
Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       208 

Concurrent Matrix Multiplication on Multi-Core Processors 
 
 

Muhammad Ali Ismail                      maismail@neduet.edu.pk 
Assistant Professor, Faculty of Electrical & Computer Engineering 
Department of Computer & Information Systems Engineering  
NED University of Engineering & Technology 
Karachi, 75270, Pakistan 

 
Dr. S. H. Mirza                                   shmirza@uit.edu 
Professor  
Usman Institute of Technology 
Karachi, 75300, Pakistan 

 
Dr. Talat Altaf                            deanece@neduet.edu.pk 
Professor, Faculty of Electrical & Computer Engineering 
Department of Electrical Engineering  
NED University of Engineering & Technology 
Karachi, 75270, Pakistan 

 
Abstract 

 
With the advent of multi-cores every processor has built-in parallel computational power and 
that can only be fully utilized only if the program in execution is written accordingly. This study 
is a part of an on-going research for designing of a new parallel programming model for multi-
core architectures. In this paper we have presented a simple, highly efficient and scalable 
implementation of a common matrix multiplication algorithm using a newly developed parallel 
programming model SPC

3 
PM for general purpose multi-core processors. From our study it is 

found that matrix multiplication done concurrently on multi-cores using SPC
3
 PM requires 

much less execution time than that required using the present standard parallel programming 
environments like OpenMP. Our approach also shows scalability, better and uniform speedup 
and better utilization of available cores than that the algorithm written using standard OpenMP 
or similar parallel programming tools. We have tested our approach for up to 24 cores with 
different matrices size varying from 100 x 100 to 10000 x 10000 elements. And for all these 
tests our proposed approach has shown much improved performance and scalability. 
 
Keywords: Multi-Core, Concurrent Programming, Parallel Programming, Matrix 
Multiplication.   

 
 

1. INTRODUCTION  
Multi-core processors are becoming common and they have built-in parallel computational 
power and which can only be fully utilized only if the program in execution is written 
accordingly. Writing an efficient and scalable parallel program is much complex. Scalability 
embodies the concept that a programmer should be able to get benefits in performance as 
the number of processor cores increases. Most software today is grossly inefficient, because 
it is not written with sufficient parallelism in mind. Breaking up an application into a few tasks 
is not a long-term solution. In order to make most of multi-core processors, either, lots and 
lots of parallelism are actually needed for efficient execution of a program on larger number of 
cores, or secondly, concurrent execution of multiple programs on multiple cores [1, 2]. 
 
Matrix Multiplication is used as building block in many of applications covering nearly all 
subject areas. Like physics makes use of matrices in various domains, for example in 
geometrical optics and matrix mechanics; the latter led to studying in more detail matrices 
with an infinite number of rows and columns. Graph theory uses matrices to keep track of 
distances between pairs of vertices in a graph. Computer graphics uses matrices to project 3-
dimensional space onto a 2-dimensional screen. Matrix calculus generalizes classical 
analytical concept such as derivatives of functions or exponentials to matrices etc [4, 11, 13]. 
Serial and parallel matrix multiplication is always be a challenging task for the programmers 
because of its extensive computation and memory requirement, standard test set and broad 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       209 

use in all types of scientific and desktop applications. With the advent of multi-core 
processors, it has become more challenging. Now all the processors have built-in parallel 
computational capacity in form of cores and existing serial and parallel matrix multiplication 
techniques have to be revisited to fully utilize the available cores and to get the maximum 
efficiency and the minimum executing time [2, 3, 8, 9].  
 
In this paper we have presented a concurrent matrix multiplication algorithm and its design 
using a new parallel programming model SPC

3
 PM, (Serial, Parallel, and Concurrent Core to 

Core Programming Model) developed for multi-core processors. It is a serial-like task-oriented 
multi-threaded parallel programming model for multi-core processors that enables developers 
to easily write a new parallel code or convert an existing code written for a single processor. 
The programmer can scale it for use with specified number of cores. And ensure efficient task 
load balancing among the cores.  
 
