
Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 1

Using Model-Driven Engineering for Decision Support Systems
Modelling, Implementation and Powering

Apollinaire Bamana Batoure apollinaire.batoure@univ-ndere.cm
University Institute of Technology
The University of Ngaoundere
Ngaoundere, Cameroon

Kolyang kolyang@univ-maroua.cm
Higher Teachers’ Training College
The University of Maroua
Maroua, Cameroon

Abstract

Following the principle of everything is object, software development engineering has moved
towards the principle of everything is model, through Model Driven Engineering (MDE). Its
implementation is based on models and their successive transformations, which allow starting
from the requirements specification to the code’s implementation. This engineering is used in the
development of information systems, including Decision-Support Systems (DSS). Here we use
MDE to propose an DSS development approach, using the Multidimensional Canonical
Partitioning (MCP) design approach and a design pattern. We also use model’s transformation in
order to obtain not only implementation codes, but also data warehouse feeds.

Keywords: Model Driven Engineering, Multidimensional Canonical Partitioning, Multidimensional
Design Pattern, Model Transformation.

1. INTRODUCTION

Within the framework of information systems realization, the Object Management Group (OMG)
proposed the development by models [1] called Model-Driven Engineering (MDE). This
engineering allows the assisted and controlled passage between models, with four abstraction
levels. Transformations are possible between and within models [2]. At each of these levels or
models, specific actions to be performed are established. The exclusive use of models and
transformations is what makes MDE different from the classical information systems developing
approach.

In this paper, we use model-driven engineering to coordinate the overall process of modelling
(conceptual, logical and physical), implementing and powering a decision system. For this
purpose, we use previous results, namely:

 the multidimensional partitioning approach [3, 4] which allows to design a
multidimensional data schema in six steps;

 a multidimensional and spatio-temporal design pattern, which will guide the generation of
the data schema [5, 21].

After this introduction, we will bring up system development through models and their use in
decision-making systems. We will then describe the actions carried out within the different phases
of the proposed architecture. It will be presented at last, just before the conclusion.

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 2

2. DEVELOPMENT THROUGH MODELS

Following the object approach and its everything is an object principle, software engineering has
moved towards the everything is a model principle, through Model Driven Engineering (MDE) [6,
7]. It is a discipline that places models at the centre of software engineering processes. The basic
idea is the separation of the functional specifications of a system from the details of its
implementation on a given platform [8]. Its implementation is entirely based on models and their
transformations [9, 10].

In mathematics, a model is a translation of reality in order to apply tools, techniques and theories
to it. In computer science, its objective is to structure data, processing and information flows
between entities [11]. A model is an abstract description of an entity in the real world, using a
given formalism. It will be used first to model the application and then, by successive
transformations, to generate the implementation code [8].

In MDE, a model describes real-world instances. The model is itself described by a language
called a meta-model. The language on languages is called meta-meta-model. It is self-described.
We thus deduce an architecture with four abstraction levels, in addition to the description of the
instances of the real world. This relationship is illustrated by Figure 1, adapted from the MDA
Guide, version 2 [12]. More concretely, a model represents, through a system, a field reality. The
model is described by a legend, which is a meta-model. The legend itself follows a number of
rules that constitute the meta-meta-model or language on language.

FIGURE 1: Levels of Model Abstraction.

The advantages of a model are that it is abstract, understandable, accurate, predictive,
timesaving, reusable, extensible, flexible and documented [6, 13]. To this can be added
productivity, portability, interoperability, easy maintenance and documentation [14]. The model-
based development approach makes the quotation model once and generate anywhere concrete
[10, 15]. To do so, it proposes an application development based on the elaboration of a platform-
independent model and its transformation into a model dependent and a specific platform, on
which the system is implemented and deployed [2]. For its implementation, model-based
development is made up of several standards [2, 7]. These standards aim at perpetuating the
different models. We will use in this work, the QVT (Query View Transformations) standard [6, 11,
12].

In the development process, everything is considered as a model, both the data schemas and the
source code. Thus, the code is no longer a central element, but the result of the model
transformation. These models or levels of this engineering are [6, 7]:

 Computation Independent Model (CIM) or business requirements model;

 Platform Independent Model (PIM) or analysis and design model;

 Platform Specific Model (PSM) or detailed design and code model;

 Platform Description Model (PDM) or description of the system runtime environment.

