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Abstract 

 
This paper presents a mode-switching sliding-mode control (MSMC) scheme that 
combines different sliding-mode control schemes to alleviate adverse effect while 
achieving precise control tasks. To achieve certain robustness and chattering 
alleviation, a design of disturbance observer based state-dependent boundary 
layer is proposed. The proposed method will provide a state-dependent 
boundary-layer in which the unknown dynamics is estimated a disturbance 
observer and then utilize it to calculate the width of boundary layer on-line. The 
convergent analysis of this state-dependent boundary-layer is provided with two 
theorems. Finally, its efficacy is further validated through experiments on the 
regulation control of a maglev platform. 
 
Keywords: sliding mode, mode-switching, boundary layer, maglev platform. 

 
 

1. INTRODUCTION 

Sliding mode control (SMC), a high-speed switching feedback control methodology, has received 
much attention both in theory and applications for the last decades. Generally, one of its salient 
features is known to be its robustness against uncertainties both in system parameters and 
dynamics [1][2]. However, one of the major drawbacks of the sliding mode control is the adverse 
chatters while the controller input undergoes very fast activity of switching [3]. Nevertheless most 
SMC designs prove its efficacy in maintaining both stability and robust performance in 
counteracting modeling imprecision and external disturbances as well. The chatters can always 
be alleviated by the so-called boundary layer approach [4], in which the discontinuous control 
activity is replaced by a continuous control effort inside a preset boundary layer around the 
switching surface. However, its robust performance would inevitably be deteriorated with this 
augmented boundary-layer. In general, the layer thickness or width is either fixed or time 
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invariant, tradeoffs between alleviated chatters and robust performance could highly depend on 
the choice of layer thickness. Physically speaking, the boundary layer can be approximated as a 
low-pass filter for a high frequency switching output, the cut-off frequency of this filter would be 
very difficult to be determined, however. In [5], the controller design adopted physical properties 
of a robot manipulator and a set of time-varying switching gains and boundary layer are 
incorporated in the sliding mode controller to accelerate the state trajectories moving toward the 
sliding hyper-plane, the design turned out to be much complicated and the system dynamics must 
be known as a priori.   
 
A state-dependent boundary layer approach were proposed by [6][7], in which the thickness of 
boundary layer can be adjusted online based-on the state norm for a class of uncertain linear 
systems. On the other hand, aimed at nonlinear systems, a mode-switching control (MSC) 
scheme is usually adopted to improve the accuracy and robustness of controller design. In [8], 
Iwasaki, Sakai and Matsui applied the MSC in a two-degree-of -freedom position control system 
to achieve both fast response and high accuracy. And Takashi, Hidehiko and Hiromu [9] proposed 
the MSC with initial value compensation to determine the optimal switching conditions for the disk 
drives. In[10], different SMC schemes based on mode switching was reported, it is noted that 
difficulties were encountered in the compromising between compatibility and robustness while 
mode switching took place.  
 
The SMC design provides an effective approach in maintaining stability and robust performance 
due to modeling imprecision. However, the performance of controller will be deteriorated with 
augmented boundary-layer approach, and the steady-state error will occur. The integral SMC can 
reduce the steady-state error and chattering as compared to boundary-layer approach, but the 
additional integral term could cause the actuator’s windup. This paper is aimed to propose a 
mode-switching sliding-mode control (MSMC) scheme that combines different SMC schemes to 
alleviate adverse effect while achieving precise control task. Here, both compatibility and 
robustness are resolved by a disturbance observer based state-dependent boundary layer design 
incorporated with MSMC is proposed. This proposed scheme can estimate uncertainties by a 
disturbance observer and then utilize it to calculate the thickness/width of the boundary layer on-
line. Finally, to demonstrate the efficacy and feasibility of the proposed method, a maglev platform 
is devised to validate the proposed schemes through experiment studies. 
 
