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Abstract 

 
Distributed Database Query Optimization is achieved thru many complex sub operations on the 
Relations, Network Sites, Local Processing Facilities and the Database System itself. Many of 
these sub problems are NP-Hard itself, which makes Distributed Database Query Optimization a 
very complex and hard process. One of these NP Hard components is optimal allocation of 
various sub-queries to different sites of data distribution. Most  of prevalent solutions take help of 
Exhaustive Enumeration Techniques, along with use of innovative heuristics. In this Paper we 
have proposed a stochastic model simulating a Distributed Database environment, and shown 
benefits of using innovative Genetic Algorithms (GA) for optimizing the sequence of sub-query 
operations allocation over the Network Sites. Also, the effect of varying Genetic Parameters on 
Solution’s quality is analyzed. 

 
Keywords: Distributed Query Optimization, Database Statistics, Query Execution Plan, Genetic 
Algorithms, Operation Allocation. 

 
 
1. INTRODUCTION 

Query Optimization process involves finding a near optimal query execution plan which 
represents the overall execution strategy for the query. The efficiency of distributed database 
system is significantly dependent on the extent of optimality of this execution plan. According to 
Ozsu and Valduriez[1],this process of generating a good query execution strategy involves three 
phases. First is to find a search space which is a set of alternative execution plans for query. 
Second is to build a cost model which can compare costs of different execution plans. Finally in 
third step we explore a search strategy to find the best possible execution plan using cost model. 
Before putting any queries to a Distributed Database, one needs to design it according to the 
needs of an organization. Analysts have to plan data/Fragment allocation according to the nature 
and frequencies of the various queries at different sites. Different Sequence of operations or sub-
operations needed to generate results of a query is very large e.g. as near to n! for relational join 
of n relations. Decisions have to be taken dynamically for allocation of intermediate relation 
fragments generated during the query. A Transaction Profile is build to provide this information for 
various queries to the database. This paper gives a Genetic Algorithm for this step of Execution 
Plan. It assumes that a transaction profile provides the necessary details of fragment allocation 
and cost profiles for various pair of sites. It gives a cost model to predict cost of various allocation 
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plans for intermediate relations and sub operations generated during process of Query. Finally 
this GA finds the best possible execution strategy in terms of finding sequence and sites for 
various sub operations, called  Operation Allocation Problem[2]. 
A GA(Genetic Algorithm) has  several advantages over other approaches, as it has been 
successfully applied  to a vast set of real world applications, not only that  it gives a robust 
solution but also a good set of alternative possible solutions to choose from [3] and is inherently 
parallel to achieve good response time. 
 

2.  PREVIOUS RESEARCH WORK 
Distributed database systems design and query optimization has been and will remain an active 
area of research for a lot times to come, due to complex and intractable nature of the 
problem[4,5,6,7,8,9,10].Most of the work has concentrated on two aspects: Data Allocation(The 
plan of allocating Fragments to various sites) and Operation Allocation(How to generate a 
sequence of subqueries on various sites). Apers and P.M have discussed in detail the data 
allocation problem and their fragmentation in [11]. An integrated solution to problems of Data 
Fragmentation, allocation, replication in Distributed Databases, has been proposed in  
Tamhankar & Ram[12]. Zehai Zhou[10] propose using heuristics and genetic algorithms for large 
scale database query optimization.The NP Hard problem is reduced to a join ordering problem 
similar to a variant of a Travelling Salesman Problem.Several heuristics and a GA is proposed for 
solving the join order problem. 
 
Simulation experiments for comparison of Branch & Bound, Simulated Annealing, Greedy 
approaches for operation allocation problem have been describes in detail by Martin & Lam[13]. 
Frieder and Baru [14] propose dynamic site selection strategies for distributed database design 
on a microcomputer. March & Rho in [2] have proposed an excellent cost model for reducing local 
I/O costs, CPU Costs and Communication Costs in operation allocation strategy. Johansonn & 
Noumann in [15] extended their work bu considering parallel processing and Load Balancing in 
Data and Operation Allocation. 
 

