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Abstract 

 
Load forecast plays an important role in planning and operation of a power system. The 
accuracy of this forecasted value is necessary for economically efficient operation and 
also for effective control. This paper describes a method of modified forward backward 
linear predictor (MFBLP) for solving the regional load demand of New South Wales 
(NSW), Australia. The method is designed and simulated based on the actual load data 
of New South Wales, Australia. The accuracy of discussed method is obtained and 
comparison with previous methods is also reported. 
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1. INTRODUCTION 

Short term prediction of future load demand is important for the economic and secure operation of power 
systems. Fundamental operation functions such as unit commitment, hydro-thermal coordination, 
interchange evaluation, scheduled maintenance and security assessment require a reliable short term 
load forecast (STLF). 

Throughout the paper the term “short” is used to imply prediction times of the order of hours. The time 
boundaries are from the next hour, or possibly a half-hour, up to 168 h. The basic quantity of interest in 
STLF is the hourly integrated total system load. Owing to the importance of the STLF, research in this 
area in the past two decades has resulted in the development of numerous forecasting methods [1, 2, 2-
10]. One of the STLF methods that received significant attention in literature for more than 20 years and a 
large number of estimation methods is the autoregressive moving average (ARMA) and autoregressive 
integrated moving average (ARIMA). Both models are also known as Box-Jenkins have more degrees of 
freedom than the autoregressive, so greater latitude in its ability to generate diverse time-series shapes is 
therefore, expected of its estimators. Unfortunately, this is not always the case, because of the nonlinear 
nature required of algorithms that must simultaneously estimate the moving average and autoregressive 
parameters of the models. This phenomenon finally produces low accuracy in forecast of the model 
algorithm based from the assumption below: 
 

Though the all pole models have less degree of freedom than ARMA and ARIMA, they exhibit major 
advantages. First of all, all-pole models have been found to provide a sufficiently accurate representation 
for many different types of signals in many different applications. Another reason for the popularity is the 
special structure which leads to fast and efficient algorithms for finding the all-pole parameters. In this 
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paper, the modified forward backward linear predictor (MFBLP) is introduced as autoregressive (AR) 
based solution to STLF problem. The method is discussed and the performance is tested and compared 
with Box-Jenkins ARIMA [5] (assuming that the performance of ARIMA is better than ARMA), artificial 
neural network (ANN) [11] and Burg’s algorithm [12]. A load demand data record from New South Wales 
(NSW), Australia is used for the model designed purpose and validation process [13]. 

2. METHODOLOGY 

The methods highlight in the paper is the non-weather type model. This means that, it takes only the 
historical load data as an input to the model. In general, the time dependent non-weather model uses 
past and latest load behavior to extrapolate the sample data prior to the forecast stage. The hourly load 
data are observed to identify the data behavior. Then, the data need to examine whether the data consist 
of seasonality or trend. The non stationary behavior should be remedied before the estimating process 
takes place. 

In the previous literature [5, 14] had suggested that the method of difference the data can be one of the 
steps to achieve stationary white-noise in the data series. The next step is to examine the residuals of the 
estimation process. The residuals should be white-noise (stationary) [15] then, it possible to run the key 
steps in the methodology, which is the forecast. The summary of the steps taken in the methodology is 
depicted in the Figure 1. 
 

2.1. Data observation 
The historical load data used in this study has been gathered from the National Electricity Market 
Management Company Limited (NEMMCO) [13]. The data series is the actual hourly data of the system 
load demand for the region of New South Wales (NSW), Australia. The regional data series for NSW 
system demand covering the period from 1st January 2005 to 31st December 2007. Figure 2 and 3 
shows the time series plot (sequence plot) for the estimation sample and forecast validation data 
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1: The general procedure of the STLF. 
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FIGURE 2: NSW hourly data from 1.1.2005 to 31.12.2006. 

