datagram’s to 
the receiver.  
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FIGURE 4: Time Sequence Diagram of RBUDP 

 
In RBUDP, the most important input parameter is the sending rate of UDP blasts. To minimize 
loss, the sending rate should not be larger than the bandwidth of the bottleneck link. Tools such 
as Iperf [45] and Netperf [46] are typically used to measure the bottleneck bandwidth. There are 3 
version of RBUDP available: 

i) Version 1: without scatter/gather optimization - this is naive implementation of RBUDP 
 where each incoming packet is examined and then moved. 
ii) Version 2: with scatter/gather optimization this implementation takes advantage of 
 the fact that most incoming packets are likely to arrive in order, and if transmission rates 
are below the maximum throughput of the network, packets are unlikely to be lost. 
iii) Version 3: Fake RBUDP this implementation is the same as the scheme without the  
 scatter/gather optimization except that the incoming data is never moved to application 
 memory.  

 
The implementation result of RBUDP shows that it performs very efficiently over high speed, high 
bandwidth, and Quality of Service enabled networks such as optically switched network. Also 
through mathematical modeling and experiments, RBUDP has proved that it effectively utilizes 
available bandwidth for reliable data transfer. 
 
4.3 TSUNAMI 
A reliable transfer protocol, Tsunami [47], is designed for transferring large files fast over high 
speed networks. Tsunami is a protocol which uses inter-packet delay for adjusting the rate control 
instead of sliding window mechanism. UDP is used for sending data and TCP for sending control 
data. The goal of Tsunami is to increase the speed of file transfer in high speed networks that use 
standard TCP. The size of the datagram is avoided in the initial setup and length of file is 
exchanged in the initial step [connection setup]. A thread is created at each end [sender and 
receiver], which handles both network and disk activity. The receiver sends a retransmission 
signal which has higher priority, at the time of datagram loss and at last it sends an end signal. In 
Tsunami, the main advantage is, the user can configure the parameters such as size of 
datagram, threshold error rate, size of transmission queue and acknowledgement interval time. 
The initial implementation of the Tsunami protocol consists of two user-space applications, a 
client and a server. The structure of these applications is illustrated in Figure 5. 
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FIGURE 5: Tsunami Architecture 

 
During a file transfer, the client has two running threads. The network thread handles all network 
communication, maintains the retransmission queue, and places blocks that are ready for disk 
storage into a ring buffer. The disk thread simply moves blocks from the ring buffer to the 
destination file on disk. The server creates a single thread in response to each client connection 
that handles all disk and network activity. The client initiates a Tsunami session by connecting it 
to the TCP port of the server. Upon connection, the server sends a random data to the client. The 
client checks the random data by using XOR with a shared secret key and calculates a MD5 
check sum, then transmits it to the server. The server does the same operation and checks the 
check sum and if both are same, the connection is up. After performing the authentication and 
connection steps, the client sends the name of file to the server. In the server side, it checks 
whether the file is available and if it is available, it sends a message to client. After receiving a 
positive message from server, client sends its block size, transfer rate, error threshold value. The 
server responds with the receiver parameters and sends a time-stamp. After receiving the 
timestamp, client creates a port for receiving file from the server and server sends the file to the 
receiver. 
 
Tsunami is an improvement of Reliable Blast UDP in two points. First, Tsunami receiver makes a 
retransmission request periodically (every 50 packets) and it doesn’t wait until finishing of all data 
transfer, then it calculates current error rate and sends it to the sender. Second, Tsunami uses 
rate based congestion control. Tsunami has best performance in networks with limited distance, 
when it comes to long distance network, bandwidth utilization goes down, absence of flow control 
affects its performance and issues like fairness and TCP friendliness has to be studied. 
 
4.4 Summary 
Three UDP-based transfer protocols have much better performance than TCP. Among them, 
Tsunami has the best performance and RBUDP also performs well when file size is small in size. 
However, these protocols lack in some ways. First the bandwidth utilization is comparatively low 
(<70%) which makes not suitable for high speed long distance networks. Second, both RBUDP 
and Tsunami doesn’t estimate bandwidth and uses some third party tools such as Iperf and 
Netperf. RBUDP has no congestion control and flow control. Tsunami has no flow control, which 
makes more packet loss in receiver side because of not knowing the receiver’s receiving 
capacity. These existing UDP-based protocols are still to be enhanced in many ways, first, 
protocol with high throughput for bulk data is to be designed. Then, the issues like fairness and 
TCP-friendliness are to be considered. Table 7 presents the summary of UDP based protocols for 
high performance grid computing environment. 
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Protocols Contributors Year Changes Done Remarks 

NETBLT 
David D Clark, Mark L 
Lambert,  Lixia Zhang 

1987 
New flow control 
mechanism 

High Throughput 

RBUDP 
Eric He, Jason Leigh, 
Oliver Yu, Thomas A. 
DeFanti 

2002 SACK + pipe full 
Depends on Iperf  & 
Netperf 

TSUNAMI Mark R. Meiss 2002 Threads  
User Level ease, no 
flow control 

 
TABLE 7: Summary of UDP Based Protocols for HPC 

 

5. APPLICATION LAYER BASED PROTOCOLS FOR GRID NETWORKS 
The need for high performance data transfer services is becoming more and more critical in 
today’s distributed data intensive computing applications, such as remote data analysis and 
distributed data mining. Although efficiency is one of the common design objectives in most 
network transport protocols, efficiency often decreases as the bandwidth delay product (BDP) 
increases. Other considerations, like fairness and stability, make it more difficult to realize the 
goal of optimum efficiency. Another factor is that many of today’s popular protocols were 
designed when bandwidth was only counted in bytes per second, so performance was not 
thoroughly examined in high BDP environments. Implementation also becomes critical to the 
performance as the network BDP increases. A regular HTTP session sends several messages 
per second, and it does not matter when message processing is delayed for a short time. 
Whereas, in data intensive applications, the packet arrival speed can be as high as 100 packets 
per seconds and any such delay matters. The protocol needs to process each event in a limited 
amount of time and inefficient implementations can lead to packet loss or time-outs. People in the 
high performance computing field have been looking for application level solutions. One of the 
common solutions is to use parallel TCP connections [48] and tune the TCP parameters, such as 
window size and number of flows. However, parallel TCP is inflexible because it needs to be 
tuned on each particular network scenario. Moreover, parallel TCP does not address fairness 
issues. In this section we review some application level protocols for high performance computing 
purposes especially for grid applications. Figure 6 gives some of the applications layer protocols 
analyzed in this paper.  
 

