
Mahmood Deypir & Mohammad Hadi Sadreddini

International Journal of Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 119

An Efficient Algorithm for Mining Frequent Itemsets Within
Large Windows Over Data Streams

Mahmood Deypir mdeypir@cse.shirazu.ac.ir
School of Engineering, Computer Science and Engineering
Shiraz University
Shiraz, 7134851154, Iran

Mohammad Hadi Sadreddini sadredin@shirazu.ac.ir
School of Engineering, Computer Science and Engineering
Shiraz University
Shiraz, 7134851154, Iran

Abstract

Sliding window is an interesting model for frequent pattern mining over data stream due to
handling concept change by considering recent data. In this study, a novel approximate algorithm
for frequent itemset mining is proposed which operates in both transactional and time sensitive
sliding window model. This algorithm divides the current window into a set of partitions and
estimates the support of newly appeared itemsets within the previous partitions of the window. By
monitoring essential set of itemsets within incoming data, this algorithm does not waste
processing power for itemsets which are not frequent in the current window. Experimental
evaluations using both synthetic and real datasets shows the superiority of the proposed
algorithm with respect to previously proposed algorithms.

Keywords: Data Stream Mining, Frequent Itemsets, Sliding Window, Support Estimation.

1. INTRODUCTION

A data stream is an infinite amount of data elements which receive at a rapid rate. By the
emergence of the application of data stream in business, science and industry, mining this type of
data becomes an attractive field in data mining community. Frequent patterns mining [1] over
data streams is a challenging problem since it must be solved using minimum resources of main
memory and processing power. In a data stream mining algorithm, data elements should be
scanned only once due to the rapid data arrival rate [2]. Handling the concept change is another
issue. Concept change in the frequent itemset mining problem is changes that occur in the set of
frequent itemsets during a data stream mining. Although monitoring previous frequent itemsets in
the newly arrived data is an easy task, it is hard to detect new frequent itemsets and computing
their supports. Sliding window model is a widely used model to perform frequent itemset mining
since it considers only recent transactions and forgets obsolete ones. Due to this reason, a large
number of sliding window based algorithms have been devised [3-10]. However, a subset of
these studies adaptively maintain and update the set of frequent itemsets [6-10] and others [3-5]
only store sliding window transactions in an efficient way and perform the mining task when the
user requests. In this study, a novel approach for mining frequent itemsets over data streams is
proposed which operate under sliding window model. Experimental evaluations on real and
synthetic datasets show the superiority of the proposed approach with respect to previous
algorithms. The rest of the paper is organized as follows. The next section introduces some
preliminaries and also states the problem. In section 3, some previous related studies are
reviewed. Section 4 presents the proposed approach and section 5 empirically compares the
approach to its competitors. Finally, section 6 concludes the paper.

Mahmood Deypir & Mohammad Hadi Sadreddini

International Journal of Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 120

2. PRELIMINARIES

Let I={i1,i2,…,im} be a set of items. Suppose that, DS be a stream of transactions received in
sequential order. Each transaction of DS is a subset of I. For an itemset X, which is also a subset

of I, a transaction T in DS is said to contain the itemset X if TX ⊆ . A transactional sliding

window W over data stream DS contains |W| recent transactions in the stream, where |W| is the
size of the window. The window slides forward by inserting a new transaction into the window and
deleting the oldest transaction from the window. Due to efficiency issues, instead of a single
transaction, the unit of insertion and deletion can be a partition (or batch) of transactions. In fact
the window contains the n most recent partitions of transactions of the input stream. The first
transaction id (Tid) of each partition is regarded as partition id (Pid) of that partition and first Pid of
the window is named window id (Wid). An itemset X is said to be frequent in W if Freq(X) ≥
n×|P|×s, where Freq(X), n, |P| and s are frequency of X in W, number of the partitions in the
window, partition size and the minimum support threshold, respectively. The number of
transactions in each partition, i.e., partition size and number of partitions in each window are fixed
during a data stream mining and are the parameters of the mining algorithm. Thus, having a
partitioned transactional window W and a minimum support threshold s specified by the user, the
problem is defined as mining all frequent itemsets that exists in window W. The results should be
continuously updated when the window advances. Due to the rapid arrival rate of transactions, an
approximate result of frequent itemsets is acceptable.