 

0   2000 4000 6000 8000
5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

Hours

L
o

a
d

 i
n

 M
W

 

FIGURE 3: NSW hourly data from 1.1.2007 to 31.12.2007 

Figure 2 and 3 clearly depict that the data series contains seasonality. Moreover, in Figure 2, the data 
show slightly positive trends. The seasonality is formed by the cycle of the load demand behavior, which 
is contributed from daily, weekly and yearly load demand patterns. It is clearly seen that, the data series 
is having non-zero mean and non-constant variance [12]. This suggests that a further remedy needs to 
apply to the data in order to achieve the zero mean and constant variance. 
 

2.2. Data pre-processing 
 
The important issue in time series forecast is to clarify the behavior of zero mean and constant variance 
of the given data series, which is the main assumption in this paper. According to Figure 1, the estimation 
sample data in Figure 2 need the necessary remedy to remove the seasonality and trend in the data. One 
of the effective solutions for this is differentiating the data as suggested in [5, 14]. Consequently, suggest 
the triple difference as a method to remove the non-stationary behavior in the data.  
 

By assuming the actual load demand data series as tL , hence, the considered difference is as follows: 

1−−= ttt LLx   (1) 

24−−= ttt xxy   (2) 

168−−= ttt yyz   (3) 

 

The first difference when 1=k eliminate the small trend that develops in Figure 2. The difference of 

24=k and later by 168=k eliminate the daily and weekly seasonality respectively. Tentatively the model 

can be described as follows: 
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tt eL =∇∇∇ 168241   (4) 

tt eLBBB =−−− )1)(1)(1( 16824  (5) 

 

Where B denotes the normal back-shift operator, i.e. 1−= tt LBL or ktt
k LLB −=  and the term te is the white 

noise process of the residuals. For simplicity the expression in (5) can be reduced as: 

tt ez =    (6) 

 

The sequence plot and the autocorrelation plot (ACF) of tz are depicted in Figure 4 and 5 respectively. It 

is clearly seen from the Figure 4, the new data series show stationary and most importantly the data are 
now zero mean and constant variance. The data autocorrelation is considered negligible, and it is well in 
the bound of 95% confidence level. The confidence level is given by [15], 

n
levelConfidence

96.1
 %95

±
=   (7) 

 

Where n is the number of samples. 
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FIGURE 4: Sequence plot of tz . 
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FIGURE 5: ACF of tz  for the first 25 lags. 



Z. Baharudin & N. Kamel 

International Journal of Engineering, (IJE) Volume (3) : Issue (3) 284 

 

2.3.  The MFBLP algorithm  
 
The M-point data sequence of z(1), z(2), … z(M) is to be used to estimate the pth  AR filter coefficients.  
Since, with AR algorithms the order of the model is proportional to the length of data record and in order 
to avoid using large orders with long data records, let’s consider the segmentation of the M-points data 
sequence into Q segments of N samples each.  
 
Assume one segment of data out of the available Q segments. Because forward and backward linear 
predictions have similar statistical information, it seems reasonable to combine the linear prediction error 
statistics of both directions in order to generate more error points [16]. The net result should be an 
improved estimate of the autoregressive parameters. The (N-p) forward and the (N-p) backward linear 
prediction samples of the non-windowed case may be written in matrix form as follows: 
 

wfDq =    (8) 

Where the 2×(N-p) forward-backward linear prediction data matrix is defined as, 
 

x(N 1) x(N 2) x(0)

x(N) x(N 1) x(1)

x(N 2) x(N 3) x(N p)

x (1) x (2) x (p)

x (2) x (3) x (p 1)

x (N p) x (N p 1) x (N 1)

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

− − 
 

− 
 
 

− − − =
 
 

+ 
 
 

− − + −  

qD

L

L

M M L M

L

L

L

M M L M

L

 (9) 

Let w denotes the desired response at the predictor output, defined as, 

T

x(p) x(p 1) x(N 1) x (1) x (2) x (N p 1)∗ ∗ ∗ = + − − − qw L L (10) 

Meanwhile the following vector notation for the forward linear prediction coefficients is given as, 
T

f f f

p p pa (1) a (2) ... a (p) =  f          (11) 

