
Razi Hosseinkhani & H. Haj Seyyed Javadi

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (1) : 2012 19

Using Cipher Key to Generate Dynamic S-Box in AES Cipher
System

Razi Hosseinkhani r.hosseinkhani@nioc.ir
Computer Engineering Department Science and Research Branch
Islamic Azad University
Tehran, Iran

H. Haj Seyyed Javadi h.s.javadi@shahed.ac.ir
Department of Mathematics and Computer Science
Shahed University
Tehran, Iran

Abstract

The Advanced Encryption Standard (AES) is using in a large scale of applications that need to
protect their data and information. The S-Box component that used in AES is fixed, and not
changeable. If we can generate this S-Box dynamically, we increase the cryptographic strength of
AES cipher system. In this paper we intend to introduce new algorithm that generate S-Box
dynamically from cipher key. We describe how S-Box can be generated dynamically from cipher
key and finally analyze the results and experiments.

Keywords: Advanced Encryption Standard, AES, Dynamic S-Box Generation, S-Box

1. INTRODUCTION

Encryption has an important role in data protection. The importance of encryption realized with
increasing communication. Encryption makes sense when data packets using open channels,
which they can be reached by other devices or people, to transfer their contents.

Encryption is knowledge of changing data with cipher key by using cipher algorithms, so that
someone who knows the cipher key and cipher algorithm can export the plain text from cipher
text. The meaning of Encryption is not only hiding information, but also it means sending
information with another form, so that ensure security of data.

An Encryption system contains set of transformations that convert plain text into cipher text. In the
block cipher system, plain text converts into blocks that cipher algorithm applies on them to
create cipher text.

The block cipher systems divided into two general principles: Diffusion and Confusion. In
Diffusion principle, each bit of plain text converts into many bits. However, in Confusion principle,
number of bits doesn't change and only transformations apply to plain text, hence in Confusion
principle, size of plain text and cipher text is equal. Usually in both principles, using round
repetition to create cipher text. Repeating a single round contributes to cipher’s simplicity [1].

Cipher algorithms have the two general categories: Private Key algorithms and public key
algorithms. Private Key algorithms using single key to encrypt plain text and decrypt cipher text in
sender and receiver side. Private Key algorithm samples are: DES, 3DES and Advanced
Encryption Standard (AES). Public Key algorithms, such as the Rivest-Shamir-Adleman (RSA),
using two different key for encrypt plain text and decrypt cipher text in sender and receiver sides.
Block cipher systems depend on the S-Boxes, which are fixed and no relation with a cipher key.
So only changeable parameter is cipher key. Since the only nonlinear component of AES is S-
Boxes, they are an important source of cryptographic strength. So we intend use cipher key to

Razi Hosseinkhani & H. Haj Seyyed Javadi

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (1) : 2012 20

generate dynamic S-Box that is changed with every changing of cipher key. That cause
increasing the cryptographic strength of AES algorithm. Other systems using key-dependent S-
Boxes have been proposed in the past, the most well-known is Blowfish and Khufu [2], [3]. Each
of these two systems uses the cryptosystem itself to generate the S-Boxes.

In section 2, we briefly introduce the AES algorithm. In section 3, we study about the S-Box that
used in AES. In section 4, we show that how S-Box will be generated from key and in the final
section we analyze experiments and investigate about results.

2. ADVANCED ENCRYPTION STANDARD (AES)
This standard specifies the Rijndael algorithm, asymmetric clock cipher can process data blocks
of 128 bits, using cipher key with lengths of 128, 192, and 256 bits. Rijndael was designed to
handle additional block sizes and key length, however they are not adopted in this standard [4].

2.1 Definitions
- Cipher: Series of transformations that converts plaintext to cipher text using the Cipher Key.
- Cipher Key: Secret, cryptographic key that is used by the Key Expansion routine to generate

a set o f Round Keys; can be pictured as a rectangular array of bytes, having four rows and
Nk columns.

- Ciphertext: Data output from the Cipher or input to the Inverse cipher.
- Plaintext: Data input to the Cipher or output from the Inverse Cipher.
- S-Box: Non-linear substitution table used in several byte substitution transformations and in

the Key Expansion routine to perform a one-for-one substitution of a byte value.

2.2 Algorithm Parameters, Symbols, and Functions
The following algorithm parameters, symbols, and functions are used throughout this standard:
- AddRoundKey(): Transformation in the Cipher and Inverse Cipher in which a Round Key is

added to the State using an XOR operation. The length of a Round Key equals the size of the
State.

- MixCloumns(): Transformation in the Cipher that takes all of the columns of the State and
mixes their data (independently of one other) to produce new columns.