 

2. PROBLEM STATEMENT 

Consider an uncertain SISO system with matched uncertainties [10] and described as 
= + +q q( ) ( , ( , )nq f t b t u d)                                                                                        (1) 

where q is the output, u is the control input, and −=q ( 1)[ ]n Tq q q  is the corresponding state 
vector. b(t,q) is a non-zero function and of known sign as a priori. f(t,q) and b(t,q) are bounded 
uncertain functions, d is bounded disturbance and satisfies the following inequalities. 

q q q q− ≤ − ≤( , ) ( , ) ; ( , ) ( , )f t f t F b t b t B ; ≤d D                                                              (2) 

Where ( , )f t q  and ( , )b t q  are nominal functions. If we further assume that qd is the command 
vector to be tracked, and its initial state vector is known as qd(0)=q(0). We can then define 
= −q q qd  to be the tracking error, thus = −q q qd

−= ( 1)[ ]n Tq q q  being the tracking error vector. 
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Lemma 1 Slotine(1983)[5]: 
A time-varying surface s(t) defined in R(n) can be defined by a scalar equation ( , )s q t =0 and 
shown as below 

     λ −= + 1( , ) ( )nds q t q
dt

                                                                                               (3) 

In which λ is a positive constant. Furthermore, bounds on s can be directly related to bounds on 
the tracking error vector q , therefore ( , )s q t  represents a true measure of the tracking 
performance. Specifically, assuming q (0)=0, the bound of tracking error can be written as 

λ ε≤ = − ∀ ≥( ) ( ) (2 ) 0,1,..., 1; 0i iq t i n t                                                                    (4) 

where ε λ −= Φ 1/ n  is the boundary layer width.  
 
Lemma 2 Slotine(1983)[5]: 
To reduce chatters induced by imperfect switching, the discontinuous control can be 
approximated inside a boundary layer located around the switching surface, while Φ , the 
thickness of the boundary layer is state-dependent or time-varying and a filtered output of a pre-
specified trajectory k(qd) and sliding motion is asymptotically stable. And,  

( )η≤ Φ −ss s                                                                                                         (5) 

( )λΦ + Φ = qdk                                                                                                       (6) 

Supposed that we wish to design a sliding-mode control system with at least two sliding surfaces 
and both accompany with state-dependent boundary layer, a Mode-Switching Control scheme is 
thus augmented to achieve fast transient response, less chatters with better robustness. Without 
the loss of generality, we consider the switching between two sliding-mode schemes, e.g. a 
sliding-mode control (SMC) scheme and an integral sliding-mode control (ISMC) scheme, they 
are depicted as follows. 

λ

λ

−⎧ = + ≥ Φ⎪⎪
⎨
⎪ = + < Φ
⎪⎩ ∫

1

0

( )        

( )

n

tn
I I I

ds q s
dt
ds qdt s
dt

                                                                                (7) 

Here s and sI are the sliding variables, dq q q= − , q is the generalized coordinate, dq  is the 
desired output; Φ  is the pre-specified layer thickness, while λ  and Iλ  are the corresponding 
eigenvalues of the sliding mode control and integral sliding mode control, respectively. From (3), 
for n=2 we will have the following estimates of the bounds ε  and Iε  on errors, 

ε
λ
Φ

=  and 
2I

I

ε
λ
Φ

=                                                                                              (8) 

If 2 Iλ λ≤ , ε  will be equal to or less than Iε  which implies that one cannot ensure ISMC will t 
switching back to SMC, while 2 Iλ λ> , ISMC will converge to 0 Iq ε< <  provided that no 
disturbance is encounter.  Consequently, It is concluded that if 2 Iλ λ≠ , sliding variable will 
encounter compatibility problem while switching occurs between s < Φ  and Is > Φ . Instead of 
switching based on the sliding variable, for n=2, the mode-switching condition needs to be 
modified as follows [9]. 

22
s

t

I I t

q q
s

q q qdt

λ

λ λ

⎧ +⎪= ⎨
+ +⎪⎩ ∫

 switching at st and q ε=                                                   (9) 

Here st  is the pre-specified time of switching, /ε λ= Φ  is the pre-specified layer width while 
switching occurs. The choice of thickness will affect the robustness As described by [7], a state-
dependent boundary layer control is capable of ensuring effective chattering alleviation with state-
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dependent uncertainties but the adverse effect of external disturbances still exist, in other words, 
ineffective switching might occur on (9) without a better estimation on the bounds of disturbances. 
 
