
Mahmood Deypir & Mohammad Hadi Sadreddini 

International Journal of Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 119 

An Efficient Algorithm for Mining Frequent Itemsets Within 
Large Windows Over Data Streams 

 
 

Mahmood Deypir                                              mdeypir@cse.shirazu.ac.ir 
School of Engineering, Computer Science and Engineering  
Shiraz University 
Shiraz, 7134851154, Iran 

 
Mohammad Hadi Sadreddini                                                sadredin@shirazu.ac.ir 
School of Engineering, Computer Science and Engineering  
Shiraz University 
Shiraz, 7134851154, Iran 

 
Abstract 

 
Sliding window is an interesting model for frequent pattern mining over data stream due to 
handling concept change by considering recent data. In this study, a novel approximate algorithm 
for frequent itemset mining is proposed which operates in both transactional and time sensitive 
sliding window model. This algorithm divides the current window into a set of partitions and 
estimates the support of newly appeared itemsets within the previous partitions of the window. By 
monitoring essential set of itemsets within incoming data, this algorithm does not waste 
processing power for itemsets which are not frequent in the current window. Experimental 
evaluations using both synthetic and real datasets shows the superiority of the proposed 
algorithm with respect to previously proposed algorithms. 
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1. INTRODUCTION 

A data stream is an infinite amount of data elements which receive at a rapid rate. By the 
emergence of the application of data stream in business, science and industry, mining this type of 
data becomes an attractive field in data mining community. Frequent patterns mining [1] over 
data streams is a challenging problem since it must be solved using minimum resources of main 
memory and processing power. In a data stream mining algorithm, data elements should be 
scanned only once due to the rapid data arrival rate [2]. Handling the concept change is another 
issue. Concept change in the frequent itemset mining problem is changes that occur in the set of 
frequent itemsets during a data stream mining. Although monitoring previous frequent itemsets in 
the newly arrived data is an easy task, it is hard to detect new frequent itemsets and computing 
their supports. Sliding window model is a widely used model to perform frequent itemset mining 
since it considers only recent transactions and forgets obsolete ones. Due to this reason, a large 
number of sliding window based algorithms have been devised [3-10]. However, a subset of 
these studies adaptively maintain and update the set of frequent itemsets [6-10] and others [3-5] 
only store sliding window transactions in an efficient way and perform the mining task when the 
user requests. In this study, a novel approach for mining frequent itemsets over data streams is 
proposed which operate under sliding window model. Experimental evaluations on real and 
synthetic datasets show the superiority of the proposed approach with respect to previous 
algorithms. The rest of the paper is organized as follows. The next section introduces some 
preliminaries and also states the problem. In section 3, some previous related studies are 
reviewed. Section 4 presents the proposed approach and section 5 empirically compares the 
approach to its competitors. Finally, section 6 concludes the paper. 
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2. PRELIMINARIES 

Let I={i1,i2,…,im} be a set of items. Suppose that, DS be a stream of transactions received in 
sequential order. Each transaction of DS is a subset of I. For an itemset X, which is also a subset 

of I, a transaction T in DS is said to contain the itemset X if TX ⊆ . A transactional sliding 

window W over data stream DS contains |W| recent transactions in the stream, where |W| is the 
size of the window. The window slides forward by inserting a new transaction into the window and 
deleting the oldest transaction from the window. Due to efficiency issues, instead of a single 
transaction, the unit of insertion and deletion can be a partition (or batch) of transactions. In fact 
the window contains the n most recent partitions of transactions of the input stream. The first 
transaction id (Tid) of each partition is regarded as partition id (Pid) of that partition and first Pid of 
the window is named window id (Wid). An itemset X is said to be frequent in W if Freq(X) ≥ 
n×|P|×s, where Freq(X), n, |P| and s are frequency of X in W, number of the partitions in the 
window, partition size and the minimum support threshold, respectively. The number of 
transactions in each partition, i.e., partition size and number of partitions in each window are fixed 
during a data stream mining and are the parameters of the mining algorithm. Thus, having a 
partitioned transactional window W and a minimum support threshold s specified by the user, the 
problem is defined as mining all frequent itemsets that exists in window W. The results should be 
continuously updated when the window advances. Due to the rapid arrival rate of transactions, an 
approximate result of frequent itemsets is acceptable.  
 