 
 

FIGURE 6: Application Layer Variants 

 
5.1. Fast Object Based File Transfer System (FOBS) 
A FOBS is an efficient, application level data transfer system for computer grids [49]. TCP is able 
to detect and respond to network congestion and because of its aggressive congestion control 
mechanism results in poor bandwidth utilization even when the network is lightly loaded.  
 
FOBS is a simple, user level communication mechanism designed for large scale data transfers 
in the high bandwidth, high delay network environment typical of computational Grids. It uses 
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UDP as the data transport protocol, and provides reliability through an application level 
acknowledgement and retransmission mechanism.  
 
FOBS employs a simple acknowledgement and retransmission mechanism where the file to be 
transferred is divided into data units called chunks. Data is read from the disk, transferred to the 
receiver and writes in the disk in units of chunks. Each chunk is subdivided into segments, and 
the segments are further subdivided into packets. Packets are 1470 bytes (within the MTU of 
most transmission medium), and a segment consists of 1000 packets. The receiver maintains a 
bitmap for each segment in the current chunk depicting received / not received status of each 
packet in the segment. These bitmaps are sent from the data receiver to the data sender at 
internals dictated by the protocols and triggers (at a time determined by the congestion / control 
flow algorithm) a retransmission of the lost packets. The bitmaps are sent over a TCP sockets. 
 
FOBS is a lightweight application level protocol for grids. It is UDP based and acts as a reliable 
transfer protocol.  FOBS uses rate controlled congestion control mechanism, which reduces 
packet loss and outperforms TCP. For the further usage in high performance computing, 
congestion control mechanism can be still enhanced to give optimal performance. 
 
5.2. Light Object Based File Transfer System (LOBS) 
LOBS is a mechanism for transferring file in high performance computing networks which are 
optimized for high bandwidth delay network, especially for computational grids. Heart of this 
environment is the ability of transferring vast data in an efficient manner. LOBS rectify the 
problem found in the TCP for the data transfer mechanism for grid based computations. In LOBS 
the increase in performance optimization is done and the order of data delivered is not 
considered. A LOBS is built directly on top of FOBS [50]. The TCP window size plays a vital role 
for achieving best performance in high bandwidth delay networks; this leads to tune the size at 
runtime. In LOBS, the size of TCP window is tuned using different approach, i.e. using UDP 
stream. UDP is used because of these reasons: i) user level not kernel level, ii) to avoid 
multiplexing TCP streams in kernel level and iii) to provide user level enhancements. 
 
The basic working concept of LOBS is, it creates threads in sender part for controlling its data 
buffer, to read file from the disk and fills the data buffer. Once the buffer is full, it is transferred to 
the client over the network. When the data is in transfer mode, the other threads start reading the 
data from the file and fill the data buffer and the steps are repeated again until the full file is 
transferred. In LOBS, the goal is to make use of network I/O operation and the disk I/O operation 
to the largest extent as possible. 
 
Two protocols closely related to LOBS are RBUDP [44] and SABUL [51, 52]. Primary differences 
between these two protocols are how loss of packet is interpreted and how to minimize the 
packet loss impacts affecting the behavior of the protocol. SABUL assumes that packet losses 
indicate congestion, and it reduces the rate based on the perceived congestion, where as in 
LOBS it is assumed that some packet loss is inevitable and does not make any changes in the 
sender rate. Primary difference between LOBS and RBUDP is based on the type of network for 
which the protocols is designed.  
 
LOBS is used to transfer large files between two computational resources in a grid and this 
mechanism is lightweight and has lesser functionalities than GridFTP [59]. LOBS supports the 
primary functionality required for computation grids (i.e. fast and robust file transfer). 
 
5.3. Simple Available Bandwidth Utilization Library (SABUL) 
SABUL [51, 52] is an application level library, designed for data intensive grid application over 
high performance networks and to transport data reliably. SABUL uses UDP for the data channel 
and it detects, retransmits dropped packets. Using TCP as a control channel reduces the 
complexity of reliability mechanism. To use available bandwidth efficiently, SABUL estimates the 
bandwidth available and recovers from congestion events as soon as possible. To improve 
performance, SABUL does not acknowledge every packet, but instead acknowledges packets at 
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constant time interval which is called as selective acknowledgement [53]. SABUL is designed to 
be fair, so that grid applications can employ parallelism and also designed in a way so that all 
flows ultimately reach the same rate, independent of their initial sending rates and of the network 
delay. SABUL is designed as an application layer library so that it can be easily deployed without 
any changes in operating systems network stacks or to the network infrastructure. 
 
SABUL is a reliable transfer protocol with loss detection and retransmission mechanism. It is light 
in weight with small packet size and less computation overhead, hence can be deployed easily in 
public networks and is also TCP friendly. In SABUL, both the sender and the receiver maintain a 
list of the lost sequence numbers sorted in ascending order. The sender always checks the loss 
list first when it is time to send a packet. If it is not empty, the first packet in the list is resent and 
removed; otherwise the sender checks the number of unacknowledged packets flow size, and if 
not, it packs a new packet and sends it out. The sender then waits for the next sending time 
decided by the rate control. The flow window serves the job of limiting the number of packet loss 
upon congestion when TCP control reports about the occurrence of delay and the maximum 
window size is set as . 

 
After each constant synchronization (SYN) time, the sender triggers a rate control event that 
updates the inter packet time. The receiver receives and reorders data packets. The sequence 
numbers of lost packets are recorded in the loss list and removed when the resent packets are 
received. The receiver sends back ACK periodically if there is any newly received packet. The 
ACK interval is the same as SYN time. The higher the throughput the less ACK packets 
generated. NAK is sent once loss is detected. The loss will be reported again if the 
retransmission has not been received after k*RTT, where k is set to 2 and is incremented by 1 
each time the loss is reported. Loss information carried in NAK is compressed, considering that 
loss is often continuous. In the worst case, there is 1 ACK for every received DATA packet if the 
packet arrival interval is not less than the SYN time, there are M/2 NAKs when every other DATA 
packet gets the loss for every M sent DATA packets.  
 
5.4. UDP based Data Transfer Protocol (UDT) 
UDT [54, 55] is a high performance data transfer and is an alternative data transfer protocol for 
the TCP when its performance goes down. Goal of UDP is to overcome TCP’s inefficiency in BDP 
networks and in connection oriented unicast and duplex networks. The congestion control module 
is an open source, so that different control algorithms can be deployed apart from native or 
default control algorithm based on AIMD.  
 
