
P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 185

Optimizing Linux Kernel for Real-time Performance
On Multi-Core Architecture

P. Bala Subramanyam Raju bsr3011@gmail.com
Research Scholar,
S.V University,
Tirupathi Chittoor (Dt) AP, India

P. Govindarajulu PGovindarajulu@yahoo.com
Professor, Dept. of Computer Science,
S.V University,
Tirupathi Chittoor (Dt) AP, India

Abstract

Linux kernel developed and distributed in open source doesn’t support for Hard Real-time
scheduling. The open source Linux kernels are designed in time sharing manner to obtain
maximum throughput. With this, Linux Operating System is considered to be an OS, which is not
supporting Real-Time Applications, natively it has some features, already included in the
mainstream to provide real-time support. There are certain modified Linux kernels like RTLinux,
Symbian OS, Nucleus OS, Lynx OS and Fusion RTOS [1] which are explicitly designed for hard
Real-Time support [2]. These specially designed Real-Time Linux kernels is mostly targeted for
special hardware’s like embedded systems, robots, safety critical etc. ,very few kernels for
general purpose. Most of these kernels are be available as proprietary or closed, excluding a very
few and not suitable for all hardware architecture’s.

Now a days Real-Time Performance has become universal requirement for computer games,
multimedia systems, household monitoring and controlling appliances. So the general purpose
Linux kernel needs to be optimized, to achieve Real-time performance to meet the user
expectations. This paper tries to extract real-time performance from general kernel and suggest
some techniques to optimize Linux kernel to meet real-time deadlines.

Keywords: Kernel, Embedded Systems, Deadline, Real-time, Scheduler, Hyper Threading.

1. INTRODUCTION
Multi-core processor, delivering high computing power with reduction in hardware cost. This
reduction in the hardware cost helps large number of people to purchase high performance
computers. A normal user can run special types of applications like robot controller, applications
collecting data from physical sensors, which are real time in nature and are not supported by
open source Linux. In order to achieve real-time response, the General Purpose Linux kernel has
modified by adding two real-time scheduling policies as shown in figure 1.1.

P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 186

FIGURE1.1: Showing various Scheduling classes and policies in General Purpose Linux Kernel 4.0.

A real time system can be defined [3][4][5][6] as a "system capable of guaranteeing timing
requirements of the processes under its control".

The following goals should be considered in scheduling a real-time system:

• Meeting the timing constraints of the system
• Obtaining a high degree of System utilization while satisfying the timing constraints
• Reducing the cost of context switches caused by preemption
• Reducing the communication cost in real-time distributed systems

Even after adding new scheduling classes and polices, the kernel needs to be fine-tuned to reach
the goals of real-time system from multicore systems.

The remainder of the paper is organized as follows Section 2 discuss the previous work; section;
Section 3 presents the hardware and software environment details, Section 4 describes an
experimental performance evaluation; Section 5 proposes Optimization technique’s. Section 6
gives implementation and experimental Results; Section 7 concludes the paper with future work.

2. PREVIOUS WORK
This section gives the overview of the research work carried out related to the performance
improvement of Real-Time Systems.

Chenyang Lu, Xiaorui Wang and Xenofon Koutsoukos [7] proposed an approach to extend
Quality of Service (QoS) from single processor to Distributed Real-Time Systems by a model
predictive control approach. Utilization control is formulated as a multi-variable constrained
optimization problem, second a dynamic model is established to formally characterize the
coupling among multiple processor due to end to end tasks and practical constraints. MIMI model
predictive controller is designed to control the utilization of multiple processors simultaneously.
Finally stability analysis is performed to establish statistical guarantees on desired utilization

P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 187

despite the uncertainty introduced by variation in task execution times. Simulation results
demonstrate it can provide robust utilization guarantees when task execution times are
significantly overestimated and change dynamically at run-time.

 David Beal [8] an engineer of Freescale semiconductor, has specified that standard Linux kernel
include enhanced schedulers, virtual memory, shared memory, POSIX Timers, Real-time
Signals, POSIX IO,POSIX threads, Low Latency and many features that make Linux suitable
for challenging real-time products and applications. Nat Hillary [9] of Freescale Semiconductor,
presented methods for designing, measuring, improving the performance of real-time systems.
Finally he concluded that real-time software is not something that can be done in a single step.
Meeting required performance criteria can be obtained by careful consideration between the
system and its environment needs. High fidelity software performance measurements may be
achieved by using a combination of source code instrumentation and hardware.

