
Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 245

Hybrid Model Based Testing Tool Architecture for Exascale
Computing System

Muhammad Usman Ashraf m.usmanashraf@yahoo.com
Faculty of Information and Computer Technology
Department of Computer Science
King Abdulaziz University

Jeddah, 21577, Saudi Arabia

Fathy Elbouraey Eassa fathy55@yahoo.com
Faculty of Information and Computer Technology
Department of Computer Science
King Abdulaziz University

Jeddah, 21577, Saudi Arabia

Abstract

Exascale computing refers to a computing system which is capable to at least one exaflop in next
couple of years. Many new programming models, architectures and algorithms have been
introduced to attain the objective for exascale computing system. The primary objective is to
enhance the system performance. In modern/super computers, GPU is being used to attain the
high computing performance. However, it’s the objective of proposed technologies and
programming models is almost same to make the GPU more powerful. But these technologies
are still facing the number of challenges including parallelism, scale and complexity and also
many more that must be fixed to achieve make computing system more powerful and efficient. In
this paper, we have present a testing tool architecture for a parallel programming approach using
two programming models as CUDA and OpenMP. Both CUDA and OpenMP could be used to
program shared memory and GPU cores. The object of this architecture is to identify the static
errors in the program that occurred during writing the code and cause absence of parallelism. Our
architecture enforces the developers to write the feasible code through we can avoid from the
essential errors in the program and run successfully.

Keywords: Exascale Computing, GPU, CUDA, OpenMP, Parallelism, High Performance
Computing (HPC).

1. INTRODUCTION
High Performance Computing (HPC) technology architectures and algorithms are anticipated to
transfer dramatically in the future. Accordingly, increasing on-chip parallelism is becoming the
objective of computer companies to achieve high performance [1]. In modern computers, Multi-
core technology is proving very good offer in order to get high performance and power efficiency.
With perspective of programming model, in order to take advantage of multi core technologies
architecture, OpenMP was introduced [5]. Another major challenge for exascale computing is to
parallelism in computing.

1.1. CUDA Programming
CUDA (Compute Unified Device Architecture) is a parallel computing architecture developed by
NVIDIA [2]. For this purpose, usage of GPU is introduced that consist of multi core resided in it.
GPU is similar to CPU in a computer system but is very powerful. Many programming models are
available to write program for GPU but CUDA by NVIDIA is the best option in order to achieve
parallelism through GPU processing [8]. CUDA provides variety of key abstractions shared
memory, parallelism in computing for multi cores and barrier synchronization as well. Moreover,

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 246

CUDA architecture provides strong computational interfaces including OpenGL and Direct
Compute [9]. CUDA programming model overcome the challenges that are face in parallelism.

1.2. OpenMP Programming
Open multi-processing OpenMP is a programming model that have capability to handle
multithreading by computing in parallel module. The basic idea behind this programming model is
data processing parallelly. OpenMP consists of number of directives and libraries that are called
runtime [2]. It also processes the looping region as parallelized by inserting compiler directives in
starting region of OpenMP module that makes the program more efficient and improves overall
application performance [3]. An example of parallelism in loop region using OpenMP is show as
follows:

pragma omp parallel shared(a1,a2,a3,chunk) private(i)

{
#pragma omp for schedule (dynamic, chunk) nowait
for (i=0; i < N; i++) {
a3[i] = a1[i] + a2[i];
}
}

1.3. Hybrid Programming
In this paper, we have used a hybrid programming model by combining CUDA and OpenMP as
well. The purpose to use both models at a time is to write program for of GPU and shared
memory [8]. However we can write program for GPU in order to make parallel processing in both
GPU and CPU as well. As CUDA will handle GPU parallelism and OpenMP to run the CPU
process in parallel way [6].

1.4. GPU Architecture
In modern computers, GPU acts as a second computer. Similar to CPU It also has its own
memory and processors. The CPU get input from user and classified either it is related to GPU or
CPU itself for processing. In case of GPU processing, the information is forwarded to GPU for
processing. GPU process the task and send the processed information back to CPU for further
utilizing [12]. GPU consist of two main components.