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 3

The implementation of all these models and the associated transformations makes it possible to
define a Y development cycle [16]. The passage between the different models is achieved by
transformations. Model transformation is the process that converts one model into another model
of the same system. Three types of transformations are identified [2, 7, 9]. They are:

 vertical (CIM → PIM, PIM → PSM)

 horizontal (PIM → PIM, PSM → PSM)

 or reverse (code to PSM, PSM to PIM and PIM to CIM).

Reverse transformations build models from existing applications and thus implement
reengineering techniques.

3. MODELS IN THE DEVELOPMENT OF DECISION SUPPORT SYSTEMS

With regard to the modelling of Decision Support Systems (DSS), the first model-driven proposal
was done in 2003 [16]. This work proposes an approach based on the different packages of the
Common Warehouse Meta-model (CWM) and from a UML formalism. Most of the work that
followed was proposed around 2010. Some approaches simply provide a set of steps to guide the
designer in the development of the conceptual model. Others present in addition, the logical
model and eventually the physical model [14].

Zepada et al. in [17] proposed a mixed modelling approach summarized in three phases. The first
phase is devoted to the examination and reorganization of the Entity/Relationship (E/A) schemas
of the legacy database, in order to determine the multidimensional elements. In the second
phase, the needs of the company's users (or decision-makers) are taken into account. The last
phase integrates the two points of view and generates the solution supporting the source of data
that best reflects the needs of the decision-makers. Rules for transforming E/R meta-models into
OLAP (On-Line Analytical Processing) meta-models are defined.

The work of Essaidi and Osmani ([18]) brings together Unify Processing (UP) engineering and
model engineering (MDE) for the design and development of DSS. Model engineering is used for
system design within an integrated and standard framework. While process engineering, through
2TUP (2 Track Unified Process), is used for the iterative development of the decision-making
system.

Mazon and Trujillo ([19]) use model engineering throughout the data warehouse development
process. To do so, they defined the UML (Unified Modelling Language) and CWM (Common
Warehouse Meta-model) profiles needed to describe these models. The QVT language is used
for transformations and source code generation.

Mazon and Trujillo, this time in [20], proposed a hybrid approach based on model engineering for
the design of BI (Business Intelligence) systems. It involves five steps, which are:

 the definition of information needs at the CIM level;

 the derivation of an initial PIM from the CIM;

 taking into account existing data and systems to generate a hybrid PIM;

 the CWM is used to define the PSM tailored to the different database technologies;

 finally, the implementation of the various QVT between models, and generation of data
warehouse codes.

Atigui et al ([13]) model the decision-making system by including the associated ETL (Extraction-
Transformation-Loading) processes. They take into account the complete development cycle, i.e.
needs analysis, conceptual, logical and physical modelling in addition to ETL processes. The
proposed approach is said to be mixed, unified and automatic. Conceptual modelling is done
using a UML profile for data warehouses. Logical modelling is done through a software choice of
ROLAP (Relational OLAP), MOLAP (Multidimensional OLAP), HOLAP (Hybrid OLAP) or XML,

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 4

depending on the case. The physical modelling is implemented by materialized views that
facilitate calculation, storage, automatic update and refresh through the chosen DBMS. The QVT
language is used for model’s translation.

Hachaichi et al. in [15] proposed a model-driven approach based on the use of multidimensional
patterns. The multidimensional pattern is used for the expression of requirements. Model
engineering is used to coordinate the implementation cycle of the DSS.

The MDE development approach we propose in this work, takes into account a design approach
for DSS [3, 4], a multidimensional design pattern [5] and transformations, according to the QVT
language [23, 24]. The transformations are defined for the transition between the CIM to PIM and
then to PSM. This approach has the advantage of modelling both the decision system and the
feed processes. In the following section, we will describe the actions at the different phases of
engineering, before presenting the proposed architecture.

4. ACTIONS AT THE REQUIREMENTS LEVEL

The Computation Independent Model (CIM), or requirements model, is the business model. It
helps to represent exactly what the system should do, without specifying the details of how. Its
purpose is to promote understanding of the problem and to establish a common vocabulary. The
requirements expressed in this model help in the construction of the successor models (PIM and
PSM).

Thus, this level aims at producing the multi-dimensional data schema, which will then be refined
and implemented. It further describes step 6 of the MCP (Multidimensional Canonical Partitioning)
approach [3]. It consists of generating the data schema from the multidimensional elements
(dimensions, hierarchies, fact tables) obtained in steps 4 and 5 of the MCP approach. For this, we
use the elements of the multidimensional annotation (AM), the design pattern and the QVT
language for model transformations. From these elements, the design pattern (PM) and the
transformation language (QVT), the ready-to-implement data store (MD) is generated. Figure 2
illustrates the transformations to be performed in step 6 of the multidimensional canonical
partitioning approach, in order to output the specific computational model or data store (MD).