 

3. A STATE-DEPENDNET BOUNDARY LAYER WITH DISTURBANCE 
OBSERVER 

As shown in Fig. 1, consider the dynamic system as described in (1), we wish to track a desired 
command qd(t), a pole-placement design using feedback-linearization technique leads to the 
following control law[11]. 

 

 

 

 

 

 
 

FIGURE 1: Block diagram of the proposed controller with disturbance observer 
 

1
( ) ( )

0

1 ˆ[ ( , ) ]ˆ( , )

n
n n

pa d i
i

u u f t q q c q
b t q

−

=

= = − + −∑                                                                   (10) 

in which upa represents the control effort using the design in Eq.(9); ˆ( , )f t q  and ˆ( , )b t q  are the 
estimates of functions ( ),f t q  and ( ),b t q , respectively. With /p d dt≡ , the coefficients, ci , i = 0, 
1, 2,…, n-1, of the desired characteristic equation are rewritten as 

      1 2
1 2 1 0 0n n n

n np c p c p c p c− −
− −+ + + + + =                                                             (11) 

has the desired multiple roots, at λ− , leading to a desired exponentially stable error dynamics. 
And, 

( ) ( 1) ( 2)
1 2 1 0 0n n n

n nq c q c q c q c q− −
− −+ + + + + =                                                        (12) 

provided that the bounded uncertainties, d vanishes and the nominal functions, ˆ( , )f t q  and ˆ( , )b t q  
would coincide with ( ),f t q  and ( ),b t q . However, perturbation often arises and causes the 
resultant error dynamics to deviate from the desired one in an adverse way. 
This effect can be revealed further by manipulating Eq. (1) and substituting the control law, Eq. 
(10) to yield 

1
( ) ( ) ( )

0

ˆ[ ( , ) ( , )]
n

n n i
d i

i
q q c q f t q f t q

−

=

= − + −∑ ˆ [ ( , ) ( , )]b t q b t q u d+ − +                                     (13) 

Rearranging Eq.(13) to yield,  

 ( ) ( 1) ( 2)
1 2 1 0

n n n
n nq c q c q c q c q ψ− −
− −+ + + + + =                                                     (14) 

where ( )ˆ( , ) ( , )f t q f t qψ = − + ( )ˆ( , ) ( , ) ( )b t q b t q u d t− +  is noted as a lumped-perturbation in the 

MSMC Plant

Disturbance 
Observer 

qd q q +

+
+-

-
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controller design and may cause an undesirable overshoot or, more severely, system instability. 
To compensate for the perturbation, the control law from Eq.(10) is redesigned with an extra 
compensation term, i.e. 

  u=upa+upc                                                                                                         (15) 

Consequently, Eq.(1) becomes 
1

( ) ( ) ( )

0

ˆ( , )
n

n n i
d i pc

i
q q c q b t q u ψ

−

=

= − + +∑                                                                    (16) 

To compensate for ψ , we would like to have ˆ ˆ( , ) pcb t q u ψ= −  to yield 

ψ ψ
−

=

= − + −∑
1

( ) ( ) ( )

0

ˆ
n

n n i
d i

i
q q c q                                                                                   (17) 

Ideally, ψ̂  should be set equal to ψ , then the error dynamics would follow Eq.(12). To obtain the 
estimate of the perturbation, ψ̂ , an auxiliary process is adopted and defined as 

1
( ) ( )

0

ˆ( , ) sgn( )
n

n i
d i pc q

i
w q c q b t q u σ

−

=

= − + + Ψ∑                                                           (18) 

And, based on Eq.(2), we have 

( , ) ( , ) ( )F t q B t q u D t⎡ ⎤Ψ = − + +⎣ ⎦  

Furthermore, a switching function is defined as 
( 1)n

q q wσ −= −                                                                                                        (19) 

Without the loss of generality, we adopted the case in Eq.(9), for the switching of two different 
SMCs, we should have the following auxiliary process, 

    1

2
2

ˆsgn( )
   

ˆ2 sgn( )
d q q q

qd q q q

q q q
w

qq q q

λ σ ψ ε

ελ λ σ ψ

⎧ − + Ψ − >⎪= ⎨
≤− − + Ψ −⎪⎩

                                                (20) 

Here, 1ψ̂  and 2ψ̂  are perturbations estimated for 1ψ  and 2ψ , respectively. 
 