The rest of the paper is organized as follows. In section 2, the related studies on parallel and 
concurrent matrix multiplication are briefly reviewed. The characteristics of SPC

3
 PM are 

described in section 3. Section 4 deals with the programming in SPC
3 

PM. The concurrent 
matrix multiplication algorithm based on SPC

3
PM is presented in section 5. In section 6 and 

7, the experimental setup and results are discussed respectively. Finally, conclusion and 
future work are given in section 8. 
 

2. RELATED WORK  
Many of parallel matrix multiplication algorithms and implementations for SMPs and 
distributed systems have been proposed. Like Systolic algorithm [5], Cannon’s algorithm [], 
Fox’s algorithm with square decomposition, Fox’s algorithm with scattered decomposition [6], 
SUMMA [7], DIMMA [10], 3-D matrix multiplication [12] etc. Majority of the parallel 
implementations of matrix multiplication for SMPs are based on functional parallelism. The 
existing algorithms for SMPs are not so efficient for multi-core and have to be re-written using 
some multi-core supported language [1, 2]. These algorithms are also difficult for common 
programmer to understand as they require detailed related subject knowledge. On the other 
hand distributed algorithms which are usually base on data parallelism also cannot be applied 
on the shared memory multi-core processors because of the architectural change.   
 
Some attempts have also been made to solve matrix multiplication using data parallel or 
concurrent approaches on cell or GPUs [14, 15, 16, 17, 18, 19]. But the associated problem 
with these approaches is architectural dependence and cannot be used for general purpose 
multi-core processors.    
 

3. SPC3 PM 
SPC

3
 PM, (Serial, Parallel, Concurrent Core to Core Programming Model), is a serial-like 

task-oriented multi-threaded parallel programming model for multi-core processors, that 
enables developers to easily write a new parallel code or convert an  existing code written for 
a single processor. The programmer can scale it for use with specified number of cores. And 
ensure efficient task load balancing among the cores.  
 
SPC

3
 PM is motivated with an understanding that existing general-purpose languages do not 

provide adequate support for parallel programming.  Existing parallel languages are largely 
targeted to scientific applications.  They do not provide adequate support for general purpose 
multi-core programming whereas SPC

3
 PM is developed to equip a common programmer 

with multi-core programming tool for scientific and general purpose computing. It provides a 
set of rules for algorithm decomposition and a library of primitives that exploit parallelism and 
concurrency on multi-core processors. SPC

3
 PM helps to create applications that reap the 

benefits of processors having multiple cores as they become available.  
 
SPC

3 
PM provides thread parallelism without the programmers requiring having a detailed 

knowledge of platform details and threading mechanisms for performance and scalability. It 
helps programmer to control multi-core processor performance without being a threading 
expert. To use the library a programmer specifies tasks instead of threads and lets the library 
map those tasks onto threads and threads onto cores in an efficient manner.  As a result, the 
programmer is able to specify parallelism and concurrency far more conveniently and with 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       210 

better results than using raw threads.. The ability to use SPC
3 

PM on virtually any processor 
or any operating system with any C++ compiler also makes it very flexible.  
 
SPC

3
 PM has many unique features that distinguish it with all other existing parallel 

programming models. It supports both data and functional parallel programming. Additionally, 
it supports nested parallelism, so one can easily build larger parallel components from smaller 
parallel components. A program written with SPC

3
 PM may be executed in serial, parallel and 

concurrent fashion. Besides, it also provides processor core interaction to the programmer. 
Using this feature a programmer may assign any task or a number of   tasks to any of the 
cores or set of cores. 

 
3.1   Key Features 
The key features of SPC

3
 are summarized below. 

 

• SPC
3
 is a new shared programming model developed for multi-core processors.  

• SPC
3
 PM works in two steps: defines the tasks in an application algorithm and 

then arranges these tasks on cores for execution in a specified fashion. 

• It provides Task based Thread-level parallel processing.  

• It helps to exploit all the three programming execution approaches, namely, 
Serial, Parallel and Concurrent. 

• It provides a direct access to a core or cores for maximum utilization of 
processor. 