FIGURE 2: Actions at CIM Level.

Query View Transformation (QVT) is a declarative language standardized by the OMG. A QVT
transformation between two candidate models is specified through a set of relationships. Each
transformation is composed of the following elements [13, 17, 19, 23, 24]:

 Domains, which refers to a candidate model and a set of elements to be linked;

 Domain Relationship, which specifies the type of relationship between domains. It can be
marked as Checkonly (C) or Enforced (E).

A Checkonly domain is used to check whether there is a valid match that satisfies the
relationship. While an Enforced domain allows you to create an element in the model, if the match
link is checked.

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 5

The When clause describes the preconditions that must be met in order to carry out the
transformation. While the Where clause determines the post-conditions to be met by all model
elements participating in the relationship.

A transformation contains two types of relationships: top-level and non-top-level. The execution of
a transformation requires that all top-level relations are executed, whereas non-top-level relations
must be executed when they are invoked, directly or transitively from the Where clause of another
relation.

4.1 Description of The Transformation Rules
The initial model is the multidimensional annotation (AM), and the target model is the data store
(MD), instantiated from a design pattern, defined in [5]. The elements of multidimensional
annotation are:

 dimensions + dimension attributes + associations to facts or to hierarchies;

 hierarchies + attributes of hierarchies + association to dimension or other hierarchy;

 facts + measures.

A formal description of the elements of multidimensional annotation is given by Atigui et al. in
[13].

We start with the transformations from dimension to dimension table, then from hierarchy to
hierarchy table, and finally from facts to facts table. The transformations rules are defined as
follows:

R1: Transformation of dimension into dimension table

 Each dimension in AM is transformed into a dimension table in MD + primary key (CP);

 Each dimension attribute in AM is transformed into a dimension attribute in MD;

 The spatial and temporal dimensions are taken into account in a particular way, following
the archetype of the multidimensional pattern [5].

R2: Transformation of hierarchy into hierarchy table

 Each hierarchy in AM is transformed into a hierarchy table in MD + primary key;

 Each hierarchy attribute in AM is transformed into a hierarchy attribute in MD;

 A referential relationship is created with the other hierarchy tables and/or the dimension.
R3: Transformation of facts into table of facts

 Each fact in AM is transformed into a table of facts in MD + primary key;

 A referential relation is created between the fact table and the corresponding dimensions;

 Each fact measure in AM is transformed into a fact attribute in MD.

The transformations to be executed are thus Main, DimensionToTable, HierarchyToTable and
FactToTable.

4.2 Carrying Out The Transformations
The meta-models used for transformations are MetaModelAM (initial model) for multidimensional
annotation and MetaModelMD (target model) for the data warehouse. The QVT language
programs, corresponding to the transformations, are shown in Table 1.

The programs presented in these tables are model transformations. The first one is the principal
(main). It describes how to switch from MetaModelAM to MetaModelMD. In the checkonly
domain block, the elements of the initial model are declared. In the enforce domain block, the
elements of the target model are declared. The where clause contains the procedures defined as
top relation, which will be executed as needed.

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 6

In the other procedures (DimensionToTable, FactToTable and HierarchyToTable), one declares
the initial elements (checkonly domain) and the target elements (enforce domain); the possible
preconditions (when) and post-conditions (where) to be checked for the transformation to take
place.

Transformation AM2MD (in am :
MetalModelAM, out md :
MetalModelMD) name : : string ;
top relation main {
checkonly domain {
am : : MetalModelAM ;
name = n ;
Dimension = amd : : MetalModelAM ;
Hierachy = amh : : MetalModelAM ;
Fact = amf : : MetalModelAM ;}
enforce domain {
md : : MetaModelMD ;
name = n ;
Dtable = td : : MetaModelMD ;
Htable = th : : MetaModelMD ;
Ftable = tf : : MetaModelMD ;}
where
{DimensionToTable (amd, td) ;
HierarchyToTable (amh, th) ;
FactToTable (amf, tf) ;}
}