3. RELATED WORKS
There are a large number of studies related to frequent itemset mining over data streams. They
are mainly belonging to different models of data stream processing including sliding window [3-
10], landmark [11-13] and damped models [14, 15]. DSTree [3] and CPS-Tree [4] are two
algorithms that use the prefix tree to store raw transactions of sliding window. DSTree uses a
fixed tree structure in canonical order of branches while in CPS-Tree, the prefix tree structure is
maintaining in support descending order of items to control the amount of memory requirement.
Both of [3] and [4] perform the mining task using FP-Growth [16] algorithm that was proposed for
static databases. In [5], an algorithm namely MFI-TransSW was proposed which is based on the
Apriori algorithm [2]. MFI-TransSW uses a bit string to store the occurrence information of an item
within sliding window. Moreover, it mines all frequent itemsets over recent window of
transactions. All of [3-5] perform the mining task on the current window when a user requests and
don’t adaptively maintain and update the mining result. Therefore, after the mining, when new
transactions are arrived from the stream, obtained result becomes invalid for the user and thus
the mining task need to be re-executed. Lin et al. [6] proposed a method for mining frequent
patterns over time sensitive sliding window. In their method the window is divided into a number
of batches for which itemset mining is performed separately. In this algorithm at each timestamp
a couple of transactions namely a block are received from input stream. The sliding window
contains fixed number of blocks. However, since each batch contains a different number of
transactions, different windows over a data stream have various number of transactions. The
Moment algorithm [7] finds closed frequent itemsets by maintaining a boundary between frequent
closed itemset and other itemsets. In [9] the authors devised an algorithm for mining non-
derivable frequent itemsets over data streams. This algorithm continuously maintains non-
derivable frequent itemsets of the sliding window. Algorithm of [7] and [9] adaptively mine the
concise representation of frequent patterns which are a subset of all set of frequent patterns. The
SWIM [8] is a partition based algorithm in which frequent itemsets in one partition of the window
are considered for further analysis to find frequent itemsets in whole of the window. It keeps the
union of frequent patterns of all partitions and incrementally updates their supports and prunes
infrequent ones. Chang and Lee proposed the estWin algorithm [10] that finds recent frequent
patterns adaptively over transactional data streams using sliding window model. It uses a
reduced minimum support to early monitoring of new itemsets.

DSM-FI [11] is a landmark based algorithm. In this algorithm, every transaction is converted into
smaller transactions and inserted into a summary data structure called item-suffix frequent
itemset forest which is based on prefix-tree. In [12] the authors used the Chernoff Bound to

Mahmood Deypir & Mohammad Hadi Sadreddini

International Journal of Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 121

produce an approximate result of frequent patterns over the landmark window. Zhi-Jun et al. [13]
used a lattice structure, referred to as a frequent enumerate tree, which is divided into several
equivalent classes of stored patterns with the same transaction-ids in a single class. Frequent
patterns are divided into equivalent classes, and only those frequent patterns that represent the
two borders of each class are maintained; other frequent patterns are pruned. Chang and Lee
proposed an algorithm called estDec based on damped model in which each transaction has a
weight decreasing with age [14]. In this method, in order to reduce the effect of old transactions in
the set of frequent patterns, a decay rate is defined. In [15] an algorithm similar to the estMax is
proposed for mining maximal frequent itemsets over data streams based on damped model.