3.  Objective Function & Cost Model 
  

Database Statistics 
The main factor affecting the performance of an execution strategy is the size of the intermediate 
fragments produced during the execution of the sub operations of the query. As many 
intermediate relations or fragments will need to move over various sites, we need to estimate the 
size of them to determine transmission costs. This estimation is based on statistical information 
about base relation and formulas to predict the cardinalities of the results of operations [1]. 
 
The set of operations (sub-queries) generated in response to a query can be represented by an 
operator tree. Nodes of operator tree represent various operations and lines represent cost 
(based on size of fragment) of operation sequence. A site’s Local CPU and I/O costs are 
proportional to the size in bytes (blocks) of data processed and communication costs depend on 
communication coefficients between a pair of sites and bytes of blocks moved. 
 
The main assumptions are that Transaction Profiles are known a-priori, providing the details of 
frequencies of transaction at various sites, base relation sizes and allocation plan at various sites, 
communication coefficients giving cost of communication amongst various pair of sites and local 
I/O and CPU coefficients. Also query execution order is given, we emphasize on finding sub-
query allocation and cost associated to it with respect to allocation to various sites. 
Projection, Selection and Joins account for most of the sub-queries in a Database Query and for 
simplicity purposes, only these operations have been considered.  
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3.1 Objective Function Formulation  
We start by simulating a design of distributed database by taking a set ‘S’ of data distribution 
sites. Set ‘R’ of relations/fragments stored on those sites. A  Set ‘Q’ as set of transactions.  
Let a query transaction ‘q’ for retrieval, be broken into a set of ‘j’ sub queries on the ‘R’ set of 
relations. 
 

3.1.1 Decision Variables :- 
 

   (i)  Data Allocation Variable Ars 

 

   Ars  = 1 ( if site ‘S’ holds copy of relation/fragment ‘r’) 
 

      Ars  = 0     (otherwise i.e. fragment ‘r’ copy is not available at set S) 
 

(ii)  Variables for site selection for sub query execution: 
 

Sys
q 

:  ( Represents sequence of sub query execution at 
various sites in the life time of query) 

 
Sys

q 
= 1  ( if subquery ‘y’ of Query ‘q’ is done at site s ) 

 
Sys

q 
= 0  ( otherwise ) 

   
 (iii)  For Join operations a notation is proposed to handle left previous operation  
  operation of a join operation (LPO) & right previous operation of a join(RPO) as  
  following:         
 
     Syv[p]S   =   1  ( for [p] = 1 for left previous operation of a Join ) 
 
     Syv[p]S   =   1  (for [p] = 2 for right previous operation of a Join ) 
 
     Syv[p]S   =  0  otherwise 
  
 (iv)   I

q
ry  represents the query tree in such a way that sub query ‘y’ of   

   query  ‘q’ references the intermediate relation/fragment r. 
 
   I

q
ry = 1  ( if  the base relation ‘r’ or intermediate fragment ‘r’ is   

    used by sub query ‘y’ of ‘q’ query) 
 
   I

q
ry = 0  otherwise 

 
 (v)   For use of intermediate Relations by Join Operation 
 
   I

q
ryv[p] = 1  ( for lpo of join ‘y’ ) 

 
   I

q
ryv[p] = 1  ( for rpo of join ‘y’) 

 
   I

q
ryv[p] = 0  otherwise 

 
   By making use of above decision variables operation allocation   
   problem formulation is represented as, 
  
   Given a input data file highlighting data allocation scheme matrix,  
   given by S

q
ys Data Allocation Scheme Matrix: A base relation y   

   stored at site  s. 
    i.e.  
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  Given a Transaction Profile,a Data Allocation Sceme represented by variable Ars 

 
 
    And given  I

q
ry  intermediate relations/fragments is used by sub query y of  

    query   q 
 
  We have an objective Function to calculate as to find  S

q
ys 

 

   
 
3.1.2)   Cost model 
 
 Given a set of fragments 
 R = {r1,r2,…,rn}  
  
 & a network of sites. 
 S = {s1,s2,…,sm}  
 
 & a set of sub queries 
 Q = {q1,q2,…,qq} 
 
Sub Query Allocation problem involves finding the “optimal” possible distribution of R to S. 
Ozsu gives a model for Total cost as Total Cost Function having two components: query 
processing and storage cost as  
 
 TOC = ∑ QPCi + ∑vs€S∑ vfj€F STCjk 

 

Where   QPCi   is query processing cost of application  qi  and   STCjk   is the cost of storing 
fragment Fj at site Sk. 
 