• It supports major decomposition techniques like Data, Functional and Recursive.  
• It is easy to program as it follows C/C++ structure.  

• It can be used with other shared memory programming model like OpenMP, TBB 
etc. 

• It is scalable and portable. 
• Object oriented approach 

 

4. PROGRAMMING WITH SPC3 PM 
SPC

3
 PM provides a higher-level, shared memory, task-based thread parallelism without 

knowing the platform details and threading mechanisms.  This library can be used in simple C 
/ C++ program having tasks defined as per SPC

3
 PM Task Decomposition rules. To use the 

library, you specify tasks, not threads, and let the library map tasks onto threads in an efficient 
manner. The result is that SPC

3
 PM enables you to specify parallelism and concurrency far 

more conveniently, and with better results, than using raw threads. 
 
Programming with SPC

3
 is based on two steps. First describing the tasks as it specified rules 

and then programming it using SPC
3
 library. The figure 1 shows the step by step 

development of an application using SPC
3
PM.  

 
4.1 Rules for Task Decomposition 

• Identify the parts of the code which can be exploited using Functional, Data or 
Recursive decomposition  

• Defined all those piece of code specified in step 1 as Tasks. 
• Identify the loops for the loop parallelism and also defined them as Tasks 

• Identify portions of the application algorithm which are independent and can be 
executed concurrently 

• A Task may be coded using either C/C++/VC++/C# as an independent unit. 
• Tasks should be named as Task1, Task2,….. TaskN. 

• There are no limits for Tasks.  

• Arrange the tasks using SPC
3
 library in the main program file according to the 

program flow.   
• A Task may be treated as a function. 

• A Task may only intake pointer structure as a parameter. Initialize all the parameters 
in a structure specific to a Task. 

• A structured may be shared or private.  

• A Task may or may not return the value. The Task named with suffix ‘V’ do not return 
any value. The Task with suffix ‘R’ do return value. 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       211 

 
 

 
 
 

FIGURE 1: Steps involved in programming with SPC
3
 PM 

 
 
 
 
 
 
 
 
 
 
 
 
 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       212 

4.2 Program Structure 
 

 
 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       213 

4.3 SPC
3
 PM Library  

SPC
3
 PM provides a set of specified rules to decompose the program into tasks and a library 

to introduce parallelism in the program written using c/ c++. The library provides three basic 
functions.  
 

• Serial  
• Parallel  

• Concurrent 
 
Serial: This function is used to specify a Task that should be executed serially. When a Task 
is executed with in this function, a thread is created to execute the associated task in 
sequence. The thread is scheduled on the available cores either by operating system or as 
specified by the programmer. This function has three variants. Serial (Task i) {Basic}, Serial 
(Task i, core) {for core specification} and *p Serial (Task i, core, *p) {for managing the 
arguments with core specification} 
 
Parallel: This function is used to specify a Task that should be executed in parallel. When a 
Task is executed with in this function, a team of threads is created to execute the associated 
task in parallel and has an option to distribute the work of the Task among the threads in a 
team. These threads are scheduled on the available cores either by operating system or as 
specified by the programmer. At the end of a parallel function, there is an implied barrier that 
forces all threads to wait until the work inside the region has been completed. Only the initial 
thread continues execution after the end of the parallel function. The thread that starts the 
parallel construct becomes the master of the new team. Each thread in the team is assigned 
a unique thread id to identify it. They range from zero (for the master thread) up to one less 
than the number of threads within the team. This function has also four variants. Parallel 
(Task i) {Basic}, Parallel (Taski ,num-threads) {for defining max parallel threads}, Parallel 
(Task i, core list ) {for core specification} and *p parallel (Task i, core, *p) {for managing the 
arguments with core specification}  
 
Concurrent: This function is used to specify the number of independent tasks that should be 
executed in concurrent fashion on available cores. These may be same tasks with different 
data set or different tasks. When the Tasks are executed defined in this function, a set of 
threads equal or greater to the number of tasks defined in concurrent function is created such 
that each task is associated with a thread or threads. These threads are scheduled on the 
available cores either by operating system or specified by the programmer. in other words , 
this function is an extension and fusion of serial and parallel functions. All the independent 
tasks defined in concurrent functions are executed in parallel where as each thread is being 
executed either serially or in parallel. This function has also three variants. Concurrent (Task 
i, Taskj, ....Task N) {Basic}, Concurrent (Task i, core , Task j , core, ……) {for core 
specification} and Concurrent (Task i, core , *p, Task j , core, *p ……) {for managing the 
arguments with core specification}. 