Top relation HierarchyToTable {
dimtable = dt : : MetaModelMD ;
hierTable = ht’ : : MetaModelMD ;
checkonly domain { hname = n ;
hierarchy = amh : : MetaModelAM ;
hierForeignKey = hfk : : MetaModelAM ;
hierAtt = ha : : MetaModelAM ;
parameter = p : : MetaModelAM ;}
enforce domain { tname = n ;
hiertable = ht : : MetaModelMD ;
hiertablefk = htfk : : MetaModelMD ;
hiertableatt = hta : : MetaModelMD ;
rel = RelationShip (a, b) ;}
when {
RelationShip (dt, ht) OR RelationShip (ht’,
ht) ;}
where {
ParameterToPrimaryKey (p, htfk) ;
HierAttToHierTableAtt (ha, hta) ;
HierFKToHierTableFK (hfk, htfk) ;}
}

Top relation DimensionToTable {
checkonly domain { dname = n ;
parameter = amp : : MetaModelAM ;
dimatt = da : : MetaModelAM ;
hierarchy = h : : MetaModelAM ;}
enforce domain {
tname = n ;
dimtable = dt : : MetaModelMD ;
primarykey = pk : : MetaModelMD ;
dimtableatt = dta : : MetaModelMD ;}
where {
ParameterToPrimaryKey (amp, pk) ;
DimAttToDimTableAtt (da, dta) ;}
}

Top relation FactToTable {
dimtable = dt : : MetaModelMD ;
checkonly domain { fname = n ;
fact = amf : : MetaModelAM ;
measure = amm : : MetaModelAM ;}
enforce domain { tname = n ;
facttable = ft : : MetaModelMD ;
foreignkey = fk : : MetaModelMD ;
primarykey = pk : : MetaModelMD ;
factatt = fa : : MetaModelMD ;}
when {RelationShip (dt, ft) ;}
where {MeasureToFactAtt (amm, fa) ;
ParameterToForeignKey (dt.pk, fk) ;}
}

TABLE 1: Transformation QVT Programs.

The transformations are also described schematically. Thus, in the diagrams of figures 3, 4, 5 and
6, the four transformations are described by their initial elements, those of target, then pre- and
post-conditions.

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 7

FIGURE 3: Description of The Main Transformation.

FIGURE 4: Description of The HierarchyToTable Transformation.

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 8

FIGURE 5: Description of The DimensionToTable Transformation.

FIGURE 6: Description of The FactToTable Transformation.

These QVT codes have thus enabled us to carry out the necessary transformations at the CIM
level. The resulting multidimensional data schema is the input element of the PIM level.

5. ACTIONS AT OTHER LEVELS OF ARCHITECTURE

The other levels are Platform Independent Model (PIM), Platform Dependent Model (PSM) and
description of platform used, called Platform Description Model (PDM).

5.1 Platform-independent Actions
The Platform Independent Model (PIM), or analysis and design model, defines the structure and
behaviour of the system. It describes the system without showing the details of its implementation
on a given platform. It will be refined by the specificities of one or more particular architecture(s).

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 9

At the input of this level, we have a data schema that best solves the problem posed from the
previous level. This schema is refined at the level of data types, their domains and constraints,
the different triggers and the implementation techniques retained. For this, several types of meta-
models or implementation models can be used. These implementations are Relational OLAP,
Multidimensional OLAP, Hybrid OLAP or Dynamic OLAP models. Here we use the ROLAP meta-
model, to which we will add the spatio-temporal aspects.

The transformations at this level are the transition from the conceptual multidimensional schema
to the logical multidimensional schema. We use the cardinalities of the associations between
entities and primary and/or referential integrities. The transformations rules are summarized
below. They are inspired by the passage from a conceptual data model to a relational model [22].
These rules are:

 each entity becomes a table;

 each property of an entity becomes an attribute of the table;

 the entity identifier becomes the primary key of the table;

 the mesh links (1..n or 0..n) result in the creation of a new entity;

 hierarchical links (0..1 to 0..n or 1..n) result in key migration.

After the transformation into a logical data schema, the types, domains and constraints on each
attribute are specified. This phase produces a data dictionary. At the output of the PIM level, we
have a data schema ready to be implemented on a chosen platform.

5.2 Platform-dependent Actions
The Platform Specific Model (PSM), or detailed design and code model, is the projection of a PIM
onto a given platform. The PSM is generated for each technology platform. It also includes code
generation, optimization, compilation, packaging, initialization and system configuration. A PSM is
thus generated from a PIM. To do this, it is based on the platform used, as well as its description.
In this model, we take into consideration the ready-to-implement logical data schema from the
previous level.