Suresh Siddha,Venkatesh Pallipadi and Asit Mallick [10] proposed new scheduler optimization
for Linux Kernel 2.6 for Chip Multi Processing (CMP). They discussed about generic OS
Scheduler optimization opportunities that are appropriate in CMP environment. Henrik Austad, of
Norwegian University of Science and Technology has introduced a new pfair algorithm for real-
time tasks in the linux kernel on multi-core system. This scheduler will handle real-time task that
cannon miss a deadline and is planned to be placed on top of the RT preemption patch. Due to
problems faced during integration process, a fully functional scheduler has not been
implemented.

Swati Pandit and Rajashree Shedge [11] has presented no of real-time scheduling algorithms that
are suitable for simple uniprocessor and highly sophisticated multi-core processor. This paper
also discusses the static, dynamic and hybrid priorities of a process. Finally conclusion shows
that Instantaneous utilization factor scheduling algorithm gives better result in uniprocessor
scheduling algorithms and Modified Instantaneous utilization factor scheduling algorithm gives
better context switching, response time and CPU utilization as compared to previous scheduling
algorithms.

Rohan R. Kabugade, S. S Dhotre, S H Patil [12] presents a modified algorithm named MOFRT
(Modify O (1) For Real-Time) and Just-In-Time (JIT) based on the Linux kernel 3.2 to improve the
Queue Management for Real time Tasks. Though, some of these algorithms have not been
implemented since it is very hard to support new scheduling algorithms on nearly every operating
system. However the previous works does not try to explore and fine tune the existing real-time
supporting features included in the Linux Kernel Scheduler.

3. HARDWARE & SOFTWARE DETAILS

TABLE 1.1: Showing the hardware details.

• LINUX KERNEL 4.0-generic [14]

• LINUX MINT OS [15]

• TERMINATOR

Processor Intel® Core™ i7-4770k
[5]

No of Cores 4

No of Threads 8

Base Frequency 3.5 GHz

Turbo Frequency 3.9 GHz

Intel® Smart Cache 8 MB

RAM 8 GB/1600 MHz

P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 188

• GCC COMPILER

• HTOP

• STRACE

4. EXPERIMENTAL PERFORMANCE EVALUATION
The goal of this experiment is to evaluate the performance of real-time scheduler included in the
kernel 4.0. The program is designed to create a load to a multicore processor; and evaluate how
far the existing scheduler supports for real-time programs in heavy load and normal situations,
irrespective of other delays like data transfers, IO read & writes Network issues etc.

The algorithm of “Load.C” is as follows:

Step 1 : Start

Step 2 : repeat the following until true

 step 2.1 : Stime=Read System time

 step 2.2 : print 'Start time is:" stime

 step 2.3 : j=0;

 step 2.3 : Repeat the following steps until j<100

 step 2.3.1 :i=0

 step 2.3.2 :Repeat the following steps until i<1000000

 step 2.3.2.1 : sum =sum +i;

 step 2.3.2.2 : i=i+1

 step 2.3.3 :i=0

 step 2.3.4 :Repeat the following steps until i<1000000

 step 2.3.4.1 : sum =sum +i;

 step 2.3.4.2 : i=i+1

 step 2.3.5 :i=0

 step 2.3.6 :Repeat the following steps until i<1000000

 step 2.3.6.1 : sum =sum +i;

 step 2.3.6.2 : i=i+1

 step 2.3.7 :i=0

 step 2.3.8 :Repeat the following steps until i<1000000

 step 2.3.8.1 : sum =sum +i;

 step 2.3.8.2 : i=i+1

 step 2.3.9 :i=0

 step 2.3.10 :Repeat the following steps until i<1000000

 step 2.3.10.1 : sum =sum +i;

 step 2.3.10.2 : i=i+1

 step 2.3.11 :i=0

 step 2.3.12 :Repeat the following steps until i<1000000

 step 2.3.12.1 : sum =sum +i;

 step 2.3.12.2 : i=i+1

 step 2.3.13 :i=0

 step 2.3.14 :Repeat the following steps until i<1000000

 step 2.3.14.1 : sum =sum +i;

 step 2.3.14.2 : i=i+1

 step 2.3.15 :i=0

 step 2.3.16 :Repeat the following steps until i<1000000

 step 2.3.16.1 : sum =sum +i;

