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Abstract 

 
Association Rule Mining (ARM) technique is used to discover the interesting association or 
correlation among a large set of data items. It plays an important role in generating frequent 
itemsets from large databases. Many industries are interested in developing the association rules 
from their databases due to continuous retrieval and storage of huge amount of data. The 
discovery of interesting association relationship among business transaction records in many 
business decision making process such as catalog decision, cross-marketing, and loss-leader 
analysis. It is also used to extract hidden knowledge from large datasets. The ARM algorithms 
such as Apriori, FP-Growth requires repeated scans over the entire database. All the input/output 
overheads that are being generated during repeated scanning the entire database decrease the 
performance of CPU, memory and I/O overheads. In this paper, we have proposed a 
Performance Based Transposition Algorithm (PBTA) for frequent itemsets generation. We will 
compare proposed algorithm with Apriori and FP Growth algorithms for frequent itemsets 
generation.  The CPU and I/O overhead can be reduced in our proposed algorithm and it is much 
faster than other ARM algorithms. 
 
Keywords: Data Mining, Association Rule Mining (ARM), Association rules. 

 
 
1. INTRODUCTION 

There are several organizations in the mainstream of business, industry, and the public sector, 
which store huge amount of data containing their transaction information online and offline. Such 
data may contain hidden information that can be used by an organization’s decision makers to 
improve the overall profit. The efficient transformation of these data into beneficial information is 
thus a key requirement for success in these organizations. Data mining techniques are heavily 
used to search information and relationships that would be hidden in transaction data. There are 
various techniques of data mining such as clustering, classification, pattern recognition, 
correlation, and Association Rule Mining (ARM). The ARM is most important data mining 
technique that is used to extract hidden information from large datasets. In ARM algorithms, 
association rules are used to identify relationships among a set of items in database. These 
relationships are not based on inherent properties of the data themselves (as with functional 
dependencies), but rather based on co-occurrence of the data items. 

 
The association rules are firstly introduced and subsequently implemented for the generation of 
frequent itemsets from the large databases [1],[2]. Association rules identify the set of items that 
are most often purchased with another set of items. For example, an association rule may state 
that 75% of customers who bought items A and B also bought C and D.  The main task of every 
ARM is to discover the sets of items that frequently appear together called frequent itemsets. 
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ARM has been used for a variety of applications such as banking, insurance, medicine, website 
navigation analysis etc. 
 
Frequent itemset can be produced from discovering useful patterns in customer’s transaction 
databases. Suppose T ={t1,t2,t3…..tn} is a customer's transaction database, which  is a sequence 

of transactions where each transaction is an itemset (ti ⊆ T). Let J ={i1,i2,…..in} be a set of items, 
and D is a task relevant data, which can be a set of database transactions where each 

transaction T is a  set of  items such that T ⊆ J. Each transaction is associated with identifier 

called TID. Let A be a set of items and the transaction T is said to contain A if and only if A ⊆ T. 

The rule A⇒B holds in the transaction set D with support s, where s is the percentage of 

transaction in D that contain A∪B (i.e. both A and B). This is taken to be the probability P(A∪B). 

The rule A⇒B  has confidence c in the transaction set D if c is the percentage of transaction in D 
containing A that also contain B. This is taken to be the conditional probability P(B|A). Therefore, 

the Support(A⇒B) = P(A∪B) and Confidence(A⇒B) = P(B|A). Those rules that satisfy both 
minimum support threshold and minimum confidence threshold are called strong. The values for 
support and confidence have to occur between 0% and 100%. The problem of mining association 
rules is to generate all rules that have support and confidence greater than some user specified 
minimum support and minimum confidence thresholds, respectively. This problem can be 
decomposed into the following sub-problems: i). All itemsets that have support above the user 
specified minimum support are generated. These itemsets are called the large itemsets. ii). For 
each large itemset, all the rules that have minimum confidence are generated as follows: for a 

large itemset X and any Y ⊂ X, if support(X)/support(X - Y) ≥ minimum- confidence, then the rule 
X - Y → Y is a valid rule. 
 