4. THE PROPOSED ALGORITHM
In [6, 8], frequent itemsets of a new partition are mined using the FP-Growth [16] algorithm and
since then the found frequent itemsets are checked against new partitions to update their support.
The idea of these algorithms is based on the fact that each frequent itemset of the window are
frequent in at least one partition of the window. The idea is inspired by the partitioning algorithm
[17] for static databases in which, it is proved that a frequent itemset is frequent in at least one
partition of a database. However, exploiting this criterion in data stream mining, increases the
number of frequent itemsets that required to be monitored in the incoming transactions. The
reason is that the reverse of this criterion is not correct. That is:
Theorem. An itemset that is frequent in a partition of the window might be infrequent in whole
window.
Proof. An itemset which is frequent in a partition of the window might have low support in other
partitions of the window. Therefore, its overall support in whole window might be smaller than the
minimum support threshold. □

Based on the above statement, in our algorithm we don’t monitor each frequent itemset of a new
partition. Instead, for such frequent itemset we estimate their support in the previous partitions
individually using their subsets. If the sum of estimated support and actual support of the itemset
is greater than minimum support threshold, the itemset is inserted to the monitoring prefix tree
and their support becomes verified in subsequent new partitions. Moreover, by expiring each
partition of the window, support of itemsets in the prefix tree are updated. For each itemset, the
process of updating continues until the itemset is frequent in the window. In our approach, the
estimation of support is partition based estimation. That is, the support of an itemset is estimated
in each partition of the window. Therefore, estimated support of an itemset is equal to sum of all
estimated values. For an itemset, its actual support and estimated support in different partitions of
the window are stored in the corresponding node of the prefix tree. When an itemset identified as
frequent in a new partition, its support is estimated in previous partitions of the window. For an n-
itemset its longest subsets have length of n-1 or smaller. For each previous partition first, among
the supports of their subsets, minimum value is selected. Longer subsets are checked first since
longer subsets have closer value to the actual support of the itemset. If actual values of long
subsets are not contained in a partition, shorter ones are tested. Therefore, a high quality
estimated value for the itemset in each partition is computed. An itemset in the new partition is
inserted into the prefix tree if the following conditions are hold:









≥+

≥

∑
−

=

1

1

n

i

ni

n

SupFEF

SupF

 (1)

Where EFi and Fn are estimated support in each partition i and actual support of the itemset in the
newly received partition. The window contains n partitions of transactions. Considering the
estimated supports of previous partitions to insert and monitor the support of the itemset reduces
the size of prefix tree and also enhances the processing time. Estimating support using actual
counts of individual partitions improves the mining quality since more realistic value is obtained.

Mahmood Deypir & Mohammad Hadi Sadreddini

International Journal of Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 122

For a newly inserted node, actual support of the partition and estimated support of previous
partitions are stored separately. For this node, its actual supports in subsequent partitions are
stored since it is monitored in newly arrived partitions. This information of individual partitions of
the window is used to remove the oldest partitions efficiently. Table 1 summarizes elements that
are stored in the prefix tree nodes. In this prefix tree each node represents an itemset which can
be induced in the path from the root to the node. Prefix sharing among the itemset in the tree,
reduces the amount of memory requirement.

Element Purpose
ID Item ID

Cs Actual Count of the itemset in partitions of the window
ECs Estimated support of the itemset in partitions of the window

Children Set of pointers to the children of the node

TABLE 1: Information contained in each node of prefix tree

After adding a newly arrived partition, to complete the window sliding phase, the oldest partition of
transactions should be removed. For each node of the prefix tree, if corresponding itemset has
estimated support in this partition, the value is removed. Otherwise, the actual support value in
this partition is neglected. Therefore, the oldest partition removal process does not need FP-Tree
of the oldest partition as in SWIM [8] or current transactions of the window as in estWin [10]
algorithm. As result, removing obsolete information is performed using smaller memory and
processing time. In the partition removal process, infrequent nodes and their descendents are
also deleted. When information of the oldest partition is removed from a node, its support is
reduced and if the support falls below the threshold the node and their descendent are removed
recursively from the prefix tree. The reason for deletion of descendents is due to the Apriori
principle which states that all supersets of an infrequent node are also infrequent.

A high level pseudo code of the proposed algorithm is shown in Figure 1. As shown in this Figure,
for each itemset of the prefix tree (PT), its support is updated using the newly inserted partition
(P). Frequent patterns of the new partition are found by applying the FP-Growth algorithm.