Theorem 1: 
Let 1ψ̂  and 2ψ̂  be defined as in Eq.(20), and 

ψ̂ = 1ψ̂ + 2ψ̂                                                                                                            (21) 

A sliding function with n=2 in (19) that defined a global sliding mode is established using auxiliary 
process as described in Eq.(20). And let 1ψ̂  and 2ψ̂  be estimated from the following, 

1 1ˆ sgn( )c qKψ σ= Ψ                                                                                                (22) 

2 2 2 2ˆ sgn( )c c qK Kψ ψ σ= − + Ψ                                                                                (23) 

where 1cK  and 2cK  are constants to be determined based on the range of bandwidth of interest. 
Then, we have an invariant condition  

( )
( )

( )
( )( )

2 1 2 1

2 1

ˆ c c c c

c c

p K K p K K
p p K p K

ψ
ψ

+ +
=

+ +
                                                                             (24) 
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Proof: 
 
From Eq.(19), with n=2, we have 

ˆq q wσ ψ ψ= − = − 2ˆsgn( )qσ ψ−Ψ + = 1ˆ sgn( )qψ ψ σ− − Ψ                                   (25) 

with 0qσ = , we could find 

                          11

1

ˆ ( )
( )

c

c

Kp
p p K

ψ
ψ

=
+

 

and          22

1 2

ˆ ( )
( ) ( )( )

c

c c

K pp
p p K p K

ψ
ψ

=
+ +

   

Therefore, 

                          
( )
( )

( )
( )( )

2 1 2 1

2 1

ˆ c c c c

c c

p K K p K K
p p K p K

ψ
ψ

+ +
=

+ +
   

This relationship is invariant to variations of system parameters, and the estimate ψ̂  is 
intrinsically a low-pass-filtered version of disturbance ψ  with the filter’s bandwidth determined by 
the constants 1cK  and 2cK . Ideally, ψ̂  should be set equal to ψ . Increasing the value of 1cK  and 

2cK  approaches this ideal case, improves the effectiveness of disturbance compensation, but 
may increase the chatter level in control input. As a rule of thumb, the filter’s bandwidth is usually 
chosen to be about ten times that of the closed-loop system, that is, 1 2 10c c nK K ω= = . 
 
Remark1: 
w is the state variable of the auxiliary process, the switching function qσ  is defined as (19) and 

the switching gain Ψ  is assigned so that 1ˆψ ψ− < Ψ . Here, ( )sgn ⋅  denotes the sign function. To 
ensure a sliding regime 0qσ = , the sliding condition  

0
lim 0
q

q qσ
σ σ

→
<  

should be satisfied. Consideration here of Lyapunov candidate 20.5 qV σ= . Taking the derivative V 
with respect to time and substituting (20), (17) and (25) into the resulting equation gives. 
Multiplying both sides of (25) by qσ  and noting  that 1ˆψ ψ− < Ψ , we have 

( )1ˆ 0,       if 0q q q q qV σ σ ψ ψ σ σ σ= = − − Ψ < ≠  

which implies the satisfaction of the sliding condition and the existence of the sliding regime 
0qσ =  after some time. Subsequently, assigning the initial state of the auxiliary process as  

( ) ( )0 0w t q t= = =   

gives 0qσ =  at 0t = .  
This together with the satisfaction of the sliding condition implies that 0qσ =  for all 0t ≥ . 
Thus, the sliding regime 0qσ =  exists for the disturbance estimation during an entire response 
despite the presence of system disturbance which is desired to be estimated. 
 
 

■ 
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Theorem 2 
Assuming that boundary layer Φ can be determined based on the lumped disturbance estimated 
by ψ̂ , and Eq.(6) is rewritten as 

ˆλ ψΦΦ + Φ =                                                                                                       (26) 

Then, the bandwidth of state-dependent boundary layer can be chosen accordingly, i.e. 