UDT is more complex than Reliable Blast UDP and Tsunami, but similar to TCP. UDT which is 
based on UDP adds reliability, congestion control and flow control mechanism. For reliability, 
UDT uses selective acknowledgement (SACK) at a fixed interval and sends negative 
acknowledgement (NACK) once a loss is detected. In case of congestion control, UDT adopts 
DAIMD (AIMD with decreasing increase) algorithm to adjust sending rate. To estimate the link 
capacity it uses receiver based packet pairs and flow control to limit the number of 
unacknowledged packets. 
 
Rate control tunes the inter-packet time at every constant interval, which is called SYN. The value 
of SYN is 0.01 seconds, an empirical value reflecting a trade off among efficiency, fairness and 
stability. For every SYN time, the packet loss rate is compared with the last SYN time, when it is 
less than a threshold then the maximum possible link Bit Error Rate (BER) and the number of 
packets that will be sent in the next SYN time is increased by the following equation, 

 
where B is the estimated bandwidth and C is the current sending rate, both in number of packets 

per second,  β is a constant value of 0.0000015. MTU is the maximum transmission unit in bytes, 
which is the same as the UDT packet size. The inter-packet time is then recalculated using the 
total estimated number of sent packets during the next SYN time. The estimated bandwidth B is 
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probed by sampling UDT data packet pairs and is designed for scenarios where numbers of 
sources share more bandwidth than expected. In other scenarios, e.g., messaging or low BDP 
networks, UDT can still be used but there may be no improvement in performance.   
 
UDT adopts complex congestion control algorithm and flow control algorithm which makes not 
suitable for bulk data transfer in dedicated networks and fairness issue, TCP friendliness also has 
to be studied.  
 
5.5. Lambda Stream 
Network researchers have reached a consensus that the current TCP implementations are not 
suitable for long distance high performance data transfer. Either TCP needs to be modified 
radically or new transport protocols should be introduced. Long Fat Networks (LFNs), where the 
round-trip latencies are extremely high, this latency results in gross bandwidth under-utilization 
when TCP is used for data delivery. Several solutions have been proposed, one such solution is 
to provide revised versions of TCP with better utilization of the link capacity. Another solution is to 
develop UDP-based protocols to improve bandwidth usage. The Simple Available Bandwidth 
Utilization Library (SABUL [51], Tsunami [47], Reliable Blast UDP (RBUDP) [44] and the Group 
Transport Protocol (GTP) [58] are few recent examples. 
 
LambdaStream is an application-layer transport protocol [56]. Correspondingly, key 
characteristics of LambdaStream include a combination loss recovery and a special rate control, 
which avoids packet loss inherent in other congestion control schemes. To efficiently utilize 
bandwidth and quickly converge to a new state, the protocol sets the initial sending rate as the 
quotient of the link capacity over the maximum number of flows, which is easily obtained in a 
dedicated network. 
 
It adapts the sending rate to dynamic network conditions while maintaining a constant sending 
rate whenever possible. One advantage of this scheme is that the protocol avoids deliberately 
provoking packet loss when probing for available bandwidth, a common strategy used by other 
congestion control schemes. Another advantage is that it significantly decreases fluctuations in 
the sending rate. As a result, streaming applications experience small jitter and react smoothly to 
congestion. Another important feature is that the protocol extends congestion control to 
encompass an end-to-end scope. It differentiates packet loss and updates the sending rate 
accordingly, thus increasing throughput. 
 
LambdaStream builds on experiences from a high performance networking protocol called 
Reliable Blast User Datagram Protocol (RBUDP) which transports data using UDP and TCP for 
control packets. In LambdaStream, the congestion control scheme is developed in such manner it 
decreases jitter and improve RBUDP’s adaptation to network conditions. LambdaStream is an 
application-layer library, for two reasons. Firstly, application-layer tool makes development easier 
and simplifies deployment for testing purposes.  Secondly, an application-layer protocol can 
measure end-to-end conditions as applications actually experience them, allowing the protocol to 
distinguish packet loss and avoid unnecessarily throttling throughput. The key characteristics of 
the congestion control in LambdaStream are: it is rate based [57], it uses receiving interval as the 
primary metric to control the sending rate, it calculates rate decrease/increase at the receiver side 
during a probing phase, and it maintains a constant sending rate after probing for available 
bandwidth. LambdaStream uses the receiving interval as a metric because 1) the receiving 
interval is closely related with the link congestion and the receiver’s processing capability; 2) the 
receiving interval can be used to detect incipient congestion and loss differentiation. 
 
The congestion control is composed of two parts. One part is to distinguish a packet loss and 
adjusts sending rate accordingly, thus avoiding unnecessarily throttling of the sending rate. 
Another part is to update the sending rate based on the ratio between the average receiving 
interval and the sending interval. Incipient congestion leads to a higher ratio, which triggers the 
protocol to decrease the sending rate. The protocol increases its sending rate if the ratio is close 
to one and the available bandwidth is greater than zero. 
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LambdaStream extends the congestion control to encompass an end-to-end scope. It 
distinguishes packet loss and adjusts the sending rate accordingly. The protocol also applies a 
ratio sampling approach to detect incipient congestion and combines it with a bandwidth 
estimation method for proactively probing for an appropriate sending rate.  
 
LambdaStream protocol’s throughput converges very well for a single flow, even for the initial 
sending rate in between 1720Mbps or 172Mbps. The protocol manages to maintain the 
throughput at an almost fixed sending rate, about 950Mbps. The experimental results show that 
LambdaStream achieves 950Mbps throughput in a 1Gbps channel. It exhibits small application 
level jitter and reacts smoothly to congestion, which is very suitable for streaming applications 
and also works well for continuous data streams of varying payloads. 
 
5.6. Group Transport Protocol 
Group Transport Protocol (GTP), is a receiver–driven transport protocol that exploits information 
across multiple flows to manage receiver contention and fairness. The key novel features of GTP 
include 1) request-response based reliable data transfer model, flow capacity estimation 
schemes, 2) receiver-oriented flow co-scheduling and max-min fairness rate allocation, and           
3) explicit flow transition management.  
     
Group Transport Protocol (GTP) is designed to provide efficient multipoint-to-point data transfer 
while achieving low loss and max-min fairness among network flows [58]. In a multipoint-to-point 
transfer pattern, multiple endpoints terminate at a receiver and aggregate a much higher capacity 
than the receiver can handle. In a sender-oriented scheme (e.g. TCP), this problem is more 
severe because the high bandwidth-delay product of the network makes it difficult for senders to 
react to congestion in a timely and accurate manner. To address this problem, GTP employs 
receiver-based flow management, which locates most of the transmission control at the receiver 
side, close to where packet loss is detected. Moreover, a receiver-controlled rate-based scheme 
in GTP, where each receiver explicitly tell senders the rate at which they should follow, allow 
flows to be adjusted as quickly as possible in response to detected packet loss.  
 