- Nb: Number of columns (32-bit words) comprising the State.
- Nk: Number of 32-bit words comprising the Cipher Key.
- Nr: Number of rounds, which is a function of Nk and Nb (which is fixed).
- RotWord(): Function used in a Key Expansion routine that takes a four-byte word and

performs a cyclic permutation.
- ShiftRows (): Function is the Cipher that processes the state by cyclically shifting the last

three rows of the State by different offsets.
- SubBytes(): Transformation in the Cipher that processes the State using a non-linear byte

substitution table (S-Box) that operates on each of State bytes independently.
- SubWord(): Function used in the Key Expansion routine that takes a four-byte input word

and applies an S-Box to each of the four bytes to produce an output word.

2.3 Cipher Algorithm
From the beginning of the Cipher, the input is copied to State array. After an initial Round Key
addition, the State array is transformed by implementing a round function 10, 12, or 14
times(depending of key length), with the final round differing slightly from the first Nr-1 rounds.
The final State is then copied to the output. The Cipher is described in the pseudo code in
algorithm 1.

public word[] Cipher(byte[] plainText, byte[] cipherKey)
{

state = new word[4];
sBox = new newSbox(cipherKey);
ks = new KeySchedule(cipherKey);

Razi Hosseinkhani & H. Haj Seyyed Javadi

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (1) : 2012 21

for (int i = 0; i < 4; i++)
{

for (int j = 0; j < 4; j++)
{

if (state[j] == null)
 state[j] = new word();

 state[j].w[i] = plainText[i * 4 + j];
 }
 }

AddRoundKey(0);
for (int i = 1; i < Nr; i++)
{

SubBytes();
ShiftRows();
MixColumn();
AddRoundKey(i);

}
SubBytes();
ShiftRows();
AddRoundKey(Nr);
return state;

}

ALGORITHM 1: Pseudo Code for Cipher

3. THE SUBSTITUTION BOX (S-BOX)
Substitution is a nonlinear transformation which performs confusion of bits. A nonlinear
transformation is essential for every modern encryption algorithm and is proved to be a strong
cryptographic primitive against linear and differencial cryptanalysis. Nonlinear transformations are
implemented as lookup tables (S-Boxes). An S-Box with p input bits and q output bits is denoted
p * q. The DES uses eight 6 * 4 S_boxes. S-Boxes are designed for software implementation on
8-bit processors. The block ciphers with 8 * 8 S-Boxes are SAFER, SHARK, and AES.

For processors with 32-bit or 64-bit words, S-Boxes with more output bits provide high efficiency.
The Snefru, Blowfish, CAST, and SQUARE use 8 * 32 S-Boxes. The S-Boxes can be selected at
random as in Snefru, can be computed using a chaotic map, or have some mathematical
structure over a finite Galois field. Examples of the last approach are SAFER, SHARK, and AES.
S-Boxes that depend on key values are slower but more secure than key independent ones
(Schneier,1996). Use of key independent chaotic S-Boxes are analyzed in which the S-Box is
constructed with a transformation F((X + K)modM),where K is the key [5].

4. DYNAMIC S-BOX GENERATION FROM CIPHER KEY ALGORITHM

4.1 First Step
We need primary S-Box to generate dynamic S-Box , that should has 16 rows and columns. We
use S-Box generation algorithm that introduced in AES, to create primary S-Box as follows[4].
Take the mulltiplicative inverse in the finite feild GF(28); the element {00} is mapped itself.
Apply the following affine transformation (over GF(2)) that represent in following equation.

EQUATION 1: S-Box transformation

Razi Hosseinkhani & H. Haj Seyyed Javadi

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (1) : 2012 22

For ,where is the bit of the byte, and is the of a bytec with the value {63} or

(01100011}. Here and elsewhere, a prime on a variable (e.g.,) indicate that the variable is to
be uodated with the value on the right. In matrix form, the affine transformation element of the S-
Box can be expressed as:

FIGURE 1: Step 2 in S-Box generation in AES

4.2 Second Step
In this step, rows swapped with columns of primary S-Box in
GenerateDynamicSbox(cipherKey) function. This function guarantees new S-Box remain one-
for-one. This routin get cipher key as input and generate dynamic S-Box from cipher key. Note
that in this paper if cipher key has 192 or 256 bits size, we use only first 128 bits of cipher key.

4.2.1 GenerateDynamicSbox Algorithm
1: void GenerateDynamicSbox(byte[16] key)
2: {
3: byte rowIndex, columnIndex;
4: byte shiftCount = GetShiftCount(key);

5: byte[,] sBox = GeneratePrimarySbox();

6: for(int i = 0; i < 16;i++)
7: {
8: GetProperIndex(key[i], out rowIndex, out columnIndex);
9: ShiftRow(rowIndex, shiftCount, sBox);
10: ShiftColumn(columnIndex, shiftCount, sBox);
11: Swap(rowIndex, columnIndex, sBox);
12: }
13: }

ALGORITHM 2: The GenerateDynamicSbox function generate dynamic S-Box form cipher key.