We  choose Ozsu’s model  of  query cost as function of sum of local processing costs and 
transmission costs .We simplify it further by ignoring update costs and ignoring concurrency 
control costs as we are giving model for retrieval transactions(queries) only. Further concurrent 
retrievals don’t impose any more integrity control costs. 
Ozsu’s formulation  gives 
 
 QPCi  =  PCi  +  TCi  ( PC: Processing Cost, TC :Transmission Cost ) 
  
 & 
 
  PCi  =  ACi +  IEi + CCi  ( AC: Access Costs, IE : Integrity Enforcement Costs,   
     CC : Concurrent Update control costs ) 
 
 In our model we discard the sum of two costs components (IEi +CCi), because as discussed in 
Para above, we present a simple model of retrieval queries only. 
  
 Therefore Access Costs may be represented as  
 
 ACi = ∑vs€S∑ vfj€F  ( uij * URij  + rij * RRij ) * xjk * LPCk 

 
The summation gives total number of accesses for all the fragments  referenced by qi. Now 
xjk selects only those cost volume entries for sites where fragments are stored actually. 
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3.1.3)   Local Processing Costs 
 For Simple selection & projections 
 
 LOPC

q
y = ∑s S

q
ys(I POs  ∑r I

q
ryM

q
ry  +  CPCs  ∑r I

q
ryM

q
ry)   (1) 

 
 Where M

q
ry = No. of memory blocks of relations ‘r’ accessed by sub-query y of  q. 

 
 IPOs = Input Output Cost Coefficient of site s in msec per 8k bytes 
 
 CPCs = CPU Cost coefficient of site s. 
 
So equation (1) represents local processing costs of transforming input  relation from disk to 
memory and CPU time for processing a  Selection or  Projection at sites s. 
 
Ozsu’s  model ignores join’s local processing  cost details. For that we have extended this model 
to add local join costs details as following. 
 
  Local processing costs for a join 
 
 LOPC

q
y  =  ∑sS

q
ysIPOs∑p∑rpvI

q
ryv[p]Mq       2(a) 

       +  
    ∑sS

q
ys(IPOt∏rI

q
ryM

q
ry +  CPCs∏rI

q
ryM

q
ry)   2(b) 

 
 
 Where pv is Selectivity Factor & is referred as the ratio of possible different values  of a 
 field to the domain of that field.(0<= pv <=1) 
 
 Mryv[p] is the size of intermediate relation  
 
 where  v[p]  represents    p=1  for left previous operation of a join &   
     p=2  for right previous operation of a join. 
 
Equation 2(a) represents 
 
 Input Output costs in storing intermediate results of previous operations to the site of 
 current join operation. 
 
Equation 2(b) represents 
 
  CPU & I/O costs for performing current join operations at site ‘s’. 
 
3.1.4) Communication Costs: 
An involved in case of join operations only as we have assured that selections & projections of 
retrievals an to be done only at sites which hold a copy of that base relations. Join may be 
performed at any of possible sites. 
 

 COMM
q
y  =  ∑p ∑s ∑t  S

q
yv[m]s  *   S

q
ytCst ( ryv[p]  M

q
ryv[p]  ) 

 
 Where  
 
 Cst   ( is the communication cost coefficient taken from input data matrix ) 
 
 Cst = 0 if (s = t)  ( i.e. previous operations and join operation on same site ) 
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If final operation is not done at the query destination site then a Communication component is 
added separately for sending the final query result that site.  
 