 

5. CONCURRENT MATRIX ALGORITHM  
We have selected a standard and basic matrix multiplication algorithm in which the product of 
a (m×p) matrix A with a  (p×n) matrix B is a (m×n) matrix denoted C such that  

                                                

  

Where 1 ≤ i ≤ m is the row index and 1 ≤ j ≤ n is the column index. This algorithm is 
implemented using two different approaches. The first is the standard parallel approach using 
OpenMP. The other is in C++ using the concurrent function of SPC

3
 PM. Pseudo code for 

both of the algorithms are shown in table 1. 
  
In OpenMP implementation the basic computations of addition and multiplication are placed 
within the three nested ‘for’ loops. The outer most is parallelized using OpenMP keyword 
‘pragma omp parallel for’. The row level distribution of matrices is followed. The matrix is 
divided into set of rows equal number of parallel threads defined by the variable ‘core ’such 
that each row set is computed on a single core.  



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       214 

For SPC
3
 PM using concurrent function, a Task is defined having the basic algorithm 

implementation. The idea is to execute this task concurrently on different cores with different 
data set. Every Task has its own private data variables defined in a structure ‘My_Data’. All 
the private structures are associated with their tasks and initialized accordingly. Using the 
Concurrent function of SPC

3
 PM, the required number of concurrent tasks are initialized and 

executed.   
         

Matrix Multiplication Algorithm 

OpenMP (Parallel) 

Matrix Multiplication Algorithm 

SPC
3
 PM, Concurrent 

Void main (void) 
{ 
 
// inintilizillig the matrics  
int A[ ][ ],B[ ][ ],C[ ][ ] 
 
int core ; // number of parallel threads 
 
omp_set_num_threads(core);  
 
// initializing the parallel loop 
#pragma omp parallel for private(i,j,k)  
 
for (i=0; i<n; i++) 
 { 
 for (j=0; j<n; j++) 
   {    
    c[i][j]=0; 
    for (k=0;k<n;k++) 
      { 
      c[i][j]=c[i][j]+ a[i][k]*b[k][j]; 
      } 
   } 
 } 
 
} 

 
Task(LPVOID) 
{ 
P_MY_DATA data; 
data=(P_MY_DATA)lp; 
 
for(i=data->val3; i<data->val1; i++) 
for(j=0; j< data->val2; j++) 
{ 
for(k=0;k< data->val2 ;k++) 
c[i][j]=c[i][j]+ a[i][k]*b[k][j]; 
} 
} 
 
void main (void) 
{ 
 
 typedef struct My_Data 
{ 
int val1,val2,val3; 
int A[ ][ ],B[ ][ ],C[ ][ ] 
} MY_DATA, *P_MY_DATA[n]; 
 
//initialize P_MY_DATA_1; 
//initialize P_MY_DATA_2; 
...... 
 
//initialize P_MYDATA_N; 
 
concurrent(Task,P_MYDATA_1,Task,P_MY_DATA_2   
           ....        Task,P_MY_DATA_N); 
} 

 

 

TABLE 1: Parallel Matrix Algorithm for OpenMP and SPC
3
 Concurrent 

6. EXPERIMENTAL SETUP 
For the execution of the algorithms we used quad Intel Xeon processor 5500 series based 
SR1670HV, server systems having 48 cores and dual Intel Xeon processors 5500 series 
based SR1600UR server systems with 24 cores. Operating systems used are windows server 
2003 and 2008.  We tested our approach for up to 24 cores with different matrices size 
varying from 100 x 100 to 10000 x 10000 elements. 