In order to support multi-flow management, enable efficient and fair utilization of the receiver 
capacity, GTP uses a receiver-driven centralized rate allocation scheme. In this approach, 
receivers actively measure progress (and loss) of each flow, estimate the actual capacity for each 
flow, and then allocate the available receiver capacity fairly across the flows. Because GTP is 
receiver-centric rate-based approach, it manages all senders of a receiver, and enables rapid 
adaptation to flow dynamics by adjusting, when flows join or terminate.  
 
GTP is a receiver-driven response-request protocol. As with a range of other experimental data 
transfer protocols, GTP utilizes light-weight UDP (with additional loss retransmission mechanism) 
for bulk data transfer and a TCP connection for exchanging control information reliably. The 
sender side design is simple: send the requested data to receiver at the receiver-specified rate (if 
that rate can be achieved by sender). Most of the management is at the receiver side, which 
includes a Single Flow Controller and Single Flow Monitor for each individual flow, and Capacity 
Estimator and Max-min Fairness Scheduler for centralized control across flows.  
 
GTP implements two levels of flow control. For each individual flow, the receiver explicitly controls 
the sender’s transmission rate (by sending rate requests to senders). This allows the flow’s rate 
to be adjusted quickly in response to packet loss (detected at the receiver side). Ideally any 
efficient rate-based point-to-point flow control scheme could be ‘plugged in’ and it acts as a 
centralized scheduler. The scheduler at the receiver manages across multiple flows, dealing with 
any congestion or contention and performing max-min rate amongst them. The receiver actively 
measures per- flow throughput, loss rate, and uses it to estimate bandwidth capacity. It then 
allocates the available receiver capacity (can be limited by resource or the final link) across flows. 
This allocation is done once for each control interval in Max-min fair manner. Correspondingly, 
the senders adjust to transmit at the revised rates. 
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Results got after implementation of GTP shows that for point-to-point single flow case, GTP 
performs well, like other UDP-based aggressive transport protocols (e.g. RBUDP, SABUL), 
achieving dramatically higher performance than TCP with low loss rates. In case of                 
multipoint-to-point, GTP still achieves high throughput with 20 to 100 times lower loss rates than 
other aggressive rate-based protocols. In addition, simulation results show, unlike TCP, which is 
unfair to flows with different RTT, GTP responses to flow dynamics and converge to max-min fair 
rate allocation quickly. 
 
GTP outperforms other rate based protocols, for multipoint-to-point data transmission, GTP 
reduces the packet loss, which are caused by aggressiveness of rate based protocols. GTP focus 
on Receiver based flow contention management, however detailed rate allocation and fairness 
among flow are not yet considered. Some works has to be done regarding GTP's performance 
such as achieving max-min fairness, estimating TCP flow's capability and tuning TCP parameters 
to achieve target rate [57]. Table 8 presents the results for GTP, compared with other rate based 
protocols such as RBUDP and SABUL. Table 9 displays the data flow statistics for GTP and 
compares with other protocols.  
 

Protocol RBUDP SABUL GTP 

Initial Rate User defined Fixed rate 
negotiated by sender 
and receiver 

Multipoint to 
point 

No No Yes 

Rate Adaptation Optional  
Rate based with 
delay compensation 

Rate estimation and 
delay compensation 

Fairness among 
flows 

Not considered Some extent 
max-min fairness 
among flows at 
receiver side 

 
TABLE 8: Comparison of GTP with other Rate Based Protocols 

 
Protocol RBUDP SABUL GTP 

 Parallel Multi-flows Parallel Multi-flows Parallel Multi-flows 
Aggregate Rate 
(Mbps) 

931 443 912 811 904 865 

Average Loss 2.1% 53.3% 0.1% 8.7% 0.03% 0.06% 

System Stability Yes No Yes No Yes Yes 

Fairness Fair No Fair No Fair Yes 

 
TABLE 9: Parallel vs. Convergent Flow Statistics for GTP 

 
5.7. GridFTP 
A common data transfer protocol for grid would ideally offer all the features currently available 
from any of the protocols in use. At a minimum, it must offer all of the features that are queried for 
the types of scientific and engineering applications that are intended to support in the gird. For 
this the existing FTP standard is selected, by adding some features a common data transfer 
protocol, ’GridFTP’ is developed [59]. GridFTP is used as a data transfer protocol for transferring 
a large volume of data in grid computing. It adopts parallel data transfer which improves the 
throughput by creating multiple TCP connections in parallel and automatic negotiation of TCP 
socket buffer size. GridFTP uses TCP as its transport-level communication protocol [60]. In order 
to get maximal data transfer throughput, it has to use optimal TCP send and receive socket buffer 
sizes for the link being used. TCP congestion window never fully opens if the buffer size is too 
small. If the receiver buffers are too large, TCP flow control breaks, and the sender can overrun 
the receiver, thereby causing the TCP window to shut. This situation is likely to happen if the 
sending host is faster than the receiving host. The optimal buffer size is twice the bandwidth delay 
product (BDP) of the link is Buffersize = 2 * bandwidth delay. 
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The GridFTP is implemented in Globus [61] and uses multiple TCP streams for transferring file. 
Using multiple TCP streams improves performance because of these reasons: i) aggregate TCP 
buffer size which is closer to real size and ii) circumvents the congestion control.  
 
Several experiments were done for analyzing GridFTP [62]. According to a technical report [63] 
globus_url_copy achieved a throughput very close to 95%. The windows size was set to 
bandwidth*RTT, when more than one TCP streams are used, then the window size was set to 
windows size * num streams. However, to achieve high throughput, the number of TCP 
connections has to be optimized according to network condition. Problems persist in the file sizes, 
when the end points want to transfer lots of small files, and then the throughput is reduced.  
 
Figure 7 and 8 shows the download performance for various FTP clients with single and 
multithreaded flow. Figure 9 shows the data transfer performance among various FTP clients. 
The performance of GridFTP [64, 65] depends on the number of connections used in parallel, the 
best performance is achieved with 4 connections and when more connections are there, it 
creates too much control overhead. 
 