• Global memory

• Streaming Multiprocessors (SMs)

Global memory is accessible by both GPU and CPU inside the system. Second component
streaming multiprocessors is the core part of GPU that performs the actual computation for GPU
[12]. SMs consist of multiple cores and shared memory where each core has its own control unit
(CU), registers, execution pipeline and cashes. The basic architecture of a GPU is as follows:

FIGURE 1: GPU Basic Architecture.

Rest of the paper is organized in such a way that, Section II describes the type of errors that are
the hurdle to accomplish the GPU goal using CUDA and OpenMP. Section III deals with the

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 247

errors discussed in section II and also solution to avoid such sort of hurdles in program. Section
III presents the testing tool architecture that prevents from the type of errors that are discussed in
section II. Further, a conclusion is presented in section IV.

2. TYPE OF ERRORS IN HYBRID MODEL
In this section, we have presented different type of errors that occurred during writing a program
for GPU cores and shared memory using hybrid programming model. Let’s discuss these errors
one by one explaining how to produce in program.

2.1. Data Race
It is basically a computational hazard that comes up when the results of the program depend on

the execution for another program. Such kind of error arises normally when two or more threads
are running in parallel [6][7]. A simple scenario how data race error occurs in program is
described in below example.

Let’s x that points to a shared memory in a program. The requirement is to get the increment in x
value. In sequential processing, this normally happen in three steps as:

1) Read the value of x into a register
2) Add 1 to the value read in step 1.
3) Write the results back to x and final results.

But what about parallel processing of same scenario, race condition produced or not? Let’s
discuss the same problem in parallel processing where multiple threads are present and process
parallelly.

Assume that initial value of x is 3

1) Thread A reads the value 3 from x.
2) Thread B reads the value 3 from x.
3) Thread A adds 1 to its value 3, to make 4.
4) Thread A writes its value 4 back to x.
5) Thread B adds 1 to its value 3, to make 4.
6) Thread B writes its value 4 back to x.
7) Final value in x is 4 which is incorrect.

Why this happen even this was not to complex statement? Does it due to data race? Answer is
yes but how we can avoid occurring such error in hybrid programming model.

Solution:
In CUDA, we can avoid from occurrence data race problem by adding some additional
statements [11]. Normally Locking / Unlocking and atomic operation are used to handle data race
error in CUDA. These operations process the threads in traditional sequential way.

Lock / Unlock operation

global void test1(Lock lock , int *nblocks)
{
 i f (threadIdx.x == 0)
 {
 lock.lock() ;
 * nblocks = *nblocks + 1 ;
 lock.unlock () ;
 }
}

In above example code, the statement written inside lock and unlock block will be executed
sequentially. In this way, there will be no data race but obviously the performance is affected.

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 248

Atomic Operation in CUDA

#include <stdio.h>
#include<cuda.h >
global void colonel (int *b_f) {

 atomicAdd (b_f , 1) ;
}

int main ()
{
int a = 0 , *a _d ;
colonel <<<1000,1000>>>(b_f) ;
}

In above example code, atomic statement has been used to avoid from data race problem writing
code in CUDA. Atomic is built in method used in CUDA for also other operation like:
multiplication, subtraction, division etc.

Atomic Operation in OpenMP
Atomic operation is also used in OpenMP for same purpose but here atomic keyword is used as
directive in the code. Adding this directive the code written inside the OpenMP block will be
processed sequentially.

#include <omp.h>
int count;
void Tick()
{
 #pragma omp atomic
 count = count+1;
 }

In above code example atomic is the directive that specifically used for running the code
sequentially inside it.

2.2. Use of lock without Unlocking

This is error related to using locking/unlocking statement in the program. As we have discussed
the usage of lock and unlock statement to avoid data race condition in program, however it is also
necessary to make sure that unlock statement is also present there once lock statement is used
in the program [4].