Since the forward and backward prediction coefficients for a stationary random process are simply 
complex conjugate of one another, the vector of the desired response at the predictor output, once again 
can be rewritten in matrix form as in Eq. (8). By forming the data matrix Dq in corresponds to each data 
segment, and arranging the resultant matrices in the following form, 

 
 
 =
 
 
  

1

2

Q

D

D
D

D

M
 (12) 

The corresponding predicted vector to matrix D is defined as, 

2

Q

 
 
 =
 
 
  

1w

w
w

w

M
 (13) 

From Eq.(12) and Eq.(13), the modified equations of the predictors, can be simplify as, 

wDf =   (14) 

Where D is the data series, f is the predicted coefficients and w is the predicted response (signal). A well 
established method of least squares [17, 18] is used to obtain a solution to Eq. 14 for the predictor 
coefficient vector f. The solution will guarantee the minimum sum [16] of the squared values of the 
predicted errors (residuals). 
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2.4.  Estimation 
By referring to the Eq. (14), the linear predicted errors are given by, 

= −e w Df  (15) 

and the sum of squared errors is given by, 

eeζ H=   (16) 

By substituting Eq. (14) into Eq. (16), the equation may explicitly express the dependence of the sum of 
squared errors on the predictor coefficients, as follows 

DfDfwDfDfwww HHHHHH +−−=ζ  (17) 

Now, by differentiating Eq. (17) with respect to the f, hence the following gradient vector is determined, 

eD-2     

DfD2wD2
f

H

HH

=

+−=
∂

∂ζ

 (18) 

As it is clear the sum of squared errors reaches its minimum value when the gradient vector is zero. Then 
from Eq. (18), the equation immediately deduces to, 

wDDfD HH =   (19) 

Thus, the predictor coefficients that give the least squared errors are obtained as a solution to Eq. (19). 
However, this solution is unique only when the matrix D is full rank. When this condition is satisfied the 
matrix D

H
D is nonsingular and the solution is unique, given as, 

( ) wDDDf H1H −
=  (20) 

Thus the predictor coefficients that give the least squared errors are obtained as a solution to Eq. (20). 
However, this solution is unique only when the nullity of the matrix D is zero [19]. The nullity of a matrix 
denoted as null (.) is defined as the dimension of the matrix null space. In other words the least-squares 
solution is unique when the matrix D is of full rank. When this condition is satisfied, the p-by-p matrix D

H
D 

is nonsingular and the solution is unique, given as, 

( )
-1

H H

#

f = D D D w

  = D w

 (21) 

Where D is called the pseudo-inverse of the matrix D, given as, 

( )
-1

H# H
D = D D D   (22) 

 

 

 

2.5.  Forecast 
Once the process estimates the suggested model, the predicted coefficients, f, are determined. With the 
coefficients, the forecast load for the region of NSW will be determined. One year actual data from 
1.1.2007 to 31.12.2007 are used as a validation data or model forecast performance indicator. This 
validation data series is the actual hourly load data and can be described as, 

[ ])(  )2( )1()( Nvvvtv L=  (23) 

The forecast horizons are set as follows: 1-hour, 24-hour, 48-hour and 168-hour step ahead. This means 
that the coefficients, f, are applied in determining the t-th step ahead by using the autoregressive (AR) 
method. The AR a model for p-th order of coefficients, f, for the 1-hour ahead is given by, 

[ ])1()(  )1()2(  )()1()1( +−−+= ptzpatzatzaf L  (24) 

The process is reversed to determine the actual forecast value for, )1(F , and is given by, 

)1()1)(1)(1()1( 16824 fBBBF −−−=   (25) 

Thus the forecast error is stated as, 

)1()1( Fvet −=   (26) 

 

Therefore, for the t-th step ahead forecast, the AR (p) model can be described as, 

)()1)(1)(1()( 16824 tfBBBtF −−−=  (27) 
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Where 

tp zBatf )()( =   (28) 

The term B is the backshift operator, defined by 1−= tt zBz , and hence ktt
k zzB −= . 