2 1

2 1

c c

c c

K K
K K

λΦ =
+

                                                                                                    (27) 

And, the state-dependent boundary layer with observer is bounded and a quasi-sliding mode is 
assured. 
Proof: 
 
From Eq.(26) and Eq.(24), we have 

( ) ( )1 ˆp p
p

ψ
λΦ

Φ =
+

                                                                                          (28) 

( ) ( )
( )( ) ( )2 1 2 1

2 1

ˆ c c c c

c c

K K p K K
p p

p K p K
ψ ψ

+ +
=

+ +
                                                                       (29) 

Combine (27) and (28) to yield 

( )
( )

( )( )( ) ( )
2 1

2 1
2 1

2 1

c c
c c

c c

c c

K KK K p
K K

p p
p p K p K

ψ
λΦ

⎛ ⎞
+ +⎜ ⎟+⎝ ⎠Φ =

+ + +
                                                               (30) 

Consequently, using 2 1

2 1

c c

c c

K K
K K

λΦ =
+

, Eq. (30) is reduced to 

( )
( )

( )
( ) ( )

2 1

2 1

c c

c c

p K K
p p K p Kψ

Φ +
=

+ +
                                                                                 (31) 

Since 1cK  and 2cK  are positive constants, if the perturbation is bounded, then the state-
dependent boundary based on disturbance observer is bounded and asymptotically stable is 
assured. 

   
Remark2: The thickness of boundary layer ( )pΦ  is the filter output of the system perturbation ψ  
through an over-damped second order low-pass filter with pre-specified bandwidth. Accordingly, 
even if ψ  is with high-frequency content or with discontinuous jump, only low-frequency part of 
Φ  will be preserved. Furthermore, ψ  can be estimated from ψ̂ , and a bounded Φ  is assured. 
 
 

4. EXPERIMENTAL STUDIES 
  
 The Experimental Setup [10] 

As shown in Fig. 2, a two-D.O.F maglev platform under study consists of two electromagnets Mzl 
and Mzr with μr = 6000 and area of pole-face equals to 4.05 mm2 wounded with 700 turns of coil to 
levitate the platform. For each electromagnet poles, both equipped with an optical-sensor which is 
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sensor 

electromagnet 

electromagnetlevitated table

bearing of rotation

linear 
guideway 

manufactured by MTI Instrument with the probe having the capability of emitting a light to the 
surface and receiving the projection with a sensitivity of 0.868 mm/V and a linear range of 2 mm 
with a bandwidth of 140 KHz to measure its corresponding air gaps. 
For each electromagnet poles, both equipped with an optical-sensor which is manufactured by 
MTI Instrument with the probe having the capability of emitting a light to the surface and receiving 
the projection with a sensitivity of 0.868 mm/V and a linear range of 2 mm with a bandwidth of 
140 KHz to measure its corresponding air gaps. The signals were then send to a Pentium PC 
through a 12-bit high speed A/D converter with a conversion rate at 90K samples/sec and 
conversion range of 10±  volt. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2: Schematic drawing of a two-DOF maglev platform 
 
The control law was implemented using C-language at a sampling rate of 1ms.The control effort 
was then send out through a D/A converter with the conversion rate at 15 K samples/sec, and a 
range of 0 to 5 volt to a current source with current gain equals to 2 A/V with the maximum output 
of 2 A and a bandwidth of 10 KHz to drive the two electromagnets, Mzl and Mzr which levitated the 
platform thus closing the feedback loop. 
 

 The Dynamic Model of a 2-D.O.F Maglev 
Assuming the mass center of the platform and its geometric center coincides, and it operates with 
small angular motions, the linearized equation of motion can thus be written as  

0
,   and 

0
TT

c z yy
yy

M
z F

I
θ τ

=

⎡ ⎤
⎡ ⎤= = =⎡ ⎤⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎣ ⎦

Hq Q

H q Q
                                                (32) 

Where M = 545±0.5g is the total mass of the levitated platform, while yyI = 0.01915 Kg-m2 
denotes the moment of inertia around the y-axis, respectively. cz  is the mass center moving in z-
direction, and θ  denotes the table’s rotation in the z-direction. zF  and yyτ  are the 
electromagnetic force and torque exerting on the 2-D maglev. Let air gaps be lz  and rz , 
respectively. And, L = 199 0.5± mm is the table length. The control force, fl and fr, on each side 
and torque generated by the two electromagnets are expressed as: 
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2

2

2

2

( )

l
l

r
r

z l

yy r l

If
z

If
z

F f f
f f L

α

α

τ

⎧
=⎪

⎪
⎪⎪ =⎨
⎪
⎪ = +
⎪

= −⎪⎩

                                                                                                     (33) 

with 
2

4
oN Aμ

α = . 