In line 4, GetShiftCount(cipherKey) get cipherKey as input and return number of shift that
should be applied to rows and columns before replacing with each other.
In line 5, GeneratePrimarySbox () generate primary S-Box according 4.1.
In line 6, start loop for 16 times (foreach byte of cipher key, only first 16 byte of cipher key is
used).

In line 8, GetProperIndex(cipherKey[i], out rowIndex, out columnIndex) get byte of cipher key
and return indexes of row and column that should be replaced with each other.

In line 9, ShiftRow(rowIndex, shiftCount, sBox) get row index of S-Box and shift each element
of given row cyclically. It means if rowIndex = 0 and shiftCount = 1, first element of S-Box,

Razi Hosseinkhani & H. Haj Seyyed Javadi

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (1) : 2012 23

sBox[0,1] replace with sBox[0,0] and sBox[0,2] replace with sBox[0,1] ... and sBox[0,0] replace
with sBox[0,15]. (The first index of sBox determine rowIndex and second one determine
columnIndex).

In line 10, ShiftColumn(columnIndex, shiftCount, sBox) get column index of S-Box and shift
each element of given column cyclically. It means if columnIndex = 0 and shiftCount = 1, first
element of S-Box, sBox[1,0] replace with sBox[0,0] and sBox[2,0] replace with sBox[1,0] ... and
sBox[0,0] replace with sBox[15,0].

In line 11, Swap(rowIndex, columnIndex, sBox) get row and column index and then swapped
them with each other. For example if rowIndex = 5 and columnIndex = 4 the Swap function
swapping element at sBox[0,5] with sBox[4,0] and sBox[1,5] with sBox[4,1] and ... and finaly
sBox[15,5] swap with sBox[4,15].

4.2.2 GetShiftCount Algorithm
This function get cipher key as input and return number of shift count as output. If cipher key
larger than 128 bit, only first 128 should be used.

1: byte GetShiftCount(byte[16] cipherKey)
2: {
3: byte customizingFactor = 0x00;
4: byte shiftCount = 0;

5: for(int i = 0 ; i < 16 ;i++)
6: {
7: shiftCount ^= (byte)((key[i] * (i + 1)) % (0xFF + 1));
8: }

9: return shiftCount ^ customizingFactor;
10:}

ALGORITHM 3: The GetShiftCount function used to get shift count before swapping rows with columns.

In line 4, customizingFactor value is in [0-255] range. This variable can customize the
GetShiftCount return value and then customize GenerateDynamicSbox.
In line 5, start loop for 16 times (foreach byte of cipher key, only first 16 byte of cipher key is
used).

In line 6, sign ^ means XOR operation and sign % means modulo in C#. This equation
guarantees that changing only one bit of Cipher key cause changing the value of shiftCount.
In line 9, shiftCount XOR with customizingFactor that cause generate 256 different
customizing states for shiftCount value.

4.2.3 GetProperIndex Algorithm
This function gets byte of cipher key and then return rowIndex and columnIndex as output. This
function using Shuffle exchange algorithm that used in designing parallel algorithms [6].

1:void GetProperIndex (byte key, out byte rowIndex, out byte columnIndex)
2:{
3: int[] rowUsedArray, columnUsedArray;

4: rowIndex = key & 0x0F;
5: columnIndex = key >> 4;

6: rowIndex = Shuffle (rowUsedArray, rowIndex);
7: columnIndex = Shuffle (columnUsedArray, columnIndex);

Razi Hosseinkhani & H. Haj Seyyed Javadi

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (1) : 2012 24

8: rowUsedArray.Add(rowIndex);
9: columnUsedArray.Add(columnIndex);

10:}

ALGORITHM 4: The GetProperIndex function pseudo code

In line 3, rowUsedArray and columnUsedArray variables are using for saving index that used in
previous steps.
In line 4, sign & means AND operation in C#.
In line 5, sign >> means shift right n-times in C#.
In line 6, Shuffle function get rowIndex number and return next available rowIndex number if
given rowIndex is in rowUsedArray.
In line 7, Shuffle function get columnIndex number and return next available columnIndex
number if given columnIndex is in columnUsedArray.
In line 8, current rowIndex add to rowUsedArray array.
In line 9, current columnIndex add to columnUsedArray array.
This causes that every row and column only one time returns with this function thus every row
and column is used for one time in GenerateDynamicSbox.