 

7. PERFORMANCE EVOLUTION 
The following tables 2 to 5 show the execution time in seconds for each of two approaches, 
OpenMP and SPC

3
 PM Concurrent with different sizes of matrices for 4, 8, 12 and 24 parallel 

/ concurrent threads respectively.  
 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       215 

Matrix Size 
Number of Parallel 

Threads 

Execution Time (Sec) 

OpenMP (Parallel) SPC
3
 PM, Concurrent 

100 X 100 

4 

1 1 

1000 X 1000 3 3 

2000 X 2000 36 23 

3000 X 3000 162 85 

4000 X 4000 404 202 

5000 X 5000 738 396 

6000 X 6000 1244 682 

7000 X 7000 2078 1086 

8000 X 8000 3093 1619 

9000 X 9000 4558 2303 

10000 X 10000 5425 3161 

 
TABLE 2: Execution Time (Sec) for parallel matrix multiplication using OpenMP and SPC

3
 PM 

Concurrent for 4 parallel threads 

 

Matrix Size 
Number of Parallel 

Threads 

Execution Time (Sec) 

OpenMP (Parallel) SPC
3
 PM, Concurrent 

100 X 100 

8 

1 1 

1000 X 1000 2 1 

2000 X 2000 25 12 

3000 X 3000 83 44 

4000 X 4000 212 104 

5000 X 5000 433 204 

6000 X 6000 703 351 

7000 X 7000 1099 559 

8000 X 8000 1742 833 

9000 X 9000 2503 1186 

10000 X 10000 3276 1626 

 
TABLE 3: Execution Time (Sec) for parallel matrix multiplication using OpenMP and SPC

3
 PM 

Concurrent for 8 parallel threads 
 

Matrix Size 
Number of Parallel 

Threads 

Execution Time (Sec) 

OpenMP (Parallel) SPC
3
 PM, Concurrent 

100 X 100 

12 

1 1 

1000 X 1000 1 1 

2000 X 2000 18 8 

3000 X 3000 65 30 

4000 X 4000 164 72 

5000 X 5000 330 141 

6000 X 6000 573 242 

7000 X 7000 842 384 

8000 X 8000 1291 575 

9000 X 9000 1799 816 

10000 X 10000 2664 1126 

 
TABLE 4: Execution Time (Sec) for parallel matrix multiplication using OpenMP and SPC3 PM 

Concurrent for 12 parallel threads 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       216 

 
 

Matrix Size 
Number of Parallel 

Threads 

Execution Time (Sec) 

OpenMP (Parallel) SPC
3
 PM, Concurrent 

100 X 100 

24 

1 1 

1000 X 1000 1 1 

2000 X 2000 10 7 

3000 X 3000 36 26 

4000 X 4000 86 58 

5000 X 5000 171 113 

6000 X 6000 303 197 

7000 X 7000 476 314 

8000 X 8000 710 467 

9000 X 9000 1011 661 

10000 X 10000 1431 905 

 
TABLE 5: Execution Time (Sec) for parallel matrix multiplication using OpenMP and SPC

3
 PM 

Concurrent for 24 parallel threads 
 

 
The figures 2-5 compare the execution time based on table 2-5 for each of the two 
approaches, OpenMP and SPC

3
 PM Concurrent with different sizes of matrices for 4, 8, 12 

and 24 parallel / concurrent threads respectively.  
 

 
 

 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       217 

 
 

 
FIGURES 2-5:  comparisons of the execution time for each of the two approaches, OpenMP and SPC

3
 

PM Concurrent 

 
Based on table 1, the following table 6 shows the speedup obtained for the SPC

3
 PM 

concurrent function for different matrices size and number of concurrent threads. Figure 6 
shows the comparison of speedup based on table 2 for SPC

3
 PM concurrent function with 

4,8,12 and 24 concurrent threads.  
 