Each optical sensor aligned with the center of the two electromagnets (Mzl, Mzr) can measure its 
corresponding air gaps. The linearized relationship between the displacement of the mass center 
(zc) and pitch angle (θ) can be described as 

2
l r z

c

l r

z z w
z

z z
L

θ

− −⎧
= −⎪⎪

⎨ −⎪ = −
⎪⎩

                                                                                            (34) 

Because electromagnetic force and gravitational force are the external forces, the equations of 
motion can be expressed as 

( )

( )
c Z Z

yy yy

MZ F Mg d t

I d tθθ τ

= − +

= +
                                                                                         (35) 

Where dz and dθ are lumped matched uncertainties. Moreover, based on the geometric 
relationship, the total electromagnetic forces fl and fr on two sides of the platform can be 
expressed in terms of Fz and τyy. 

1
2 2
1
2 2

yy
l z

yy
r z

f F
L

f F
L

τ

τ

⎧
= −⎪⎪

⎨
⎪ = +⎪⎩

                                                                                                   (36) 

 
 Experimental Studies 

Experiments were performed to verify the proposed scheme. In this sub-section, MSMC schemes 
utilize mode-switching between SMC and ISMC with fixed and state-dependent boundary layer 
were performed for comparison. It is also noted that the state-dependent boundary layer is 
determined based on a disturbance observer as described in the previous section. 
 
Case 1: The effect of controller selection 
From Fig. 3 and Fig. 4, SMC can obtain satisfactory settling time, while it enters the boundary 
layer, there exists a significant steady-state error, however. It is noted that while entering the 
switching region which is set at t=0.05 sec, ISMC has demonstrated its efficacy in reducing the 
steady state error, but it requires longer settling time and larger overshoot that will inevitably 
cause integral wind-up. It is seen that the response in pitch angle experienced a much violent 
vibration than that of vertical displacement. The mode-switching sliding mode(MSMC) has 
demonstrated its capability in the application on this Maglev platform but with the price of the fine 
tuning of proper switching region. 
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FIGURE 3: Response in Z-direction with different controllers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4: Response of left- and right-tip with different controllers 
 

Case 2: The effect of boundary layer selection 
Here, the MSMC is set to satisfy fixed switching instant, ts=0.04 sec, but different boundary layers 
to investigate its effect on the control performance. The MSMC controller is designed to switch 
between a SMC and ISMC under pre-specified condition and its corresponding control 
parameters are listed as follows. 

1. (0.04) 0.1cZ mm≤ , λz=64.164 sec-1, λz=32.083 sec-1. 
2. (0.04) 0.2cZ mm≤ , λz=46.835 sec-1, λz=23.418 sec-1. 
3. (0.04) 0.3cZ mm≤ , λz=36.699 sec-1, λz=18.350 sec-1. 

Where cZ  were calculated using Eq. (34) that combines lZ  with rZ . 
It can be seen from the experimental results as shown in Fig. 5 and Fig. 6 that if the boundary 
layer is set at 0.2cZ mm≤ . It could have the best performance among the three conditions in 
term of overshoot and steady state error. Moreover, the responses of left- and right-tip further 
revealed the efficacy of the MSMC scheme. Consequently, the mode-switching sliding mode has 
demonstrated its capability in the application on this Maglev platform provided that a fine tuning of 
proper boundary layer is needed. 
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FIGURE 5: Response in Z-direction with different boundary layer 

 

 

 

 

 

 

 

 

 

FIGURE 6: Responses of left- and right-tip with different boundary layer 

Case 3: The effect of switching time selection 
Here, the MSMC is set to satisfy different switching instant at fixed boundary layer, q =0.2 mm, to 
investigate its effect on the control performance. The MSMC controller is designed to switch 
between a SMC and ISMC under pre-specified condition and its corresponding control 
parameters are listed as follows. 
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3. (0.04) 0.2cZ mm≤ , λz=46.835 sec-1, λz=23.418 sec-1. 