2.3. Use of ordered clause without ordered construct
Another type of error occurred normally in OpenMP part from hybrid programming model which is
the usage of ordered clause with ordered construct. Once an ordered clause is placed within for
work-sharing construct and developer forgot to place a separate ordered clause inside for loop,
an error will be occurred in the program and application will be crashed.

2.4. Use of critical when atomic operation is sufficient

Basically, this is performance related issue that normally considered when we use critical clause
in the program even the problem could be solve by using simply atomic clause rather than critical
[4]. By usage of critical clause in this scenario, the overall system performance will be affected.

2.5. Placing much code inside Critical region

Normally it has been seen that the novice programmer places a lot of code in the critical section
and cause the number of errors. These errors could be cause of further two sub errors as follows:

• Blocking the other threads more than required.

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 249

• Paying the maintenance cost more than expected associated with that specific region
[4].

Example code:
#pragma omp parallel for
for (i = 0 ; i < N; ++i)
{
#pragma omp critical
{
 if (arr [i] > val)

{
 if (arr [i] > max)

max = arr [i]
.
.
.
.
and a lot of more statements…
}

}

So, it is suggested to resort reduce the code written inside the critical clause region.

2.6. Missing for in “#pragma omp parallel for”
It is very common type of error in OpenMP, mostly people use ‘for’ clause to include a loop
statement inside the ‘#pragma’ region but forgot to add ‘for’. This error leads every thread the
whole loop, but not only parts of it [4].

Example code:

#pragma omp parallel for
{

if (arr [0] > val_1)
{

if (arr [1] > val_2)
max = arr [2] ;

}
}

In above code, as ‘for’ clause is being used but no for is used inside the region. It will cause of
error occurrence in the program.

3. PROPOSED ARCHITECTURES AGAINST DETECTED ERRORS
In order to avoid the errors that we have discussed in the last section, we have proposed the
testing architectures for particular errors that must followed by the developer before/during writing
code.

3.1 Data Race
As data race is the common error that occurs normally when we write program for GPU cores and
shared memory as well. Basically, data race is type of error that occurs in a program when the
same statement is required for two or more different process. Each process in a program want to
compute its set of statements as soon as possible. But this could only be possible if all required
statements are in hand and could be executed in parallel. In case of availability of all the
parameters and statements that specific process could be executed in parallel otherwise a race
condition will be occurred. It means that the same data is being used in any other statement or
waiting for some result from other process. So, to avoid this issue in parallel processing, firstly we

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 250

analyze the code and the resolve the issue on behalf of condition. One of the solution is to
compute that specific part of code as sequentially using locking/unlocking statements.

FIGURE 2: Data Race prevention architecture for CUDA.

The above architecture is related to error for race condition (A) in CUDA and also the prevention
of errors that occurs by adding locking (B) statement in the program.

Similarly, for data race problem in OpenMP, once you have analyzed the code to find out that
either there is data race exist or not. After that you should follow the below proposed architecture
that will ensure you to write error free code.

FIGURE 3: Data Race prevention architecture for OpenMP.

3.2 Missing “For” keyword when using “For” Clause
Another architecture is presented to handle the error that occurs due to missing ‘for’ when ‘for’
clause is used in the program. This error is related to OpenMP from hybrid programming model.
Below is the diagram representing that how we can insist a developer to must add ‘for’ when for
clause has been used with ‘#pragma’ statement.

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 251

FIGURE 4: missing ‘for’ when using ‘for’ clause .

In previous section, rests of the errors are performance related, that must also be avoided to
occurrence in the program. To handle these errors, the prevention statements should be followed
before writing the program.