There are various algorithm of ARM such as Apriori, FP-growth, Eclat etc. The most important 
algorithm of ARM is Apriori, which  is not only influenced the association rule mining community, 
but it has affected other data mining fields as well [3]. Association rule and frequent itemset 
mining has become now a widely research area and hence, faster and faster algorithms have 
been presented. Numerous of them are Apriori based algorithms or Apriori modifications. Those 
who adapted Apriori as a basic search strategy, tended to adapt the whole set of procedures and 
data structures as well [4],[5],[6],[7]. Since the scheme of this important algorithm was not only 
used in basic association rules mining, but also used in other data mining fields such as 
hierarchical association rules [8],[9],[10], association rules maintenance [11],[12],[13] , sequential 
pattern mining [14], episode mining [15] and functional dependency discovery [16],[17] etc. 
Basically, ARM algorithms are defined into two categories; namely, algorithms respectively with 
candidate generation and algorithms without candidate generation. In the first category, those 
algorithms which are similar to Apriori algorithm for candidate generation are considered. Eclat 
may also be considered in the first category [9]. In the second category, the FP-Growth algorithm 
is the best–known algorithm. Table-1, defines the comparison among these three algorithms [3]. 
 

Algorithm Scan Data Structures 
Apriori M+1 HashTable &Tree 
Eclat M+1 HashTable &Tree 
FP-Growth 2 PrefixTree 

 
TABLE 1: Comparison of Algorithms 

 
The main drawback of above discussed algorithms given above is the repeated scans of large 
database. This may be a cause of decrement in CPU performance, memory and increment in I/O 
overheads.  The performance and efficiency of ARM algorithms mainly depend on three factors; 
namely candidate sets generated, data structure used and details of implementations [18]. In this 
paper we have proposed a Performance Based Transposition Algorithm (PBTA) which uses 
these three factors. Transactional database is considered as a two dimension array which works 
on boolean value dataset. The main difference between proposed algorithm and other algorithms 
is that instead of using transactional array in its natural form, our algorithm uses transpose of 
array i.e. rows and columns of array are interchanged. The advantage of using transposed array 
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is to calculate support count for particular item. There is no need to repeatedly scan array. Only 
by finding the row sum of the array will give the required support count for particular item, which 
ultimately results in increased efficiency of the algorithm. In the first pass of PBTA, we will receive 
all the support count value for the 1-itemset. Mining of association rules is a field of data mining 
that has received a lot of attention in recent years.  
 
The rest of this Paper is organized as follows. In Section 2, we will explain the Apriori algorithm 
through association rules mining. Section 3 introduces our proposed PBTA algorithm with an 
illustration and compare with other algorithms. Experimental results are shown in Section 4.  The 

concluding remarks are discussed in Section 5. 
 

2. APRIORI ALGORITHM 

ARM is one of the promising techniques of data mining to extract interesting correlations, frequent 
patterns, associations or casual structures among sets of items in the transaction databases or 
other data repositories. There are several ARM algorithms such as Apriori, FP-Growth, Eclat. The 
Apriori algorithm is also called the level-wise algorithm to find all of the frequent sets, which uses 
the downward closure property. The advantage of the algorithm is that before reading the 
database at every level, it prunes many of the sets which are unlikely to be frequent sets by using 
the Apriori property, which states that all nonempty subsets of frequent sets must also be 
frequent. This property belongs to a special category of properties called anti-monotone in the 
sense that if a set cannot pass a test, all of its supersets will fail the same test as well.   Using the 
downward closure property and the Apriori property the algorithm works as follows. The first pass 
of the algorithm counts the number of single item occurrences to determine the L1 or single 
member frequent itemsets. Each subsequent pass, K, consists of two phases. First, the frequent 
itemsets Lk-1 found in the (k-1)

th
 pass are used to generate the candidate itemsets Ck, using the 

Apriori candidate generation algorithm. Therefore, the database is scanned and the support of the 
candidates in Ck is determined to ensure that Ck itemsets are frequent itemsets [19]. 
 