Transformation at this level is the transition from the logical model to the implementation and feed
codes of the data warehouse. It is done according to the chosen platform. The data warehouse is
implemented in a relational DBMS. A multidimensional server is used for the analyses and views
in the form of hypercubes. Feeding processes are developed in a specific environment, using
ETL tools. Thus, the entire deployment of the data warehouse and its feed processes can be
done.

5.3 Action At The Platform Description Level (PDM)
The Platform Description Model (PDM), on the other hand, describes the environment on which
the system will be implemented and run. It allows us to describe, through manuals, tutorials and
others, the use of the selected platforms. In this case, we have a DBMS (Relational and Spatial),
a multidimensional database server, an ETL environment, the query and programming languages
necessary to implement, deploy and feed the data warehouse.

The following section presents the overall architecture for the development of the decision-
support system, through the models we propose.

6. DEVELOPMENT ARCHITECTURE

The set of actions to be carried out, at the level of the different models, as presented above,
allows us to deduce the diagram in Figure 7.

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 10

The architecture presented has four levels. These levels are those of model engineering. At each
level, the actions carried out there are presented. These are the input elements, the
transformations, the results obtained, or the implementation choices made.

FIGURE 7: Model-Based Development Architecture.

The summary of this diagram is as follows:

 at the CIM level, the multidimensional elements from the first five steps of the MCP
approach and the design pattern are taken as input. Using QVT languages, the
multidimensional data schema is obtained. This is equivalent to step 6 of the MCP
approach;

 at the PIM level, the conceptual data schema obtained previously is transformed into a
logical data schema, ready for implementation. The implementation is done according to
a technological choice of the decision domain. Among these possibilities, we choose the
relational and spatial decision model;

 from the logic diagram and the technological model, transformations are carried out at the
PSM level, in order to obtain the codes for both implementation and data supply. The
tools needed here are a relational and spatial DBMS, a multidimensional server and the
powering processes;

 The PDM level allows the description of the different tools that are used.

At the end of the application of these phases, we have an operational, fed, powered and ready for
operating data warehouse.

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 11

The approach we proposed, comparing to other one such as [13, 15, 17, 18, 19, 20, 25, 26,
28, 29], is original because it takes into account:

 A new DSS modelling approach ([3, 4]);

 Spatio-temporal data ([5]);

 And uses model driven engineering (present works).

Furthermore, it takes into consideration, in the same approach, the modelling, development,
implementation and powering of the DSS. Afterward, we can apply on the obtained DSS,
data mining and knowledge extraction technics.

7. CONCLUSION

The present work ends a series of four papers on a decision-support system approach. It
combines the multidimensional canonical partitioning approach, multidimensional pattern and
model engineering, to propose an approach for the design, development, implementation
and powering of decision-support systems. The developed decisional systems take into
account both attribute and spatio-temporal data. This is why the approach can be applied to
all domains, using spatio-temporal reference data. Next steps will lead us to apply the whole
approach on spatio-temporal domain, such as the one of urban sector.

8. REFERENCES
[1] V.G. Díaz, J.M.C. Lovelle, B.C.P. García-Bustelo, O.M. Sanjuán. “Advances and
 Applications in Model-Driven Engineering”. In ASASEHPC, IGI Global, 2014.

[2] Y. Rhazali, Y. Hadi and A. Mouloudi. “Model Transformation with ATL into MDA from CIM to
 PIM Structured through MVC”. In Procedia Computer Science, Vol. 83, pp. 1096-1101, 2016.

[3] A.B. Batoure, Kolyang and M. Tchotsoua. “Using Multidimensional Canonical Partitioning
 (MCP) as a Supply-Driven Approach for Data Warehouses Design”. International Journal of
 Computer (IJC), 25(1), 2017, pp. 52–62.

[4] A.B. Batoure and Kolyang. “Designing Decision Support Systems Approaches using
 Entity/Relationship Data Schema: A Survey”. International Journal of Scientific &
 Engineering Research (IJSER), Volume 9, Issue 9, September 2018.

[5] A.B. Batoure and Kolyang. “Multidimensional and Spatio-temporal Design Pattern to
 generate Data Warehouses schema”. International Journal of Computer Applications
 Technology and Research, Volume 9–Issue 06, 2020, pp. 211-216.

[6] X. Blanc and O. Salvatori. MDA in action: Model-driven software engineering. Eyrolles,
 Paris, 2011.

[7] L.G. Cretu, and F. Dumitriu. Model-Driven Engineering of Information Systems: Principles,
 Techniques, and Practice. Apple Academic Press, Inc., 2015.