 
 

FIGURE 7: Download performance of Conventional FTP Clients [Single Threaded] 

 

 
 

FIGURE 8: Download performance of Multi-threaded FTP Clients 
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FIGURE 9: Data Transfer Performance of FTP Clients 

 

5.8. GridCopy 
GridCopy [66], or GCP, provides a simple user interface to this sophisticated functionality, and 
takes care of all to get optimal performance for data transfers. GCP accepts scp-style source and 
destination specifications. If well-connected GridFTP servers can access the source file and/or 
the destination file, GCP translates the filenames into the corresponding names on the GridFTP 
servers. In addition to translating the filenames/URLs into GridFTP URLs, GCP adds appropriate 
protocol parameters such as TCP buffer size and number of parallel streams to attain optimal 
performance in networks. 
 
Tools such as ping and synack can be used to estimate end-to-end delay; and tools such as      
IGI [67], abing [68], pathrate [69], and Spruce [70] can be used to estimate end-to-end bandwidth. 
Latency estimation tools need to be run on one of the two nodes between which the latency 
needs to be estimated. For data transfers between a client and server, the tools mentioned above 
can be used to estimate the bandwidth-delay product. However, in Grid environments, users 
often perform third-party data transfers, in which the client initiates transfers between two servers.  
 
The end-to-end delay and bandwidth estimation tools cited above are not useful for third-party 
transfers. King [71] developed at the University of Washington at Seattle makes it possible to 
calculate the round-trip time (RTT) between arbitrary hosts on the Internet. GCP uses King to 
estimate the RTT between source and destination nodes in a transfer. GCP assumes a fixed one 
Gbits bandwidth for all source and destination pairs. King estimates RTT between any two hosts 
in the internet by estimating the RTT between their domain name servers. For example, if King 
estimates the RTT between the source and the destination to be 50 ms, GCP sets the TCP buffer 
size to 0.05. GCP caches the source, destination, and buffer size in a configuration file which is 
available in the home directory of the user running GCP. By default, GCP uses four parallel 
streams for the first transfer between two sites by a user. GCP calculates the TCP buffer size for 
each stream by   , where  is set to 2 by default to accommodate 

for the fact that the streams that are hit by congestion would go slower and the streams that are 
not hit by congestion would go faster.  
 
The primary design goal for GCP are i) to provide a scp-style interface for high performance, 
reliable, secure data transfers, ii) to calculate the optimal TCP buffer size and optimal number of 
parallel TCP streams to maximize throughput and iii)to support configurable URL translations to 
optimize throughput. 
 
5.9. Summary 
Table 10 presents the summary of application layer protocols for high performance grid 
computing environment. 
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Protocols Contributors Year Changes Done Remarks 
FOBS Phillip M. Dickens 2003 Object Based Less functionality 

LOBS Phillip M. Dickens 2003 
Object Based & 
above FOBS 

Lest Functionality 

SABUL Yunhong Gu et. al. 2008 
Change in flow 
control 

Application Level Library 

UDT Yunhong Gu et. al. 2009 
Rate control + 
MAIMD 

More functionality 

Lambda 
Stream 

Chaoyue Xiong et. al. 2005 
bandwidth 
estimation method 
[proactive ] 

more bandwidth utilization 
+small application level jitter 

GTP Ryan Wu et. al. 2004 
rate based flow 
control 

Utilizing available bandwidth 
fastly. 

GridFTP W. Allcock et. al. 2008 Parallel TCP No User Level Ease 
GridCopy Rajkumar Kettimuthu 2007 Parallel TCP + SCP User Level Ease 

 
TABLE 10: Summary of Application Layer Protocols for HPC 

 

6. CONCLUSION 
A detailed study of the most recent developments on network protocols for grid computing 
environment is done in this paper. We reviewed the protocols based on TCP and UDP. Below are 
some points which has to be considered when developing high performance protocols grid 
computing environment, i) using TCP in another transport protocol should be avoided, ii) using 
packet delay as indication of congestion can be hazardous to protocol reliability, iii) processing 
continuous loss is critical to the performance and iv) a knowledge of how much CPU time each 
part of the protocol costs helps to make an efficient implementation. And also, concentrating on 
three inter-related research tasks namely: i) dynamic right-sizing, ii) high-performance IP,                     
iii) rate-adjusting, iv) better congestion control and avoidance algorithm and v) efficient flow 
control algorithm can lead to efficient transport protocol for grid computing environment.  Table 11 
and 12 gives the comparison chart for TCP based protocols. Table 13 compares the various UDP 
protocols and Table 14 and 15 gives the application layer protocols comparison. 
 

 STCP HS-TCP TCP-Africa Fast TCP 

Design TCP TCP TCP TCP 

Mode of Operation D2D D2D D2D D2D 

Security No No No No 

Congestion control MIMD Modified 
Modified + 2 Mode 
CA rule adopted 

Depends on 
parameters 

Fairness No Yes Improved 
Proportional 
fairness 

TCP Friendly Yes Yes Yes NA 

Performance Improved  
window size and 
recovery time  
less  

Two mode 
congestion increases 
the performance 

Well performed 

Throughput Increases Ok Good Increases 

Bandwidth 
Utilization 

Ok Low 
Acquires available 
bandwidth 

More 

Multicast No No No No 

Implementation 
details 

Linux Kernel 
2.4.19 

Linux Kernel 
2.4.16 

NA NA 

Usage  
High Speed 
data  Transfer 

High Speed data 
Transfer 

High Bandwidth 
Networks 

High Speed data 
Transfer 

 
TABLE 11: Comparison chart for TCP Based Protocols – Part 1 
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 TCP-Illinois CTCP CUBIC TCP XTP 

Design TCP TCP TCP TCP 

Mode of Operation D2D D2D, M2M D2D D2D 

Security No No No No 

Congestion control 

Uses C-AIMD 
Algorithm and use 
loss and delay for 
CC. 

Combination of 
Loss and Delay 

Modified Modified 

Fairness Maintains fairness Improved Enhanced Enhanced 

TCP Friendly Yes Yes Yes Yes 

Performance More than TCP 
Increased 
because of good 
network utilization 

Increased 
because of 
good network 
utilization 

Increased, more 
when used in 
FDDI, Fibre 
Channels. 

Throughput Better Throughput Good Good High 

Bandwidth Utilization High Good Good Good 

Multicast No No No Yes 

Implementation 
details 

NA 
Microsoft and 
implemented [XP] 

NA 
Developed by 
XTP Forum 

Usage  
High speed TCP 
variant. 

High Speed Data 
Network. 

High Speed 
Networks 

High Speed N/w 
and Multimedia 
Applications. 

 
TABLE 12: Comparison chart for TCP Based Protocols – Part 2 

 

 NETBLT RBUDP Tsunami 

Design UDP 
UDP data + TCP 
control. 

UDP data + TCP control. 