5. EXPERIMENTAL RESULTS
In general, S-Box is substitution table that get number and return another number. This action is
nonlinear. In S-Box, n input bits are represented as one of 2

n
different characters. The set of 2

n

characters are then transposed to one of the others in the set. For example possible output 3 * 3
S-Boxes are shown in figure 2.

FIGURE 2: Possible 3 * 3 S-Boxes.

The character is then converted back to an n-bit output. It can be easily shown that there are (2

n
)!

different substitution or connection patterns possible. Thus if n is large then the possible S-Boxes
that can be generate is large. If the cryptanalyst want to decode AES algorithm he should try to
generate possible S-Box and use them in SubBytes function in AES cipher system. The
cryptanalyst’s task becomes computionally unfeasible as n gets large, say n = 128; then 2

n
 =

10
38

, and (10
38

)! possible S-Box can be generate which is an astronomical number.

(10
38

)! = ∞

EQUATION 2: Possible S-Box can be generate when n = 128

Experiment 1: We experimentally checked the difference measure of S-Box elements that only
different between two bits depend on interval length. For generation random keys we use function
that change only two bits of random byte of cipher key. The difference table illustrated in table 1.

Razi Hosseinkhani & H. Haj Seyyed Javadi

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (1) : 2012 25

TABLE 1: The difference table between S-Box elements by changing 2 bits of cipher key’s random byte.

.

FIGURE 2: Plot of the difference of the S-Box elements with previous key

Experiment 2: The purpose is to verify GenerateDynamicSbox algorithm. Consider the 128 bit
length secret key in the hexadecimal form. The key and S-Box2 is represent in table 2.

Razi Hosseinkhani & H. Haj Seyyed Javadi

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (1) : 2012 26

key_hex1={5e,d3,f1,b4,7c,18,51,9a,ae,81,42,57,42,78,dc,8f}

TABLE 2: The dynamic S-Box generated with key_hex1. (S-Box1)

We change only two bit of key_hex1, for example, . The key and S-Box2 is represent in
Table 3.
We find 225 different between S-Box1 and S-Box2 by changing only 2 bit of key, thus
approximately %87 of second S-Box is changed. The difference of S-Box1 and S-Box2 elements
is illustrated in figure 3.

key_hex2={5d,d3,f1,b4,7c,18,51,9a,ae,81,42,57,42,78,dc,8f}

 TABLE 3: The dynamic S-Box generated with key_hex2.(S-Box2)

Razi Hosseinkhani & H. Haj Seyyed Javadi

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (1) : 2012 27

FIGURE 3: Plot of the difference of the S-Box elements (S-Box1 and S-Box2)

Experiment 3: We comparison GenerateDynamicSBox function with the older algorithm that was
named KeyDependantSBox [5]. The KeyDependantSBox generates dynamic S-Box using
random parameters by using iterative loop. The main property of S-Box is one to one attribute.
KeyDependantSBox algorithm check every new generated S-Box element with the other
elements that is generated sooner to avoid generate duplicate elements and satisfy one to one
property of S-Box. The number of comparison in KeyDependantSBox presents in figure 4. In our
GenerateDynamicSBox algorithm no need to check duplicate elements because original S-Box
that is used in AES is one to one and we only substitute and move the original S-Box elements.
Thus generated S-Box remains one to one.

FIGURE 4: Number of comparison that needs to generate S-Box in KeyDependantSBox

Razi Hosseinkhani & H. Haj Seyyed Javadi

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (1) : 2012 28

6. CONCLUSIONS
We introduced a new algorithm to generate dynamic S-Box from cipher key. The quality of this
algorithm tested by changing only two bits of cipher key to generate new S-Boxes. For that
purpose we are testing difference of S-Box element by many intervals. This algorithm will lead to
generate more secure block ciphers, solve the problem of the fixed structure S-Boxes and will
increase the security level of the AES block cipher system. The main advantage of this algorithm
is that many S-Boxes can be generated by changing Cipher key.

7. REFERENCES
[1] Masuda, N. Jakimovski, G. Jakimovski, K. Aihara and L. Kocarev . “Chaotic block ciphers:

from theory to practical algorithms” IEEE Trans. on Circuits and Systems – I: Volume: 53
Issue: 6 – 2006

[2] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C, New York:

Wiley. 1996

[3] Merkle, R. Fast software encryption functions. In Advances in Cryptology: Proceedings of

CRYPTO’90, Berlin: Springer-Verlag, 1991

[4] Federal Information Processing Standards, “Advanced Encryption Standard (AES)”

Publication 197, November 26 - 2001

[5] Kazys KAZLAUSKAS, Janunius KAZLAUSKAS,” Key-Dependent S-Box Generation in AES

Block Cipher System” , Inoformatica Volume: 20 - 2009

[6] Michael J.Quinn, Designing efficient algorithms for parallel computers, University of New

Hamoshire, 1987