[8] S. Diaw, R. Lbath, and B. Coulette. “State of the art on software development based on
 model transformations”. TSI Special Issue - Model Driven Engineering, 29(2), 2010, pp. 4-5.

[9] H. Kadima. MDA: Model Driven Object Oriented Design. Dunud, Paris, 2005.

[10] L.F. Pires, S. Hammoudi and B. Selic. “Model-Driven Engineering and Software
 Development”. In 5th International Conference, MODELSWARD 2017 Porto, Portugal.

[11] B. Combemale. “Model-driven engineering: state of the art. Technical report”. Institut de
 Recherche en Informatique de Toulouse, Toulouse, 2009.

Apollinaire Bamana Batoure & Kolyang

International Journal of Data Engineering (IJDE), Volume (8) : Issue (1) : 2020 12

[12] J.M. Siegel. MDA Guide revision 2.0. Technical report, OMG, Boston, 2014.

[13] F. Atigui, F. Ravat, O. Teste and G. Zurfluh. “A model-driven approach to the design of
 multidimensional data warehouses”. In IRIT (GIS/ED), 2010.

[14] F. Atigui. “Model-driven approach for the implementation and reduction of data warehouses”.
 PhD thesis, University of Toulouse, 2013.

[15] Y. Hachaichi, H. Ben-Abdallah and J. Feki. “Towards an MDA approach to data warehouse
 development”. In Systèmes d'Information et Intelligence Economique, pages 158-170, 2008.

[16] J.D. Poole. “Model Driven Data Warehousing (MDDW)”. Technical report, OMG Announces
 Integrate, Burlingame, California, USA, 2010.

[17] L. Zepada, L. Celma and R. Zatarain. “Mixed Approach for Data Warahouse Conceptual
 Design with MDA”. In International Conference on Computational Science and Its
 Applications (ICCSA’08), pages 1204–1217, 2008.

[18] M. Essaidi and A. Osmani. “Data warehouse development using MDA and 2TUP”. In 18th
 International Conference on Software Engineering and Data Engineering 2009, SEDE 2009,
 (1) :138–143, 2009.

[19] J.-N. Mazón and J. Trujillo. “An MDA approach for the development of data warehouses”.
 Decision Support Systems, 45(1) :41–58, 2008.

[20] J.-N. Mazón and J. Trujillo. “A hybrid model driven development framework for the
 multidimensional modelling of data warehouses”. ACM SIGMOD Record, 38(2), 2009.

[21] A. B. Batoure and M. Tchotsoua. “Use of open source software for the management of
 spatially referenced data”. Africa Science, 13(3) :377 - 389, 2017.

[22] J. Akoka and I. Comyn-Wattiau. Conception des bases de données relationnelles, en
 pratique. Vuibert, Collection Informatique, Paris, 2001.

[23] OMG, “MOF 2.0 Query/View/Transformation (QVT)”, V1.0. OMG Document – formal/08-04-
 03, 2008.

[24] I. Arrassen, A. Meziane, R. Sbai and M. Erramdani. “QVT Transformation by Modelling –
 From UML Model to MD Model”. International Journal of Advanced Computer Science and
 Applications (IJACSA), 2 (5), 2011, pp. 7-14.

[25] L.A. Fernandes, B.H. Neto, V. Fagundes, G.Z. da Silva, J.M. De Souza, R.S. Monteiro.
 “Model-Driven Architecture Approach for Data Warehouse”. Sixth International Conference
 on Autonomic and Autonomous Systems, ICAS 2010, Cancun, Mexico.

[26] F. Atigui, F. Ravat, R. Tournier and G..A Zurfluh. “Unified Model Driven Methodology For Data
 Warehouses And ETL Design”. InProceedings of the 13th International Conference on
 Enterprise Information Systems (ICEIS-2011), pages 247-252.

[27] J.-N. Mazón, J. Trujillo, M.A. Serrano, M. Piattini. “Applying MDA to the development of data
 warehouses”. DOLAP 2005, ACM 8th International Workshop on Data Warehousing and
 OLAP, Bremen, Germany, November 4-5, 2005.

[28] O. Betari, S. Filali, A. Azzaoui, M.A. Boubnad. “Applying a Model Driven Architecture
 Approach: Transforming CIM to PIM Using UML”. iJOE - Vol. 14, No. 9, 2018, pp. 171-181.

[29] A. Azzaoui, O. Rabhi, A. Mani. “A Model Driven Architecture Approach to Generate
 Multidimensional Schemas of Data Warehouses”. iJOE - Vol. 15, No. 12, 2019, pp. 19-31.