 
 
 

4. THE GENETIC ALGORITHM (GA_OA) 
 GA_OA ( Genetic Algorithm for Operation Allocation)  starts by generating an initial pool of 
solutions by random generation of operation sequence at given number of sites. An improvement 
in this previous prevalent approach in [9][10] has been done in this GA is to use transaction 
profile statistics to generate it.  
 
Each chromosome is evaluated according to objective function and assigned a Fitness value 
accordingly. Next populations are generated using principles of GA  as in [3] i.e. applying 
SELECTION,CROSSOVER & MUTATION, The fitter a member is more chance it gets to enter 
the mating pool to generate next population. 
 
 Crossover is used so that off-spring shares features of both parents and possibly improves over 
them. Mutation operator is applied with very small probability like.02 ,so as some important 
features of parent population of chromosomes are not lost .Elitism is also applied, which ensure 
that best chromosome of previous population enters next population by 1oo percent probability. 
 
A sequence of integers like  2 1 3 3 4 1 is used to represent a chromosome such that it 
represents the sub-query allocation plan in the way that, that sub-query 1 is done at site 2, sub-
query 2 is done at site1, sub-query 3 is done at site3, sub-query 4 is done at site 3, sub-query 5 is 
done at site 4, sub-query 6 is done at site 1. 
 
 A Structured English representation of GA_OA is outlined below: 
 
  

1. Generate an initial population pool of chromosomes, based on half the members of 
the pool generated from transaction profiles, data allocation profiles and others 
selecting randomly over no. of sites . 

 
2. Evaluate the fitness of each member based on objective function to reduce the total 

cost of a query. 
 
3. Based on Stochastic remainder method select and give more chance to fitter 

members to enter a mating pool according to probability proportional to their fitness 
value. 

 
4. To enable Elitism, enter the most  fit member of previous generation in mating pool, 

by replacing it with least fit. 
 
5. Apply crossover (probability=0.7) and mutation (0.2) to generate a new population 

pool. 
    

 6.   Repeat steps 2 to 5 until maximum no of generations are generated. 
 
5.  EXPERIMENTS & RESULTS   
Experiments were conducted after coding the GA_OA simulator on an Intel® core™ 2 6420 @ 
2.13 GHz machine with 1.00 GB RAM on WINDOWS-XP platform. Exhaustive Enumeration 
simulator program was developed with varying all possible permutations of sub-query allocation 
sequence. It was observed that Exhaustive Enumeration run time rises exponentially as 
compared to GA when we increase no. of joins or no. of sites. When no. of joins are increased 
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from 4 to 10 Exhaustive_ Enumeration chokes very quickly but GA Run Time rises slowly. In case 
of increasing the number of sites ,Run Time for GA increases linearly whereas Exhaustive_ 
Enumeration rises exponentially and very quickly becomes almost intractable. 

 
The performance of simulator varied as we vary genetic operators Crossover and Mutation as 
highlighted by the subsequent graphs, A crossover value of 0.6 was found giving optimal results 
and mutation parameter of 0.2 achieved optimal solution in least number of generations. 
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6.  CONSLUSION & FUTURE WORK 

The aim of this research paper is limited to proposing a stochastic solution to the operation 
allocation problem of Distributed Database Design. Most of the commercial vendors of Distributed 
DBMS to date use exhaustive enumeration procedures along with different heuristics. They also 
incorporate solutions based on other algorithm design techniques like Dynamic Programming, 
Backtracking etc. This paper highlights that exhaustive procedures quickly go intractable when 
No. of sites, or, No. of joins are increased suddenly. Exhaustive Enumerations along with 
heuristics guarantee an optimal solution but total time of query is too large to be practically 
viable.GA_OA does not guarantee the most optimal solution but provides very near to the best 
solution in a very short span of time.  
 
In future efforts should be done to incorporate Genetic Based Solutions to allocation problems of 
Distributed Database. More work needed to be done to ensure that an optimal solution is 
guaranteed in most of situations by GA’s. Furthermore Fragmentation, operation allocation and 
Data Allocation and Load Balancing need to be integrated in one robust Genetic Solution. 
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