 
It is noticed that the Eq. 25 are assumed as a ‘starter’ forecast value, where this formulation is used to 
determine the next value of forecast whenever t > 1. The accuracy of the total forecast is depending on 
this starter value and how accurate the process estimates in producing the AR coefficients, a (p). As 
mentioned earlier, by using the MFBLP algorithm and estimation by the least squares methods, the errors 
of the forecast are considered minimum. 
 

3. THE EXPERIMENT 

The simulations considered in this paper consist of computing the forecast of 1, 24, 36 and 168 hours 
ahead. The system load demand data that are applied in this work are gathered from NEMMCO. For the 
estimation process, the data are range from 1.1.2005 to 31.12.2006 and for the forecast validation the 
data are taken from 1.1.2007 to 31.12.2007. Both mentioned data are hourly sequence load demand 
data. This data series is considered as a raw data because no attempts are done to smooth the data 
significant from the abrupt change in weather, extreme weather condition or even the effect of public 
holiday which are very significant for the particular affected week of the load demand. The main objective 
for this is to test and confirm that the non-weather AR-model of Eq. 14 and Eq. 28 could deliver an 
acceptable forecast result. For a comparison purpose, several previous methods are in comparison to 
benchmark the proposed method described in the paper. All models in this work are simulated in a 
computer with a MATLAB version 7.2.0.232 and Pentium 4 CPU 3.20GHz with 0.5GB of RAM. 
 

 

 

3.1. Errors indicator 
 
The error analysis in estimation and forecast processes are represented by the mean absolute 
percentage errors (MAPE), and it is given by, 

∑
=

×
−

=
n

i i

ii

x

xx

n
MAPE

1

%100
ˆ1

 (29) 

 

 
3.2. The segmentation parameter 
 
The main significant finding for the MFBLP is the formulation of data segmentation. The data are 
segmented into Q segments of N samples each. As described previously, the total point’s data after it has 
been remedied to remove the seasonality and trends consist of 17520 points of data. Consequently, 
provide several combinations of segmentation parameters (SP) of Q and N. Four SP combinations are 
investigated and the results for the average MAPE during an estimation process for each SP combination 
are depicted in the Table I. 
 

Table I: Average MAPE for four combinations of SP. 
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Estimation

Q N Average MAPE, %

2 8760 0.97

12 1460 0.82

24 730 0.75

48 365 0.91

Segmentation parameters

 
 
From Table 1 it is clearly found that the best SP combinations are Q = 24 and N = 730. The assumption 
for the SP combination finding is that Q*N must equal to total number of data points, which in this case 
17520. 
 

3.3 Estimation the number of order coefficients 
 
The MFBLP in Eq. 9 and the simplified Eq. 14 are used to determine the estimation of the data. By 
implementing the least squares, it can provide the minimum sum squares of the errors. As mentioned 
before, the works in this paper highlight the non-weather AR (AR) methods in defining the model order 
number and its coefficients. In [20] suggested that for the optimum number of model order, it should not 
exceed 10% of the total estimation sample data. This would result from the initial draw of the parameters 
for the model should be less than 1752. However, in the actual experiment, the model order number is 
much less than the suggested one [20].  Figure 6 depicts the relation between the estimation errors and 
the model order number. 
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FIGURE 6: The relation of estimation MAPE and the model order number. 

 

It is clearly seen that, the MAPE converges after a certain number of order. The lowest MAPE is 0.74% at 
order 200. There is a slight ripple of MAPE averaging at 0.75%. By using the AICC [21] the order with the 
minimum value is selected, and it is found that the best number of the order model is 175 as indicated in 
the Figure 7. The residuals of the estimated model are calculated and examined with the selected model 
order. Figure 8 depicts the residuals for the estimated samples and Table II describes the model 
performance with the specified parameters. The white noise of the residuals is supported by checking the 
ACF value which is well inside the 95% confidence interval bound. This is a clear indication that the 
residuals are stable, controllable and most importantly stationary with zero mean and constant variances. 
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FIGURE 7: The estimation MAPE and the model order number up to 400. 
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FIGURE 8: The residuals of the estimated models. 