Where cZ  were calculated using Eq. (34) that combines lZ  with rZ . 
It can be seen from the experimental results as shown in Fig. 7 that if the switching instant is set 
at t=0.05 sec. It could have the best performance among the three conditions in terms of 
overshoot and steady state error. Furthermore, as shown in Fig. 8, the responses of left- and 
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right-tip further revealed the efficacy of the MSMC scheme. Consequently, the mode-switching 
sliding mode has demonstrated its capability in the application on this Maglev platform provided 
that a fine tuning of proper time is needed. It can be concluded from results of Case 1 and Case 2 
that one can pre-specify 0.2cZ mm≤  with switch instant at t=0.05 sec to have the best result 
among all tested conditions. 
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FIGURE 7: Response of in Z-direction with different switching time 

 

 

 

 

 

 

 

 
 
 

FIGURE 8: Responses of left- and right-tip with different switching time 
 
Case 4: MSMC with state-dependent boundary layer 
It is seen from the previous experimental results that we can select the switching region (in terms 
of layer thickness and switching instant) based on previous results through fining tuning process 
or engineering sense. As depicted in the previous section, a disturbance observer with state-
dependent boundary layer for the on-line switching region selection for the MSMC scheme would 
perform the same result without trial and error. Finally, the experiments are performed to 
demonstrate its efficacy. 
Test I: MSMC with state-dependent boundary layer controller under pre-specified condition and its 
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on-line switching region selection are listed as follows. 

1. (0.04) 0.1cZ mm≤ , λz=64.164 sec-1, λz=32.083 sec-1, Kc1 =Kc2 =320 sec-1. 
2. (0.05) 0.2cZ mm≤ , λz=37.467 sec-1, λz=18.734 sec-1, Kc1 =Kc2 =187 sec-1 
3. (0.06) 0.2cZ mm≤ , λz=31.223 sec-1, λz=15.612 sec-1, Kc1 =Kc2 =156 sec-1 

where Kc1 and Kc2 is based on the uncertain bounds of system in Eq.(30) and Eq.(31), 
respectively. 
As shown in Fig. 9, the state-trajectory of vertical displacement would be constrained inside the 
state-dependent boundary layer as expected. On the other hand, the tips’ responses are also 
shown in Fig. 10. Obviously, the different gaps of left- and right-tip have been estimated and 
compensated on-line using the MSMC with state dependent boundary layer.  
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FIGURE 9: Responses in Z-direction with state dependent boundary layer 

 

   
FIGURE 10: Responses in left- and right-tip with state dependent boundary layer 
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As Fig. 11 and Fig. 12  show, the experimental result on vertical direction is seen to be equipped 
with the augmented disturbance observer; a faster settling time and smaller steady-state error 
were achieved. It is also noted that the switching region is time-varying due to its state-dependent 
nature but is adjusted on-line based on the estimated result from the augmented disturbance 
observer.  
Consequently, MSMC with state-dependent boundary layer have the best performance among 
the four conditions in terms of smoothness, overshoot and steady state error. 
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FIGURE 11: Responses in Z-direction with state dependent boundary layer 
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FIGURE 12: Responses in left- and right-tip with state dependent boundary layer 

 
 

5. CONSLUSION 
This paper presented a Mode-Switching Sliding-mode Control (MSMC) scheme that can switch 
between different sliding-mode control schemes. Switching would occur while the states entering 
the vicinity of a preset operating point. MSMC can provide better positioning performance than 
SMC and ISMC alone. The proposed state-dependent boundary layer based-on a disturbance 
observer can not only precisely compensate for system perturbation within the pre-specified 
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frequency range, but also reduce the adverse effect due to chattering. MSMC with disturbance 
observer using state-dependent boundary layer design has been successful applied to a two-
DOF Maglev platform. The experiment results also showed that the maglev system can track the 
reference input within the pre-specified errors, i.e. cZ  and θ  as expected, and it can also provide 
certain robust performance for systems subjected to uncertainties from both parameters and 
external disturbance with an auto-tuned switching region based on a state-dependent boundary 
layer incorporated with disturbance observer design. 
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