3. RELATED WORKS 
There are a large number of studies related to frequent itemset mining over data streams. They 
are mainly belonging to different models of data stream processing including sliding window [3-
10], landmark [11-13] and damped models [14, 15]. DSTree [3] and CPS-Tree [4] are two 
algorithms that use the prefix tree to store raw transactions of sliding window. DSTree uses a 
fixed tree structure in canonical order of branches while in CPS-Tree, the prefix tree structure is 
maintaining in support descending order of items to control the amount of memory requirement. 
Both of [3] and [4] perform the mining task using FP-Growth [16] algorithm that was proposed for 
static databases. In [5], an algorithm namely MFI-TransSW was proposed which is based on the 
Apriori algorithm [2]. MFI-TransSW uses a bit string to store the occurrence information of an item 
within sliding window. Moreover, it mines all frequent itemsets over recent window of 
transactions. All of [3-5] perform the mining task on the current window when a user requests and 
don’t adaptively maintain and update the mining result. Therefore, after the mining, when new 
transactions are arrived from the stream, obtained result becomes invalid for the user and thus 
the mining task need to be re-executed. Lin et al. [6] proposed a method for mining frequent 
patterns over time sensitive sliding window. In their method the window is divided into a number 
of batches for which itemset mining is performed separately. In this algorithm at each timestamp 
a couple of transactions namely a block are received from input stream. The sliding window 
contains fixed number of blocks. However, since each batch contains a different number of 
transactions, different windows over a data stream have various number of transactions. The 
Moment algorithm [7] finds closed frequent itemsets by maintaining a boundary between frequent 
closed itemset and other itemsets. In [9] the authors devised an algorithm for mining non-
derivable frequent itemsets over data streams. This algorithm continuously maintains non-
derivable frequent itemsets of the sliding window. Algorithm of [7] and [9] adaptively mine the 
concise representation of frequent patterns which are a subset of all set of frequent patterns. The 
SWIM [8] is a partition based algorithm in which frequent itemsets in one partition of the window 
are considered for further analysis to find frequent itemsets in whole of the window. It keeps the 
union of frequent patterns of all partitions and incrementally updates their supports and prunes 
infrequent ones. Chang and Lee proposed the estWin algorithm [10] that finds recent frequent 
patterns adaptively over transactional data streams using sliding window model. It uses a 
reduced minimum support to early monitoring of new itemsets. 
 
DSM-FI [11] is a landmark based algorithm. In this algorithm, every transaction is converted into 
smaller transactions and inserted into a summary data structure called item-suffix frequent 
itemset forest which is based on prefix-tree. In [12] the authors used the Chernoff Bound to 



Mahmood Deypir & Mohammad Hadi Sadreddini 

International Journal of Data Engineering (IJDE), Volume (2) : Issue (3) : 2011 121 

produce an approximate result of frequent patterns over the landmark window. Zhi-Jun et al. [13] 
used a lattice structure, referred to as a frequent enumerate tree, which is divided into several 
equivalent classes of stored patterns with the same transaction-ids in a single class. Frequent 
patterns are divided into equivalent classes, and only those frequent patterns that represent the 
two borders of each class are maintained; other frequent patterns are pruned. Chang and Lee 
proposed an algorithm called estDec based on damped model in which each transaction has a 
weight decreasing with age [14]. In this method, in order to reduce the effect of old transactions in 
the set of frequent patterns, a decay rate is defined. In [15] an algorithm similar to the estMax is 
proposed for mining maximal frequent itemsets over data streams based on damped model. 
 