FIGURE 1: The Proposed Algorithm

For each itemset of the new partition, if its support in the new partition in addition to its estimated
support in the previous partitions is greater than or equal to minimum support threshold, it is
inserted to the prefix tree. If the window size is greater than its specified number of the partition,
the oldest partition must be removed from the window to preserve fixed size window. Hence, for
each itemset in the prefix tree, its support information of the oldest partition containing estimated
or actual support is deleted from the tree. By removing this information form corresponding
arrays, if the itemset becomes infrequent, it and its subsets are erased from the tree.

In the proposed algorithm, information of equal sized partitions is separately stored in the prefix
tree. The proposed approach can be also used in time sensitive window where at each timestamp
a number of transactions are received from a stream. These transactions can be regarded as a

Mahmood Deypir & Mohammad Hadi Sadreddini

International Journal of Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 123

new partition and processed according to the above described approach. However, since at each
timestamp, different number of transactions is arrived, the partition size is not fixed during the
stream mining process. Using the proposed approach, extracting old transactions from the
window is performed efficiently. In [6], information of the partitions of the window are stored in
tables which does not benefits from prefix sharing and requires large amount of memory and
processing time. Moreover, all frequent itemsets of a new partition are monitored and their
previous supports are estimated imprecisely.

5. EXPERIMENTAL EVALUATION
The proposed algorithm is experimentally evaluated with respect to previously proposed
algorithms. The estWin and SWIM are selected for comparison since they similarly mine frequent
itemsets adaptively over data streams. We have implemented all algorithm using C++ and STL
template library. All experiments were conducted on P4 Intel CPU running Windows XP with 2 GB
of RAM. We have compared the algorithms in terms of runtime since it is an important factor of
every data stream mining algorithm. Two datasets are selected for experimentation. First dataset
is a real dataset named BMS-POS and second dataset is a synthetic dataset generated using
synthetic data generator [1]. Specifications of these datasets are summarized in the Table 1.

Dataset #trans #items Max. length Avg. length
BMS-POS 515,597 1657 164 6.53

T40I10D100K 100,000 942 77 39.61

TABLE 2: Datasets specifications

Since the value of minimum support threshold has direct effect on the runtime, the first
experiment compares the algorithms using different values of this parameter on BMS-POS
dataset. The results are shown in Figure 2.

FIGURE 2: Runtime Comparison on BMS-POS

As shown in this figure, the proposed algorithm has the better runtime for different minimum
support values. As the minimum support threshold decreases, the performance gap of our
algorithm with respect to the other methods increases. The reason is, for lower minimum support
thresholds, the number of frequent itemsets is increased. In this situation, SWIM requires to verify
the support of a large number of patterns in different panes of the window. On the other hand,
since the estWin uses a reduced minimum support value, i.e., significance instead of the actual

Mahmood Deypir & Mohammad Hadi Sadreddini

International Journal of Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 124

threshold, the number of generated itemsets becomes prohibitively large. Therefore, the
proposed algorithm operates better than both SWIM and estWin especially in lower minimum
support thresholds.

The second experiment mesures the runtime for different values of minimum support thresholds
on T40I10D100K synthetic dataset. The result is plotted on Figure 3.

FIGURE 3: Runtime comparison on T40I10D100K

As shown in this figure, the proposed algorithm has lowest runtime. However, its runtime is
closed to the SWIM algorithm. In addition to the above mentioned reasons, in both the SWIM and
the proposed algorithms, the incoming transactions are batch processed while the estWin
algorithm processes a single transaction at each sliding. Hence, both of them have better
runtime. The SWIM stores transactional FP-Tree of each partition of the window to verify support
value of new incoming partitions. On the other hand the proposed algorithm throws away the old
transactions and estimates the support values of the new itemsets within previous partitions.
Support estimation is faster than verifying and thus the proposed algorithm is faster than the
SWIM.