Mode of Operation D2D D2D & M2M D2D 

Security No No Yes 

Congestion control No 
Optional. Limited 
congestion control can 
be turned on. 

Limited. Sending rate is 
reduced when loss rate is 
more than a threshold. 

Fairness No NA NA 

TCP Friendly No No No 

Performance 
Performed extremely 
well  

eliminates TCP’s slow-
start and uses full 
bandwidth 

relays on the parameters  

Throughput Ok Good Good 

Bandwidth 
Utilization 

Fair Good Good 

Multicast No No No 

Implementation 
details 

No Provides C++ API. www.indiana.edu 

Usage  
developed at MIT for 
high throughput bulk 
data transfer 

Aggressive protocol 
designed for dedicated 
or QoS enabled high 
bandwidth networks. 

Designed for faster 
transfer of large file over 
high-speed networks. 
 

 
TABLE 13: Comparison chart for UDP Based Protocols 



Suresh Jaganathan, Srinivasan A & Damodaram A 

International Journal of Computer Science and Security  (IJCSS), Volume (5) : Issue (2) : 2011          271 

 

 
 

FOBS LOBS SABUL UDT 

Design OO Based FOBS 
UDP data + TCP 
control. 

UDP 

Mode of Operation D2D D2D D2D & M2M D2D & M2M 

Security NA NA No Yes 

Congestion control Yes Yes 
Rate based 
algorithm  

D- AIMD 

Fairness Yes Yes 
Fairness is 
independent to 
network delay 

Fairness of UDT is 
independent of RTT 

TCP Friendly Yes Yes Yes. Yes 

Performance 
 90% bandwidth 
utilized 

rate of 35MB 
per second 

Ok Ok 

Throughput NA Ok Ok Good 

Bandwidth Utilization NA Good Ok High 

Multicast No No No No 

Implementation 
details 

NA NA 
C++ Library on 
Linux. 

udt.sourceforge.net 

Usage  
High Speed 
data Transfer 

High Speed 
data Transfer 

A general 
purpose protocol. 

High Speed data 
Transfer 

 
TABLE 14: Comparison chart for Application Layer Based Protocols – Part 1 

 
 LambdaStream GTP GridFTP Grid Copy 

Design 
UDP data + TCP 
control 

Light weight 
UDP  

FTP FTP 

Mode of 
Operation 

D2D D2D D2D & M2M D2D & M2M 

Security No No GSI scp style 

Congestion 
control 

Rate Based + Modified Same as TCP Same as TCP Same as TCP 

Fairness Yes Yes Yes Yes 

TCP Friendly Yes Yes Yes Yes 

Performance 
Improved, because of 
loss recovery and rate 
control 

Improved 
because of 
Receiver driven 
and flow control 

Problems persist 
in file sizes and 
number of 
connections 

Problems persist 
in file sizes 
(small size) 

Throughput Good Good Good Good 

Bandwidth 
Utilization 

Good Good High High 

Multicast No Yes Yes Yes 

Implementation 
details 

NA NA Globus Toolkit NA 

Usage  Long Fat Networks 
High Bandwidth 
Networks 

High Bandwidth 
networks  

High Bandwidth 
networks  

 
TABLE 15: Comparison chart for Application Layer Based Protocols – Part 2 

 



Suresh Jaganathan, Srinivasan A & Damodaram A 

International Journal of Computer Science and Security  (IJCSS), Volume (5) : Issue (2) : 2011          272 

7. REFERENCES 
[1]    Foster and C. Kesselman, “The Grid: Blue print for a new computing infrastructure”, Morgan 

Kaufmann Publications (1999). 
 
[2]    Foster, C. Kesselman, J. M. Nick and S. Tuecke, “The physiology of the Grid: An open grid 

services architecture for distributed systems integration”, Grid Forum white paper, 2003. 
 
[3]    Volker Sander, “Networking Issues for Grid Infrastructure”, GFD-I.037, Nov, 22, 2004. 
 
[4]   T. DeFanti, C. D. Laat, J. Mambretti, K. Neggers and B. Arnaud, “TransLight: A global scale 

LambdaGrid for e-science”, Communications of the ACM, 47(11), November, 2003. 
 
[5]  L. Smarr, A. Chien, T. DeFanti, J. Leigh and P. Papadopoulos, “The OptIPuter” 

Communications of the ACM, 47(11), November, 2003. 
 
[6]   “CANARIE.” http://www.canarie.ca/ 
 
[7]   M. Gaynor, M. Welsh, S. Moulton, A. Rowan, E. LaCombe and J.Wynne, “Integrating 

wireless sensor networks with the Grid”, In Proceedings of IEEE Internet Computing, 
Special Issue on Wireless Grids, July/August, 2004. 

 
[8]    J. Postel, “Transmission control protocol”, RFC 793, September 1981. 
 
[9]    J. Postel , “User datagram protocol”, RFC 768, September 1980. 
 
[10]   B. Jacobson, “TCP extensions for high performance” ,RFC 1323,May 1992. 
 
[11] Douglas .J. Leith, Robert N. Shorten, “Next Generation TCP: Open Questions”, In 

Proceedings of International Workshop on Protocols for Fast Long-Distance Networks, 
Manchester, UK, 2008. 

 
[12]   Ryan X. Wu, Andrew A. Chien et.al., “A High performance configurable transport protocol 

for grid computing”, In Proceedings of 5th IEEE International Symposium of Cluster 
Computing and the grid, Vol.2, pp 1117-1125, 2005. 

 
[13] D. Katabi, M. Hardley, and C. Rohrs, “Internet Congestion Control for Future High 

Bandwidth-Delay Product Environments”, ACM SIGCOMM, Pittsburgh, PA, Aug. 19 - 23,   
pp 89-102, 2002. 

 
[14]   J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: a simple model 

and its Empirical validation”, ACM Technical Report, UM-CS-1998-008, 1998. 
 
[15]  Y. Zhang, E. Yan, and S. K. Dao, “A measurement of TCP over Long-Delay Network”, In 

Proceedings of 6th International Conference on Telecommunication Systems, Modeling 
and Analysis, Nashville, TN, March 1998. 

 
[16]  W. Feng et.al., “The Failure of TCP in High Performance Computational Grids”, Super 

Computing, ACM/IEEE Conference, November, pp 37, 2000. 
 
[17]  R.N. Shorten and D.J. Leith and J. Foy and R. Kilduff, "Analysis and design of AIMD 

congestion control algorithms in communication networks", Article in Automatica, 41(4) 
pp:725-730, doi:10.1016/j.automatica.2004.09.017, 2005. 