Matrix Size 
Time (Sec) 

Serial  
C++ 

Speedup 

SPC
3
 

Concurrent   
N=4 

SPC
3
 

Concurrent  
N=8 

SPC
3
 

Concurrent 
N=12 

SPC
3
 

Concurrent 
N=24 

100 X 100 1 1.00 1.00 1.00 1.00 

1000 X 1000 13 4.33 13.00 13.00 13.00 

2000 X 2000 154 6.70 12.83 19.25 22.00 

3000 X 3000 551 6.48 12.52 18.37 21.19 

4000 X 4000 1374 6.80 13.21 19.08 23.69 

5000 X 5000 2707 6.84 13.27 19.20 23.96 

6000 X 6000 4642 6.81 13.23 19.18 23.56 

7000 X 7000 7285 6.71 13.03 18.97 23.20 

8000 X 8000 10925 6.75 13.12 19.00 23.39 

9000 X 9000 15606 6.78 13.16 19.13 23.61 

10000 X 10000 21497 6.80 13.22 19.09 23.75 

 
TABLE 6:  Speedup obtained for the SPC

3
 PM concurrent function with different number of concurrent 

threads and matrices size 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       218 

 

 
 

FIGURE 6: Comparison of speedup based on table 6 for SPC
3
 PM concurrent function with 4,8,12 and 

24 concurrent threads. 

 
From the tables 2 to 5 and figures 2 to 5 it can clearly seen that concurrent function of SPC

3 

PM takes much lesser execution time than that of the OpenMP. Another observation can be 
made that this performance gain increases as the either number of cores increases or the 
problem size increases.  From Table 6 and figure 6 it can be clearly observed that the 
speedup obtained using SPC

3
 PM are uniform and it is not affected by the problem size. 

These results proof the enhanced and scalable implementation of a concurrent matrix 
multiplication using SPC

3 
PM. 

 
The proposed concurrent matrix multiplication using SPC

3 
PM provides an efficient, simple 

and scalable parallel matrix multiplication implementation for multi-core processors. The other 
parallel implementations of matrix multiplication proposed for SMPs are usually based on 
functional parallelism. The functional parallelism exploited alone with in a program cannot 
make most of multi-core processors. For maximum utilization of multi-core processors, 
program or programs in execution should be able to execute concurrently on available cores. 
The Concurrent function of SPC

3 
PM provides the facility of concurrent execution of program 

or program on the available cores to maximize the utilization of multi-core processors. 
Besides, the existing parallel matrix multiplication algorithms for SMPs are very specific and 
difficult for common programmer to understand as they require detailed related subject 
knowledge whereas the proposed concurrent implementation of parallel matrix multiplication 
using SPC

3 
PM is based on a simple and fundamental algorithm of matrix multiplication and 

does not requires any detailed related subject knowledge.  In comparison to the attempts 
which have been made to solve matrix multiplication using data parallel or concurrent 
approaches on cell or GPUs, the proposed approach is more generic, architectural 
independent and found suitable for general purpose multi-core processors.    
 

8. CONCLUSION AND FUTURE WORK 
The results from this study show that the SPC

3
 PM provides a simpler, effective and scalable 

way to perform matrix multiplication on multi-core processors. With the concurrent function of 
SPC

3 
PM, the programmer can execute a simple and standard matrix multiplication algorithm 

concurrently on multi-core processors in much less time than that of standard parallel 
OpenMP. The proposed approach also shows more scalability, better and uniform speedup 
and better utilization of available cores than that of OpenMP. This SPC

3
 PM will be further 

worked out for the introduction of some more parallel and concurrent functions and 
synchronizing tools.   
 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       219 

9. REFERENCES 
[1]    N. Vachharajani, Y. Zhang and T. Jablin, "Revisiting the sequential programming model 

for the multicore era", IEEE MICRO, Jan - Feb 2008. 
 
[2]   M. D. McCool, "Scalable Programming Models for Massively Multicore Processors", 

Proceedings of the IEEE, vol. 96(5), 2008. 
 
[3]   G. Goumas, "Performance evaluation of the sparse matrix-vector multiplication on 

modern architectures", Journal of Supercomputing, pp. 1-42, Nov. 2008.  
 