Pass 1 
1. Generate the candidate itemsets in C1 
2. Save the frequent itemsets in L1 
 
Pass k 

1. Generate the candidate itemsets in Ck from the frequent 
itemsets in Lk-1 
a) Join Lk-1 p with Lk-1 q, as follows: 

insert into Ck 
select p.item1, p.item2, . . . , p.itemk-1, q.itemk-1 
from Lk-1 p, Lk-1q 
where p.item1 = q.item1, . . . p.itemk-2 = q.itemk-2, 
p.itemk-1 < q.itemk-1 

b) Generate all (k-1)-subsets from the candidate itemsets in Ck 
c) Prune all candidate itemsets from Ck where some (k-1)-subset of the candidate   
     itemset is not in the frequent itemset Lk-1 
2. Scan the transaction database to determine the support for each candidate   
     itemset in Ck 
3. Save the frequent itemsets in Lk 

 
We will use Apriori algorithm for ARM as a basic search strategy in our proposed algorithm. The 
proposed algorithm will adapt the whole set of procedures of Apriori but the data structure will be 
different. Also, the proposed algorithm will use the transposition of transactional database as data 
structures. 
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3. PERFORMANCE BASED TRANSPOSITION ALGORITHM (PBTA) 
In Apriori algorithm, discovery of association rules require repeated passes over the entire 
database to determine the commonly occurring set of data items. Therefore, if the size of disk 
and database is large, then the rate of input/output (I/O) overhead to scan the entire database 
may be very high. We have proposed Performance Based Transposition Algorithm (PBTA), which 
improves the Apriori algorithm for repeated scanning of large databases for frequent itemsets 
generation. In PBTA, transaction dataset will be used in the transposed form and the description 
of proposed algorithm is discussed in the following sub-sections. 
 
3.1 Candidate Generation Algorithm 
In the candidate generation algorithm, the frequent itemsets are discovered in k-1 passes. If k is 
the pass number, Lk-1 is the set of all frequent (k-1) itemsets. Ck is the set of candidate sets of 
pass k and c denotes the candidate set.  l1,l2 …lk are the itemsets[19]. The candidate generation 
procedure is as follows. 
Procedure Gen_candidate_itemsets (Lk-1) 
 Ck = Ф 

for all itemsets l1 ∈ Lk-1 do  

for all itemsets l2 ∈ Lk-1 do  
if  l1[1] = l2 [1] ^ l1 [2] = l2 [2] ^ … ^ l1 [k-1] < l2 [k-1]  
then c = l1 [1], l1 [2] … l1 [k-1], l2 [k-1]  

Ck = Ck  ∪{c}  
 
3.2 Pruning Algorithm 
The pruning step eliminates some candidate sets which are not found to be frequent. 

 
Procedure Prune(Ck)  

for all c∈ Ck  
for all (k-1)-subsets d of c do 

if d ∉∉∉∉  Lk-1  
then Ck = Ck – {c} 
 
3.3 PBTA Algorithm Description 
The PBTA uses candidate generation and pruning algorithms at every iteration. It moves from 
level 1 to level k or until no candidate set remains after pruning. The step-by-step procedure of 
PBTA algorithm is described as follows. 
1. Transpose the transactional database 
2. Read the database to count the support of C1 to determine L1 using sum of rows.  
3. L1= Frequent 1- itemsets and  k:= 2 
4. While (k-1 ≠ NULL set) do  

Begin  
 Ck := Call Gen_candidate_itemsets (Lk-1)  
Call Prune (Ck)  

for all itemsets i ∈ I do  
Calculate the support values using dot-multiplication of array;   
Lk := All candidates in Ck with a minimum support;  
K:k+1 