4. THE PROPOSED ALGORITHM 
In [6, 8], frequent itemsets of a new partition are mined using the FP-Growth [16] algorithm and 
since then the found frequent itemsets are checked against new partitions to update their support. 
The idea of these algorithms is based on the fact that each frequent itemset of the window are 
frequent in at least one partition of the window. The idea is inspired by the partitioning algorithm 
[17] for static databases in which, it is proved that a frequent itemset is frequent in at least one 
partition of a database. However, exploiting this criterion in data stream mining, increases the 
number of frequent itemsets that required to be monitored in the incoming transactions. The 
reason is that the reverse of this criterion is not correct. That is: 
Theorem. An itemset that is frequent in a partition of the window might be infrequent in whole 
window. 
Proof. An itemset which is frequent in a partition of the window might have low support in other 
partitions of the window. Therefore, its overall support in whole window might be smaller than the 
minimum support threshold.   □ 
 
Based on the above statement, in our algorithm we don’t monitor each frequent itemset of a new 
partition. Instead, for such frequent itemset we estimate their support in the previous partitions 
individually using their subsets. If the sum of estimated support and actual support of the itemset 
is greater than minimum support threshold, the itemset is inserted to the monitoring prefix tree 
and their support becomes verified in subsequent new partitions. Moreover, by expiring each 
partition of the window, support of itemsets in the prefix tree are updated. For each itemset, the 
process of updating continues until the itemset is frequent in the window. In our approach, the 
estimation of support is partition based estimation. That is, the support of an itemset is estimated 
in each partition of the window. Therefore, estimated support of an itemset is equal to sum of all 
estimated values. For an itemset, its actual support and estimated support in different partitions of 
the window are stored in the corresponding node of the prefix tree. When an itemset identified as 
frequent in a new partition, its support is estimated in previous partitions of the window. For an n-
itemset its longest subsets have length of n-1 or smaller. For each previous partition first, among 
the supports of their subsets, minimum value is selected. Longer subsets are checked first since 
longer subsets have closer value to the actual support of the itemset. If actual values of long 
subsets are not contained in a partition, shorter ones are tested. Therefore, a high quality 
estimated value for the itemset in each partition is computed. An itemset in the new partition is 
inserted into the prefix tree if the following conditions are hold: 
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Where EFi and Fn are estimated support in each partition i and actual support of the itemset in the 
newly received partition. The window contains n partitions of transactions. Considering the 
estimated supports of previous partitions to insert and monitor the support of the itemset reduces 
the size of prefix tree and also enhances the processing time. Estimating support using actual 
counts of individual partitions improves the mining quality since more realistic value is obtained.  
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For a newly inserted node, actual support of the partition and estimated support of previous 
partitions are stored separately. For this node, its actual supports in subsequent partitions are 
stored since it is monitored in newly arrived partitions. This information of individual partitions of 
the window is used to remove the oldest partitions efficiently. Table 1 summarizes elements that 
are stored in the prefix tree nodes. In this prefix tree each node represents an itemset which can 
be induced in the path from the root to the node. Prefix sharing among the itemset in the tree, 
reduces the amount of memory requirement. 
 

Element Purpose 
ID Item ID 

Cs Actual Count of the itemset in partitions of the window 
ECs Estimated support of the itemset in partitions of the window 

Children Set of pointers to the children of the node 
 

TABLE 1: Information contained in each node of prefix tree 

 
After adding a newly arrived partition, to complete the window sliding phase, the oldest partition of 
transactions should be removed. For each node of the prefix tree, if corresponding itemset has 
estimated support in this partition, the value is removed. Otherwise, the actual support value in 
this partition is neglected. Therefore, the oldest partition removal process does not need FP-Tree 
of the oldest partition as in SWIM [8] or current transactions of the window as in estWin [10] 
algorithm. As result, removing obsolete information is performed using smaller memory and 
processing time. In the partition removal process, infrequent nodes and their descendents are 
also deleted. When information of the oldest partition is removed from a node, its support is 
reduced and if the support falls below the threshold the node and their descendent are removed 
recursively from the prefix tree. The reason for deletion of descendents is due to the Apriori 
principle which states that all supersets of an infrequent node are also infrequent. 
  
A high level pseudo code of the proposed algorithm is shown in Figure 1. As shown in this Figure, 
for each itemset of the prefix tree (PT), its support is updated using the newly inserted partition 
(P). Frequent patterns of the new partition are found by applying the FP-Growth algorithm. 
 