 
[18]   Jain, R., Chiu, D.M., and Hawe, W., “A Quantitative Measure of Fairness and Discrimination 

for Resource Allocation in Shared Systems”, DEC Research Report TR-301, 1984. 
 



Suresh Jaganathan, Srinivasan A & Damodaram A 

International Journal of Computer Science and Security  (IJCSS), Volume (5) : Issue (2) : 2011          273 

[19]   E. Souza, D. Agarwal, “A HighSpeed TCP study: characteristics and deployment issues”, 
Technical Report LBNL-53215, Lawrence Berkeley National Lab, 2003. Available at: 
http://www-itg.lbl.gov/evandro/hstcp/hstcp-lbnl-53215.pdf. 

 
[20]  T.A. Trinh, B. Sonkoly, S. Molnr, “A HighSpeed TCP study: observations and reevaluation”,  

In Proceedings of 10th Eunice Summer School and IFIP Workshop on Advances in Fixed 
and Mobile Networks, Tampere, Finland, 2004. 

 
[21]  Tom Kelly, “Scalable TCP: Improving performance in high speed wide area networks”, ACM 

SIGCOMM Computing Communications Review, 33(2), April, pp 83-91, 2003. 
 
[22]   C. Jin, D.X. Wei, S.H. Low, “FAST TCP: motivation, architecture, algorithms, Performance”, 

In Proceedings of IEEE Infocom , Vol. 4, Hong Kong, China, pp. 2490-2501, 2004. 
 
[23]   Gurtov, “Effect of delays on TCP performance”, In Proceedings of IFIP Personal Wireless 

Communications 2001 (PWC2001), Lappeenranta, Finland, pp. 810, 2001. 
 
[24]  Sumitha Bhandarkar, Saurabh Jain and A. L. Narasimha Reddy, “LTCP: Improving the 

Performance of TCP in HighSpeed Networks”, ACM SIGCOMMM Computer 
Communications Review, 36(1), January, pp 41-50, 2006. 

 
[25]  M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, and S. Mascolo, “TCP Westwood: 

Congestion Window Control Using Bandwidth Estimation”, IEEE Globecom 2001, vol: 3, pp 
1698-1702, 2001. 

 
[26]  Lawrence S. Brakmo, Student Member, IEEE, and Larry L. Peterson, “TCP Vegas: End to 

End Congestion Avoidance on a Global Internet”, IEEE JOURNAL ON Selected Areas in 
Communications, 13(8), October 1995. 

 
[27]  M. Fisk and W. Feng, “Dynamic right-sizing in TCP”, In Proceedings of International 

Conference on Computer Communication and Networks, October, pp 152-158, 2001. 
 
[28]  S. Floyd, S. Ratnasamy, and S. Shenker, “Modifying TCPs congestion control for high 

speeds”, Preliminary Draft. URL: http://www.icir. org/floyd/papers/hstcp.pdf, 2002. 
 
[29]   S. Floyd, “HighSpeed TCP for Large Congestion Windows”, RFC 3629, December 2003. 
 
[30]  King R, Baraniuk R, Riedi R, "TCP-Africa: an adaptive and fair rapid increase rule for 

scalable TCP", In IEEE Proceedings of IEEE Computer and Communications Societies 
Conference, vol.3, pp. 1838-1848, doi: 10.1109/INFCOM.2005.1498463, 2005. 

 
[31] Cheng Jin et.al., “FAST TCP: From Theory to Experiments”, IEEE Network Communications, 

19(1), pp 4-11, 2005. 
 
[32] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg Widmer, “Equation-Based 

Congestion Control for Unicast Applications”, SIGCOMM 2000 
 
[33]  Wei Steven H. Low, Cheng Jin David X, “FAST TCP: Motivation, Architecture, Algorithms, 

Performance”, IEEE/ACM Trans Networking, 14(6), pp 1246-1259, 2006. 
 
[34]  Shao Liu, Tamer Basar, and R. Srikant, “TCP-Illinois: a loss and delay based congestion 

control algorithm for high-speed networks”, In Proceedings of the 1st international 
conference on Performance evaluation methodologies and tools, ACM, Article 55, 
doi:10.1145/1190095.1190166, 2006. 

 



Suresh Jaganathan, Srinivasan A & Damodaram A 

International Journal of Computer Science and Security  (IJCSS), Volume (5) : Issue (2) : 2011          274 

[35]  Shao Liu, Tamer Basar, and R. Srikant, “TCP-Illinois: A loss- and delay-based congestion 
control algorithm for high-speed networks”, Performance Evaluation, 65(6-7) pp.417-
440. doi:10.1016/j.peva.2007.12.007, 2008. 

 
[36]  Tan, K.  Song, J.  Zhang, Q.  Sridharan, M, "A Compound TCP Approach for High-Speed 

and Long Distance Networks", Proceedings of 25th IEEE International Conference on 
Computer Communications, pp:1-12, doi:10.1109/INFOCOM.2006.188, 2006. 

 
[37]   K. Tan, J. Song, M. Sridharan, and C.Y. Ho,, "CTCP-TUBE: Improving TCP friendliness 

over low-buffered network links", Proceedings of 6th International Workshop on Protocols 
for FAST Long-Distance Networks, March 2008. 

 
[38]  Alberto Blanc, Konstantin Avrachenkov, Denis Collange and Giovanni Neglia, "Compound 

TCP with Random Losses", Springer Berlin / Heidelberg, Lecture Notes in Computer 
Science, Networking,  pp:482-494, doi: 10.1007/978-3-642-01399-7_38, 2009. 

 
[39]  Sangtae Ha, Injong Rhee, and Lisong Xu, “CUBIC: a new TCP-friendly high-speed TCP 

variant”, SIGOPS Operating Systems Review 42(5) pp: 64-74, 
doi:10.1145/1400097.1400105, 2008. 

 
[40]  L. Xu, K. Harfoush, and I. Rhee, "Binary Increase Congestion Control (BIC) for Fast Long-

Distance Networks" In  Proceedings of IEEE INFOCOM, March 2004. 
 
[41]   Diogo R. Viegas, Rodrigo Mario A. R. Dantas, Michael A. Bauer, "SCTP, XTP and TCP as 

Transport Protocols for High Performance Computing on Multi-cluster Grid Environments", 
HPCS, pp:230-240, 2009, doi:10.1007/978-3-642-12659-8_17. 

 
[42] Mark L. Lambert, Lixia Zhang, “NETBLT: A Bulk Data Transfer Protocol”, RFC 969, 

December 1985. 
 