            End  
5. End of step-4  
 
3.3.1  An Illustaration 
Suppose we have a transactional database in which the user transactions from T1 to T5 and 
items from A1 to A5 are stored in the form of boolean values, which is shown in Table 1. We have 
assumed that this database can be generated by applying Apriori algorithm for frequent itemsets 
generation. 
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TABLE 2: Transaction Database 

 
Consider the transpose of transactional database of Table 1 is stored in Table 2 by applying 
metrics arithmetics that can be used in our proposed algorithm (PBTA). Assume the user-
specified minimum support is 40%, and then the steps for generating all frequent item sets in 
proposed algorithm will be repeated until NULL set is reached. In PBTA, transactional dataset will 
be used in the transposed form. Therefore, candidate set and frequent itemset generation 
process will be changed as compared to Apriori algorithm. In the first pass, we will receive L1.  
 

{A1}→ 1, {A2}→2, {A3}→1, {A4}→2, {A5}→3  

L1 := { {A1}→1, {A2}→2, {A3} →1, {A4} → 2, {A5} → 3}  
 
Then the candidate 2-itemset will be generated by performing dot-multiplication of rows of array, 
as array consist of boolean values, the resultant cell will be produce in the form of  1. If the 
corresponding cells of the respective rows have 1, otherwise 0 will be in the resultant cell. In this 
approach, we will receive a new array consisting of candidate 2-itemsets to get the higher order 
of itemsets. The above process between rows of array can be performed to find out the results. 

 

 

 

 

 

 

 

TABLE 3: Transpose Database of Transaction 

 

In the second pass, where k=2 , the candidate set C2 becomes  
C2: = {{A1*A2}, {A1*A3}, {A1,*A4}, {A1*A5}, {A2*A3}, {A2*A4},{A2*A5},{A3*A4},{A3*A5},{A4*A5} }  
The pruning step does not change C2 as all subsets are present in C1.  
Read the database to count the support of elements in C2 to get:  

{ {A1*A2}→ 0, {A1*A3}→0, {A1*A4} →0, {A1*A5}→1, {A2*A3}→ 1,  

{A2*A4} →1, {A2*A5}→0, {A3*A4}→0, {A3*A5}→0, {A4*A5}→1}} and reduces to   

L2 = { {A1*A5}→1, {A2*A3}→1,   {A2*A4}→1, {A4*A5}→1}}  
 
In the third pass where k=3, the candidate generation step proceeds:  
In the candidate generation step,  

•  Using {A1*A5} and {A4*A5} it generates {A1*A4*A5}  

•  Using {A2*A3} and {A2*A4} it generates {A2*A3*A4}  
•  Using {A2*A4} and {A4*A5} it generates {A2*A4*A5}  

Thus, C3:= { {A1*A4*A5}, {A2*A3*A4}, {A2*A4*A5}}  
 
The pruning step prunes {1,4,5}, {2,3,4},{2,4,5} as not all subsets of size 2, i.e., {1,4}, {3,4}, {2,5} 
are not present in L3.  

 A1 A2 A3 A4 A5 

T1 1  0  0  0  1  

T2 0  1  0  1  0  

T3 0  0  0  1  1  

T4 0  1  1  0  0  

T5 0  0  0  0  1  

A1 1  0  0  0  0  

A2 0  1  0  1  0  

A3 0  0  0  1  0  

A4 0  1  1  0  0  

A5 1  0  1  0  1  
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So C3:= Ф  

Hence the total frequent sets becomes L:= L1 ∪L2. 
 
By comparing both Apriori and proposed algorithm, we found that Apriori algorithm requires 
multiple passes of the dataset to calculate support count for different itemsets. Therefore, in the 
case of Apriori, the record pointer moves the order of candidate item set * no of records while in 
the case of PBTA algorithm, record pointer moves equal to only order of candidate itemsets. For 
example, if we have to find out support count value for 2-itemset in a dataset having 5 items with 
5 records using Apriori algorithm number of time record pointer will be 2*5 i.e. 10 while in case of 
our proposed algorithm it will be 2 only. 
 