 

 
 

FIGURE 1:  The Proposed Algorithm 

 
For each itemset of the new partition, if its support in the new partition in addition to its estimated 
support in the previous partitions is greater than or equal to minimum support threshold, it is 
inserted to the prefix tree. If the window size is greater than its specified number of the partition, 
the oldest partition must be removed from the window to preserve fixed size window. Hence, for 
each itemset in the prefix tree, its support information of the oldest partition containing estimated 
or actual support is deleted from the tree. By removing this information form corresponding 
arrays, if the itemset becomes infrequent, it and its subsets are erased from the tree. 
 
In the proposed algorithm, information of equal sized partitions is separately stored in the prefix 
tree. The proposed approach can be also used in time sensitive window where at each timestamp 
a number of transactions are received from a stream. These transactions can be regarded as a 
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new partition and processed according to the above described approach. However, since at each 
timestamp, different number of transactions is arrived, the partition size is not fixed during the 
stream mining process. Using the proposed approach, extracting old transactions from the 
window is performed efficiently. In [6], information of the partitions of the window are stored in 
tables which does not benefits from prefix sharing and requires large amount of memory and 
processing time. Moreover, all frequent itemsets of a new partition are monitored and their 
previous supports are estimated imprecisely.  
 

5. EXPERIMENTAL EVALUATION 
The proposed algorithm is experimentally evaluated with respect to previously proposed 
algorithms. The estWin and SWIM are selected for comparison since they similarly mine frequent 
itemsets adaptively over data streams. We have implemented all algorithm using C++ and STL 
template library. All experiments were conducted on P4 Intel CPU running Windows XP with 2 GB 
of RAM. We have compared the algorithms in terms of runtime since it is an important factor of 
every data stream mining algorithm. Two datasets are selected for experimentation. First dataset 
is a real dataset named BMS-POS and second dataset is a synthetic dataset generated using 
synthetic data generator [1]. Specifications of these datasets are summarized in the Table 1. 
 

Dataset #trans #items Max. length Avg. length 
BMS-POS 515,597 1657 164 6.53 

T40I10D100K 100,000 942 77 39.61 

 
TABLE 2: Datasets specifications 

 
Since the value of minimum support threshold has direct effect on the runtime, the first 
experiment compares the algorithms using different values of this parameter on BMS-POS 
dataset. The results are shown in Figure 2. 
 

 
 

FIGURE 2: Runtime Comparison on BMS-POS 
 

As shown in this figure, the proposed algorithm has the better runtime for different minimum 
support values. As the minimum support threshold decreases, the performance gap of our 
algorithm with respect to the other methods increases. The reason is, for lower minimum support 
thresholds, the number of frequent itemsets is increased. In this situation, SWIM requires to verify 
the support of a large number of patterns in different panes of the window. On the other hand, 
since the estWin uses a reduced minimum support value, i.e., significance instead of the actual 
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threshold, the number of generated itemsets becomes prohibitively large. Therefore, the 
proposed algorithm operates better than both SWIM and estWin especially in lower minimum 
support thresholds. 
 
The second experiment mesures the runtime for different values of minimum support thresholds 
on T40I10D100K synthetic dataset. The result is plotted on Figure 3. 
 

 
 

FIGURE 3: Runtime comparison on T40I10D100K 
 

As shown in this figure, the proposed algorithm has lowest runtime. However, its runtime is 
closed to the SWIM algorithm. In addition to the above mentioned reasons, in both the SWIM and 
the proposed algorithms, the incoming transactions are batch processed while the estWin 
algorithm processes a single transaction at each sliding. Hence, both of them have better 
runtime. The SWIM stores transactional FP-Tree of each partition of the window to verify support 
value of new incoming partitions. On the other hand the proposed algorithm throws away the old 
transactions and estimates the support values of the new itemsets within previous partitions. 
Support estimation is faster than verifying and thus the proposed algorithm is faster than the 
SWIM. 
 

6. CONCLUSION 
In this study, a new algorithm for online frequent itemset mining over data streams is proposed. 
This algorithm has better runtime with respect to previously proposed estWin and SWIM 
algorithms. A prefix tree is only data structure used by the proposed algorithm while in the estWin 
and SWIM transactions of the window are also stored in addition to frequent itemsets of the 
current window. Therefore, the proposed algorithm has lower memory requirements. Although, 
the algorithm is proposed for operating in transactional window, it is also suitable for time 
sensitive window in which at any timestamp a different number of transactions are received from 
a stream. 
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