[43]  David D Clark, Mark L Lamberl, Lixia Zhang, “NETBLT: A High Throughput Transport 

Protocol”, ACM SIGCOMM Computer Communications Review, vol:17, no:5, 1987, pp 353-
359, 1987. 

 
[44]   Eric He, Jason Leigh, Oliver Yu, Thomas A. DeFanti, “Reliable Blast UDP: Predictable High 

Performance Bulk Data Transfer”, Fourth IEEE International Conference on Cluster 
Computing (CLUSTER’02), pp 317, 2002. 

 
[45]   http://dast.nlanr.net/Projects/Iperf/ 
 
[46]   http://netperf.org/netperf/NetperfPage.html 
 
[47]   Mark R. Meiss (2008), “Tsunami: A High-Speed Rate Controlled Protocol for File Transfer”, 

Indiana University, http://steinbeck.ucs.indiana.edu/mmeiss/papers 
 
[48]  Altman, E. Barman, D. Tuffin, B. Vojnovic, M, "Parallel TCP Sockets: Simple Model, 

Throughput and Validation", INFOCOM 2006. 25th IEEE International Conference on 
Computer Communications. Proceedings pp:1 - 12, 2006  

   doi: 10.1109/INFOCOM.2006.104. 
 
[49]  Phillip M. Dickens, "FOBS: A Lightweight Communication Protocol for Grid Computing", 

Euro-Par 2003 Parallel Processing Lecture Notes in Computer Science, Volume 
2790/2003, pp:938-946,  2003. doi: 10.1007/978-3-540-45209-6_130. 

 
[50]   www.umcs.maine.edu/~dickens/pubs/LOBS.pdpta.submitted.doc 
 



Suresh Jaganathan, Srinivasan A & Damodaram A 

International Journal of Computer Science and Security  (IJCSS), Volume (5) : Issue (2) : 2011          275 

[51]  Yunhong Gu and Robert Grossman, “SABUL: A Transport Protocol for Grid Computing”, 
Journal of Grid Computing, Vol.1, No.4, December, pp 377-386, 2003. 

 
[52]   Phoemphun Oothongsap, Yannis Viniotis, and Mladen Vouk, “Improvements of the SABUL 

Congestion Control Algorithm”, Proceedings of 1st International Symposium on 
Communication Systems Networks and Digital Signal Processing, July, 2008. 

 
[53]   S. Floyd, M.Mathis, M. Podolsky, “An Extension to the Selective Acknowledgement (SACK) 

Option or TCP”, RFC 2883, July 2000. 
 
[54]  Yunhong Gu and Robert L. Grossman, “UDT: An Application Level Transport Protocol for 

Grid Computing”, Second International Workshop on Protocols for Fast Long-Distance 
Networks, PFLDNet, Feb 16-17, 2004, Argonne, Illinois, USA  

 
[55]  Yunhong Gu and Robert L. Grossman, “UDT: UDP-based Data Transfer for High-Speed 

Wide Area Networks”, International Journal of Computer & Telecommunications Networks, 
Vol.51, No.7, May, 2007. 

 
[56] Chaoyue Xiong, Jason Leigh, Eric He, Venkatram Vishwanath, Tadao Murata, Luc 

Renambot, Thomas A. DeFanti, "LambdaStream: A Data Transport Protocol for Network-
Intensive Streaming Applications over Photonic Networks", In Proceedings of the Third 
International Workshop on Protocols for Fast Long-Distance Networks (PFLDnet 2005), 
Lyons, France, February 3-4, 2005. 

 
[57]   Xinran (Ryan) Wu and Andrew A. Chien, "Evaluation of Rate-Based Transport Protocols for 

Lambda-Grids", Proceedings of the 13th IEEE International Symposium on High 
Performance Distributed Computing (HPDC '04). IEEE Computer Society, pp:87-96, 2004, 
doi:10.1109/HPDC.2004.13. 

 
[58] Wu, R.X., Chien, A.A.,"GTP: Group Transport Protocol for Lambda-Grids", IEEE International 

Symposium on Cluster Computing and the Grid, (CCGrid 2004), pp: 228- 238, 19-22 April 
2004, doi: 10.1109/CCGrid.2004.1336572. 

 
[59]   W. Allcock, J. Bester, J. Bresnahan, A. Chervenak (2003), “GridFTP: Protocol Extensions to 

FTP for the Grid”, GFD-20, April 2003. 
 
[60]  John Bresnahan, Michael Link, Gaurav Khanna, Zulfikar Imani, Rajkumar Kettimuthu and 

Ian Foster, “Globus GridFTP: Whats New in 2007”, Proceedings of International 
Conference on Networks for grid applications, Article 19, October, 2007. 

 
[61]   www.globus.org/toolkit/data/gridftp/ 
 
[62]  John Bresnahan, Michael Link, Rajkumar Kettimuthu, Dan Fraser and Ian Foster, “GridFTP 

Pipelining”, Proceedings of the 2007 TeraGrid Conference, June, 2007. 
 
[63]   http:\\www.globus.org/toolkit/docs/latest-stable/data/gridftp/gridftp_performance.doc 
 
[64]  Hiroyuki Ohsaki, Makoto Imase, "Performance Evaluation of Data Transfer Protocol GridFTP 

for Grid Computing", International Journal of Applied Mathematics and Computer Sciences 
3(1), pp:39-44, 2009. 

 
[65]   M. Cannataro, C. Mastroianni, D. Talia,  and P. Trunfio,  "Evaluating and Enhancing the Use 

of the GridFTP Protocol for Efficient Data Transfer on the Grid",  in Proc. PVM/MPI, pp.619-
628, 2003. 

 



Suresh Jaganathan, Srinivasan A & Damodaram A 

International Journal of Computer Science and Security  (IJCSS), Volume (5) : Issue (2) : 2011          276 

[66]    Kettimuthu, R, Allcock, W, Liming, L, Navarro, J.-P, Foster, I., "GridCopy: Moving Data Fast 
on the Grid", IEEE International Parallel and Distributed Processing Symposium, IPDPS 
2007. pp:1 - 6, doi:10.1109/IPDPS.2007.370553 

 
[67]   http://www.cs.cmu.edu/_hnn/igi/ 
 
[68]   www.wcisd.hpc.mil/tools/ 
 
[69]   http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/bw-est/ 
 
[70]   www.icir.org/models/tools.html/ 
 
[71]  K. P. Gummadi, S. Saroiu, S., and S. D. Gribble, “King: Estimating latency between arbitrary 

internet end hosts”, SIGCOMM Computer Communication Review, vol. 32, no. 3, pp. 518, 
July 2002. 