P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 189

 step 2.3.16.2 : i=i+1

 step 2.3.17 :i=0

 step 2.3.18 :Repeat the following steps until i<1000000

 step 2.3.18.1 : sum =sum +i;

 step 2.3.18.2 : i=i+1

 step 2.4 : etime=read system time

 step 2.5 : print 'End time is:"etime

 step 2.6 : 'The Loop used :' etime-stime 'seconds'

step 3 move to step 2

step 4 stop

The designed program has been executed with two different schedulers and priority. One with RT
class, FIFO scheduler and highest priority of 99 using the command “chrt –f 99. /FIFO”. Other has
executed with Fair Scheduler class and normal priority using the command “. /a.out”. The results
are tabulated below:

TABLE 1.2: showing execution results of Load.C.

The maximum time taken by the specified system to complete the loop execution is 2 seconds.
The above results show that Linux Kernel supports real-time performance by default, until no of
threads is equal to no of physical cores in the system without any deadline failure .After the no of
threads increases than physical cores the system performance starts degrading.

Real –Time

Threads
Normal Threads

Total No of Threads
Real-time Thread Failures/Sec

1 0 1 0

1 1 2 0

1 2 3 0

1 3 4 0

1 4 5 2

1 5 6 5

1 6 7 5

1 7 8 5

P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 190

The figure 1.2 shows the execution of “Load.c” program using terminator.

FIGURE 1.2: showing real-time thread and 7 normal thread execution.

5. PROPOSED OPTIMIZATION TECHNIQUE’S AND IMPLEMENTATION
There Linux kernel needs to be fine-tuned to support real-time environment in heavy load
situations ,because the default kernel fully supports multitasking to increase the overall
throughput buy using completely fair scheduling class the optimization techniques are specified
below.

5.1 No Force Preemption
Preemption is one of the bottlenecks to real-time performance, because the kernel will preempt
the thread non-voluntarily irrespective of program requirements and priorities, in order to support
completely fair scheduling class. The default Linux kernel available in General Public License is
built in way that the kernel can preempt the thread non-voluntarily. To improve real-time
performance the Linux kennel needs to rebuild and update boot loader in a way that the kernel
should not force thread to preempt. The procedure is explained below.

1. Download latest kernel from www.kernel.org[16]

2. Install git-core,libncurses5-dev tools required to build Linux kernel

3. Configure the options required using the $ make menuconfig

4. In menu configuration options select processor type and features-> preemption model

Select “No forced preemption (server) “model shown in fig 1.3

5. Then build using make command

6. Install modules using command $sudo make modules-install

7. Install kernel using $sudo make

8. Update system configuration using $ sudo update-initramfs-c-k 4.0

9. Update boot loader $ sudo update-grub

P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 191

FIGURE 1.3: Showing the setting the preemption model during kernel building.

5.2 Stop Non-Voluntary Context Switching
The default Linux kernel will move thread from one core to other, in order to load balance the
execution cores. This context switching takes CPU time to move executing thread from one core
to other, by blocking the execution, which results in the execution delay leads to real-time failure.
This can be avoided by setting the allowed CPU list to one specific core using the command
“taskset“. The figures 1.4 and 1.5 shows the thread allowed CPU’s list before and after setting
CPU affinity. This can be viewed by using a command “cat /proc/pid/Status”,where pid is
processID of a thread that needs to bind to a processor[17][18][19].

FIGURE 1.4 & 1.5: Showing process details before and after setting CPU affinities list and reduced context
switches.

5.3 Hyper Threading (HT)
Intel Hyper-Threading Technology (Intel® HT Technology) is a technology used by some Intel
microprocessors that allows a single microprocessor to act like two separate processors to the
operating system and the application programs that use it. HT Technology utilizes resources

P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 192

more efficiently .As a performance feature, it also increases processor throughput, improving
overall performance on threaded software. Figure 1.6 showing the difference between
Multiprocessor and Hyper threading processor [22][23][24].