4. TESTING TOOL ARCHITECTURE EVALUATION
This testing tool architecture for hybrid model is proposed basically to improve exascale
computing system. GPU is the basic unit that is being used to enhance the power of a system to
achieve exascale computing. However, In order to achieve this certain level performance, CUDA,
OpenMP do play a major role to program graphical processing unit. This architecture helps us to
detect the possible number of errors from the code written in CUDA and OpenMP and improve
the processing power of code as well. Keeping in view the programming layout in both the
languages, we have proposed the testing architecture to evaluation the number errors in our code
that could be cause to decrease the performance of a system. Using this proposed testing tool
architecture, we can evaluate our code written in hybrid model languages such as CUDA and
OpenMP and make error free by following it.

5. CONCLUSION
This paper is presented to make enhancement in exascale computing system. In order to obtain
this objective, GPU which is the core unit for exascale system should be reviewed deeply to make
more powerful. In this paper, we emphasized on parallelism and shared memory utilization in
parallel and presented hybrid model based testing tool architecture for exascale computing
system. In hybrid model, we add two CUDA and OpenMP programming models to enhance the
system performance. We presented some major type of errors when a developer writes the
program for GPU using this hybrid programming model. Further we discussed each error in detail
by specifying that how these errors occurs in the program what is the cause of occurrence and
how we can avoid from these errors during writing the program. We presented different
architectures which specify that how to avoid these errors. Our architectures ensure to a
developer to write an error free code if this is followed properly.

For future perspective, there is still need to emphasize some specific cases of coding like in
OpenMP, how we can handle the ‘nested’ clause and nested loops inside this class to accomplish
high performance [10]. There is also need to make a strong research on hybrid programming
model when we use CUDA, OpenMP, MPI and other models to achieve the high performance
computing leading to exascale system.

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 252

6. REFERENCES
[1] J. J. Shalf , S. Dosanjh, and J. Morrison, “Exascale Computing Technology Challenges”.

Springer-Verlag Berlin Heidelberg. Pp. 1-25. 2011.

[2] J. M. Yusof et al, “Exploring weak scalability for FEM calculations on a GPU-Enhanced
cluster”, 33.685–699. Nov, 2007.

[3] C.T. Yang, C.L. Huang and C.F. Lin, “Hybrid CUDA, OpenMP, and MPI parallel programming
on multicore GPU”. Computer Physics Communications. Pp. 266-269. 2011.

[4] M. Suß and C. Leopold, “Common Mistakes in OpenMP and How To Avoid Them”. 2007.

[5] J.P. Hoeflinger and B.R. Supinski, “ The OpenMP memory model”. In: Proceedings of the
First International Workshop on OpenMP - IWOMP .2005.

[6] D. A. Mey and T. Reichstein, “Parallelization with OpenMP and MPI A Simple Example
(Fortran)”. Oct, 2007

[7] M. Zheng, V.T. Ravi, F. Qin, and G. Agrawal , “GRace: A Low-Overhead Mechanism for
Detecting Data Races in GPU Programs”. ACM. Dec, 2011.

[8] G. Hager, G. Jost and R. Rabenseifner “Communication Characteristics and Hybrid
MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodes”. Cray User Group
Proceedings. 2009.

[9] D. Shreiner, M. Woo, J. Neider and T. Davis, “OpenGL(R) Programming Guide: The Official
Guide to Learning OpenGL(R)”, Version 2.1, 6th edition, Addison–Wesley Professional,
Reading, MA, ISBN 0321481003, 2007.

[10] J. Gustedt, “Parallelizing nested loop in
OpenMP,”,http://stackoverflow.com/questions/19193725/ parallelizing-nested-loop-in-
openmp-using-pragma-parallel-for-shared, Oct. 5, 2013 [May 10, 2015]

[11] Alrikai, “CUDA racecheck,”http://stackoverflow.com/questions/13861017/cuda-racecheck-
shared-memory-array-and-cudadevicesynchronize, Jan. 11,2013 [April 22, 2015]

[12] Daedalus, “How do CUDA blocks/threads map onto CUDA
cores,”http://stackoverflow.com/questions/ 10460742/how-do-cuda-blocks-warps-threads-
map-onto-cuda-cores, May 5, 2012 [May 14, 2015]