[4]     R. Vuduc, H. Moon, "Fast sparse matrix-vector multiplication by exploiting variable block 

structure", Lecture notes in computer science, vol. 3726, pp. 807-816, 2005. 
 
[5]    H. T. Kung, C. E. Leiserson, “Algorithms for VLSI processor arrays”; in “Introduction to 

VLSI Systems”, Addison-Wesley, 1979.  
 
[6]   G. C. Fox, S. W. Otto and A. J. G. Hey, “Matrix algorithms on a hypercube I: Matrix 

multiplication”, Parallel Computing, vol. 4(1), pp.17-31, 1987. 
 
[7]  R. A. van de Geijn, J. Watts,” SUMMA_ Scalable Universal Matrix Multiplication 

Algorithm”, TECHREPORT, 1997. 
 
[8]    A. Ziad, M. Alqadi and M. M. El Emary, “Performance Analysis and Evaluation of Parallel 

Matrix Multiplication Algorithms”, World Applied Sciences Journal, vol. 5 (2), pp. 211-
214, 2008. 

 
[9]    Z. Alqadi and A. Abu-Jazzar, ”Analysis of program methods used for optimizing matrix 

Multiplication”, Journal of Engineering, vol. 15(1), pp. 73-78, 2005. 
 
[10]   J. Choi, “Fast Scalable Universal Matrix Multiplication Algorithm on Distributed-Memory 

Concurrent Computers” in Proceeding of 11th International Symposium on Parallel 
Processing IPPS '97 IEEE, 1997. 

 
[11] P. Alonso, R. Reddy, A. Lastovetsky, “Experimental Study of Six Different 

Implementations of Parallel Matrix Multiplication on Heterogeneous Computational 
Clusters of Multi-core Processors” in Proceedings of Parallel, Distributed and Network-
Based Processing (PDP), Pisa, Feb. 2010.  

 
[12]  R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, P. Palkar, “A three-dimensional 

approach to parallel matrix multiplication“, IBM Journal of Research and Development, 
vol. 39(5). pp. 575, 1995. 

 
[13]  A. Buluc, J. R. Gilbert, “Challenges and Advances in Parallel Sparse Matrix-Matrix 

Multiplication”, in proceedings of 37th International Conference on Parallel Processing, 
ICPP '08, Portland, Sep 2008. 

 
[14]   L . Buatois,  Caumon, G. Lévy, “Concurrent number cruncher: An efficient sparse linear 

solver on the GPU”, in Proceedings of the High-Performance Computation Conference 
(HPCC), Springer LNCS, 2007. 

 
[15]    S. Sengupta, M. Harris, Y. Zhang, J.D.  Owens, “Scan primitives for GPU computing”. 

In Proceedings of Graphics Hardware”, Aug.  2007. 
 
[16]   J. A. Stratton, S. S. Stone, Hwu, “M-CUDA: An efficient implementation of CUDA 

kernels on multicores”, IMPACT Technical Report 08-01, University of Illinois at 
Urbana-Champaign, 2008. 

 
[17]  K. Fatahalian, J. Sugerman, P. Hanrahan, “Understanding the efficiency of GPU 

algorithms for matrix-matrix multiplication” in Proceeding of the conference on Graphics 
hardware  ACM SIGGRAPH/EUROGRAPHICS HWWS '04, 2004. 



Muhammad Ali Ismail, S.H. Mirza & Talat Altaf                     

International Journal of Computer Science and Security (IJCSS), Volume (5) : Issue (2) : 2011       220 

[18]  J. Bolz, I. Farmer, E. Grinspun, P. Schröoder, “Sparse matrix solvers on the GPU: 
conjugate gradients and multigrid”, ACM Transactions on Graphics (TOG), vol. 22(3), 
2003. 

 

[19]  S. Ohshima, K. Kise, T. Katagiri and T. Yuba, “Parallel Processing of Matrix 
Multiplication in a CPU and GPU Heterogeneous Environment”, High Performance 
Computing for Computational Science – VECPAR, 2006.  