FIGURE 1.6: showing technological difference between multiprocessor and HT enabled processor.

This HT Technology becomes a major drawback for real-time performance because, the two
threads compete for execution resource on single execution unit, and this results in sharing the
CPU cycles between the two threads. Sharing real-time thread CPU cycles results in deadline
failure, due to less execution time. To utilize 100 percent CPU cycles for real-time thread, the
other thread on the core needs to be disabled. This can be achieved using the command “echo 0
| sudo tee /sys/devices/system/cpu/cpu4/online”, here core no 4 has disabled. The figure1.7
showing the cpu4 disabled on quad core 8 threaded processor.

FIGURE 1.7: showing the cpu4 disabled on quad core 8 threaded processor.

P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 193

6. EXPERIMENTAL RESULTS AFTER OPTIMIZATION
After fine tuning the operating system and hardware, the program also needs to change
according to the requirements for real-time. The changed algorithm is shown below.

Step 1 : Start

Step 2 : Read current process ID from kernel

 tid= getpid();

Step 3 : Set the current thread to execute on CPU0 using taskset –cp 0 tid

Step 4: Disable core 4 by executing the command as super user

 “echo 0 |sudo tee /sys/devices/system/cpu/cpu4/online

 Super user password

Step 5 : repeat the following until true

 step 5.1 : Stime=Read System time

 step 5.2 : print 'Start time is:" stime

 step 5.3 : j=0;

 step 5.3 : Repeat the following steps until j<100

 step 5.3.1 :i=0

 step 5.3.2 :Repeat the following steps until i<1000000

 step 5.3.2.1 : sum =sum +i;

 step 5.3.2.2 : i=i+1

 step 5.3.3 :i=0

 step 5.3.4 :Repeat the following steps until i<1000000

 step 5.3.4.1 : sum =sum +i;

 step 5.3.4.2 : i=i+1

 step 5.3.5 :i=0

 step 5.3.6 :Repeat the following steps until i<1000000

 step 5.3.6.1 : sum =sum +i;

 step 5.3.6.2 : i=i+1

 step 5.3.7 :i=0

 step 5.3.8 :Repeat the following steps until i<1000000

 step 5.3.8.1 : sum =sum +i;

 step 5.3.8.2 : i=i+1

 step 5.3.9 :i=0

 step 5.3.10 :Repeat the following steps until i<1000000

 step 5.3.10.1 : sum =sum +i;

 step 5.3.10.2 : i=i+1

 step 5.3.11 :i=0

 step 5.3.12 :Repeat the following steps until i<1000000

 step 5.3.12.1 : sum =sum +i;

 step 5.3.12.2 : i=i+1

 step 5.3.13 :i=0

 step 5.3.14 :Repeat the following steps until i<1000000

 step 5.3.14.1 : sum =sum +i;

 step 5.3.14.2 : i=i+1

 step 5.3.15 :i=0

 step 5.3.16 :Repeat the following steps until i<1000000

 step 5.3.16.1 : sum =sum +i;

 step 5.3.16.2 : i=i+1

P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 194

 step 5.3.17 :i=0

 step 5.3.18 :Repeat the following steps until i<1000000

 step 5.3.18.1 : sum =sum +i;

 step 5.3.18.2 : i=i+1

 step 5.4 : etime=read system time

 step 5.5 : print 'End time is:"etime

 step 5.6 : 'The Loop used :' etime-stime 'seconds'

step 6 move to step 2

step 7 stop

The table 1.3 shows the execution results after fine tuning the system for real-time performance.

TABLE 1.3: showing execution results of real-time and normal threads.

7. CONCLUSION AND FUTURE WORK
The results show that after fine tuning the Linux kernel in consideration with hardware, it is
possible to extract real-time performance from generally available open source Linux kernel.

This paper doesn’t on concentrate on implementation of fully non-preemptible kernel. This
experiment results in delay for normal priority process. If the number of real-time process
increases and starts disabling the cores then only real-time process will execute until the
hardware supports and normal process will block execution leads to imbalance execution.