6. CONCLUSION
In this study, a new algorithm for online frequent itemset mining over data streams is proposed.
This algorithm has better runtime with respect to previously proposed estWin and SWIM
algorithms. A prefix tree is only data structure used by the proposed algorithm while in the estWin
and SWIM transactions of the window are also stored in addition to frequent itemsets of the
current window. Therefore, the proposed algorithm has lower memory requirements. Although,
the algorithm is proposed for operating in transactional window, it is also suitable for time
sensitive window in which at any timestamp a different number of transactions are received from
a stream.

7. RFERENCES
[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules” in Proc. Int. Conf.

on Very Large Databases, pp. 487–499, 1994.

[2] J. Han, H. Cheng, D. Xin, & X. Yan. “Frequent pattern mining: current status and future

directions”, Data Mining and Knowledge Discovery,vol. 15(1), pp. 55–86, 2007.

Mahmood Deypir & Mohammad Hadi Sadreddini

International Journal of Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 125

[3] C.K.-S. Leung, & Q.I. Khan. “DSTree: a tree structure for the mining of frequent sets from
data streams”, Proc. ICDM, 928–932, 2006.

[4] S.K.Tanbeer, C. F. Ahmed, B.-S. Jeong, & Y.-K. Lee. “Sliding window-based frequent

pattern mining over data streams”, Information Sciences, vol. 179(22), pp. 3843-3865,
2009.

[5] H.-F. Li, S.-Y. Lee. “Mining frequent itemsets over data streams using efficient window

sliding techniques”, Expert Systems with Applications, vol. 36(2), pp. 1466–1477, 2009.

[6] C.-H. Lin, D.-Y. Chiu, Y.-H. Wu, & A.L.P. Chen. “Mining frequent itemsets from data streams

with a time-sensitive sliding window”, Proc. SIAM Int. Conf. Data Mining, 2005.

[7] Y. Chi, H. Wang, P.S. Yu, & R.R. Muntz. “Catch the moment: maintaining closed frequent

itemsets over a data stream sliding window” Knowledge and Information Systems, 10(3),
pp. 265–294, 2006.

[8] B. Mozafari, H. Thakkar, & C. Zaniolo. “Verifying and mining frequent patterns from large

windows over data streams”, Proc. Int. Conf. ICDE, pp.179–188, 2008.

[9] H. Li, & H. Chen. “Mining non-derivable frequent itemsets over data stream”, Data &

Knowledge Engineering, vol. 68(5), pp. 481-498, 2009.

[10] J.H. Chang, & W.S. Lee. “estWin: Online data stream mining of recent frequent itemsets by

sliding window method” Journal of Information Science, vol. 31(2), pp. 76–90, 2005.

[11] H. F. Li, S. Y. Lee, & M. K. Shan “An efficient algorithm for mining frequent itemsets over

the entire history of data streams” Proc. Int. Workshop on Knowledge Discovery in Data
Streams, 2004.

[12] J.X. Yu, Z. Chong, H. Lu, Z. Zhang, Z., & A. Zhou. “A false negative approach to mining

frequent itemsets from high speed transactional data streams” Information Sciences, vol.
176(14), pp. 1986–2015, 2006.

[13] X. Zhi-Jun, C. Hong, & C. Li. “An efficient algorithm for frequent itemset mining on data

streams” Proc. ICDM, 474–491, 2006.

[14] J. Chang, W. Lee, “Finding recently frequent itemsets adaptively over online transactional

data streams”, Information Systems, vol. 31 (8), pp. 849-869, 2006.

[15] J.H. Chang, W.S. Lee, “estMax: Tracing Maximal Frequent Itemsets Instantly over Online

Transactional Data Streams”, IEEE Transactions on Knowledge and Data Engineering, vol.
21 (10) pp.1418-1431, 2009.

[16] J. Han, J. Pei, Y. Yin, & R. Mao. “Mining Frequent Patterns without Candidate Generation:

A Frequent-Pattern Tree Approach”, Data Mining and Knowledge Discovery, vol. 8(1), pp.
53-87, 2004.

[17] A. Savasere, E. Omiecinski, and S. Navathe, “An efficient algorithm for mining association

in large databases”, in Proceeding of the VLDB International Conference on Very Large
Databases, pp. 432–444, 1995.