4. EXPERIMENTAL EVALUATIONS 
The performance comparison of PBTA with classical frequent pattern-mining algorithms such as 
Apriori, FP-Growth is presented in this Section. All the experiments are performed on 1.50 Ghz 
Pentium-iv desktop machine with 256 MB main memory, running on Windows-XP operating 
system. The program for Apriori, FP-Growth and proposed algorithm PBTA were developed in 
Java JDK1.5 environment. We report the experimental results on three synthetic boolean 
datasets with 300K, 500K and 700K records, each having 130 columns. The datasets consists of 
boolean values are shown in table 3, table 4 and table 5. The performances results of Apriori, FP-
growth and PBTA are shown with Fig. 1, Fig. 2 and Fig. 3 with data size 300K, 500K, and 700K 
represented in the graphical form. The X-axis in these graphs represents the support threshold 
values while the Y-axis represents the response times (in milliseconds) of the algorithms being 
evaluated as shown. 
 

  

Response Time 
(in ms) 

Support Count  
(in %) Apriori FP-Growth PBTA 

50 50 40 10 

40 100 80 40 

30 150 100 150 

20 300 230 60 

10 500 400 80 

 
TABLE 4: Response Time Comparison of algorithms with 300k database 

 
 

 
 

FIGURE 1: Performance analysis of algorithms (300k database) 
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In the first case, we have considered the transactional database with 300k in size as it is shown in 
Fig. 1. We have compared the performance of Apriori, FP-Growth with PBTA on the basis of 
response time. The observation shows that as the support count will be decreased and the 
response time taken by PBTA is much lesser then Apriori and FP-Growth algorithm. 
 

  

Response Time 
(in ms) 

Support Count  
(in %) Apriori FP-Growth PBTA 

50 84 67 17 

40 167 134 67 

30 251 167 251 

20 501 384 100 

10 835 668 134 

 
TABLE 5: Response Time Comparison of algorithms with 500k database 

 

 
 

FIGURE 2: Performance analysis of algorithms (500k database) 

 
In the another case, the transactional database with 500k size is considered, which is shown in 
Fig. 2. Hence, we have observed that as the support count threshold is reduced and the response 
time taken by PBTA is much lesser then Apriori and FP-Growth algorithm. 
 

  

Response Time 
(in ms) 

Support Count 
(in %) Apriori FP-Growth PBTA 

50 117 93 23 

40 233 186 93 

30 350 233 350 

20 699 536 140 

10 1165 932 186 

 
TABLE 6: Response Time Comparison of algorithms with 700k database 
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FIGURE 3: Performance analysis of algorithms with 700k database 

 
In the Fig. 3, the transactional database with 700k is used. Here, we observed that in comparison 
to Apriori and FP-Growth, PBTA will take lesser response time while support threshold is 
reduced. This PBTA algorithm may be used for extraction of useful frequent hyperlinks or URLs 
for web recommendation [20]. 

 

5. CONCLUSIONS 
ARM algorithms are important to discover frequent itemsets and patterns from large databases. 
In this paper, we have designed a Performance Based Transposition Algorithm (PBTA) for 
generation of frequent itemsets similar to Apriori algorithm. The proposed algorithm can improve 
the efficiency of Apriori algorithm and it is observed to be very fast. Our algorithm is not only 
efficient but also very fast for finding association rules in large databases. The proposed 
algorithm drastically reduces the I/O overhead associated with Apriori algorithm and retrieval of 
support of an itemset is quicker as compared to Apriori algorithm. This algorithm may be useful 
for many real-life database mining scenarios where the data is stored in boolean form. At present 
this algorithm is implemented for only boolean dataset that can also be extend to make it 
applicable to all kind of data sets.  
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