8. REFERENCES
[1] Wikipedia Internet:www.en.wikipedia.org/wiki/List_of_real-time_operating_systems [May 10,
 2015].

[2] Embedded Internet: www.embedded.com/design/operating-systems/4371651/9/Comparing-
 the-real-time-scheduling-policies-of-the-Linux-kernel-and-an- RTOS [May 10, 2015].

[3] Wikipedia Internet: www.en.wikipedia.org/wiki/Real-time_operating_system [May 10, 2015].

[4] Peter wurmsdobler "Real Time Linux Foundation, Inc.”. Internet :
 www.realtimelinuxfoundation.org/ [May 10, 2015].

Real –Time

Threads
Normal Threads

Total No of Threads
Real-time Thread Failures/Sec

1 0 1 0

1 1 2 0

1 2 3 0

1 3 4 0

1 4 5 0

1 5 6 0

1 6 7 0

1 7 8 0

P. Bala Subramanyam Raju & P. Govindarajulu

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (4) : 2015 195

[5] Fernando S. Schlindwein “Real-time DSP” Internet:www.le.ac.uk/eg/fss1/real%20time.htm.
 [May 10, 2015].

[6] Kanaka Juvva “Real-Time Systems”Internet: www.users.ece.cmu.edu/~koopman
 /des_s99/real_time/. [May 10, 2015].

[7] Chenyang Lu, Xiaorui Wang, Xenofon Koutsoukos,” End-to-End Utilization Control in
 Distributed Real-Time Systems”, Distributed Computing Systems, 2004. Proceedings. 24th
 International Conference, 2004.

[8] David Beal,”Linux® As a Real-Time Operating System” , Freescale Semiconductor,
 Document Number: SWVERIFICATIONWP Rev. 0 11/2005.

[9] Nat Hillary,” Measuring Performance for Real-Time Systems” , Freescale Semiconductor,
 Document Number: GRNTEEPFRMNCWP Rev. 0 11/2005.

[10] Suresh Siddha, Venkatesh Pallipadi,” Chip Multi Processing aware Linux Kernel Scheduler”,
 Linux Symposium, Volume 2, 2006.

[11] Swati Pandit and Rajashree Shedge,” Survey of Real Time Scheduling Algorithms ” IOSR
 Journal of Computer Engineering e-ISSN: 2278-0661, p- ISSN: 2278-8727 Volume 13,
 Issue 2 (Jul. - Aug. 2013), pp 44-51,

[12] Rohan R. Kabugade, S. S Dhotre, S H Patil,” A Study of Modified O(1) Algorithm for Real
 Time Task in Operating System”, Sinhgad Institute of Management and Computer
 Application NCI2TM: 2014 ISBN: 978-81-927230-0-6.

 [13] www.ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-3_90-
 GHz/[May.10, 2015].

[14] Internet: www.kernel.org,[May.10, 2015].

[15] Linux Mint Internet:www.linuxmint.com//[May.10, 2015].

[16] Lakshmanan Ganapathy,” How to Compile Linux Kernel from Source to Build Custom
 Kernel” Internet: www.thegeekstuff.com/2013/06/compile-linux-kernel/ June 13, 2013 [May.
 10, 2015].

[17] Robert Love,”CPU Affinity” Internet: www.linuxjournal.com/article/6799 [May.10, 2015].

[18] Internet: www.gnu.org/software/libc/manual/html_node/CPU-Affinity.html[May.10, 2015].

[19] Internet: www.linux.die.net/man/1/taskset[May.10, 2015].

[20] Alexander Sandler, April 15, 2008 “SMP affinity and proper interrupt handling in Linux”
 Internet: www.alexonlinux.com/smp-affinity-and-proper-interrupt-handling-in-linux[May.10,
 2015].

[21] Sandeep Krishnan on January 27, 2014,” Introduction to Linux Interrupts and CPU SMP
 Affinity”, Internet: www.thegeekstuff.com/2014/01/linux interrupts/ [May.10, 2015].

 [22] www.intel.in/content/www/in/en/architecture-and-technology/hyper-threading/hyper-
 threading-technology.html [May.10, 2015].

[23] http://whatis.techtarget.com/definition/Hyper-Threading[May.10, 2015]

[24] Internet : www.doc.opensuse.org/products/draft/SLES/SLES-
 tuning_sd_draft/cha.tuning.taskscheduler.html[May.10, 2015].