 
TABLE II: The number of order parameter selected and the performance of estimated models. 

No. of samples No. of order parameter Residuals

17520 175 0.75%
 

 

3.4. Model forecast 
The forecast model is described in previous section and can be represented by the Eq. 14, Eq. 16 and 
Eq. 19. The models emphasize the methods of non-weather AR with the application of high number of 
order coefficients. The model order coefficients are defined as, 

{ })(),1(),...,2(),1()( papaaapa −=  (30) 

From Table II it is found that the model order coefficients p , is equal to 175. Therefore, the forecast 

values are calculated by using the back shift operator as described in Eq. 27. 
 
The forecast horizons simulated in this experiment are 1, 24, 36 and 168-hours ahead. For every forecast 
horizon, the value of forecast is determined and being validated with the actual (out of sample) data 
covering the period from 1.1.2007 to 31.12.2007. For the comparison purpose, the proposed method is 
compared with the multiplicative ARIMA [5], artificial neural network (ANN) [11], Burg’s algorithm [12] and 
also with the naïve-random walk ARIMA (0,1,0) as a basic benchmarking. 
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4. APPLICATION RESULTS 
 
Figure 9 depicts the model performance for the forecast duration of the year 2007. Meanwhile in Figure 
10 describes the seasonal MAPE of 168-hours (one week) ahead forecast. 
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Figure 9: The MAPE plotted against forecast horizons for the NSW region of one year forecast period. 
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Figure 10: The MAPE plotted against seasons for the NSW one year forecast period. 

 
It is clearly shown that from Figure 9 and 10, the methods of non-weather AR capable to describe its 
performance outstandingly. It is worth to investigate the model performance by weekly results. In order to 
obtain the results, only one selected season is chosen. The summer season is selected because, during 
this duration the load demand variations are high. Therefore, the forecast process is somehow difficult. It 
is assumed that other seasons show slightly simpler in forecasting and their MAPE results are considered 
lower than the summer season. Figure 11 describes the model accuracy for the random selected one 
week forecast during the summer season. The forecast horizons apply for 1, 24, 36 and 168-hours 
ahead. Meanwhile, the MAPE of the daily accuracy for the 168-hours ahead forecast horizon is depicted 
in Table III. The minimum and maximum for the 24-hours forecast MAPE during the week is highlighted in 
Table IV and Table V respectively. 
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Figure 11: The forecast MAPE plotted against forecast horizons for the one week forecast duration in 

summer. 
 
 
 

TABLE III: Daily MAPE for one week in the summer. 
 
 

 Forecast day MAPE (%)

Day 1 1.25

Day 2 0.58

Day 3 0.78

Day 4 1.33

Day 5 1.38

Day 6 1.44

Day 7 1.34  
 
 
 

TABLE IV: The hourly MAPE minimum of the week. 
 
 

 Forecast hour MAPE (%) Forecast hour MAPE (%)

1 0.30 13 0.47

2 0.68 14 0.81

3 0.70 15 0.17

4 0.73 16 0.39

5 1.11 17 0.58

6 0.86 18 0.76

7 0.02 19 0.04

8 0.28 20 0.23

9 0.66 21 0.05

10 0.85 22 0.59

11 0.80 23 1.33

12 0.68 24 0.75  
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TABLE V: The hourly MAPE maximum of the week. 
 

Forecast hour MAPE (%) Forecast hour MAPE (%)

1 0.09 13 0.36

2 0.86 14 0.53

3 0.46 15 1.26

4 0.47 16 0.10

5 0.23 17 0.85

6 0.09 18 0.74

7 1.87 19 1.85

8 3.60 20 0.49

9 4.16 21 2.49

10 2.49 22 1.70

11 4.30 23 1.60

12 1.79 24 2.07  
 

5. CONCLUSIONS 

In this paper the non-weather autoregressive (AR) methods are proposed and discussed. The methods 
highlight the application of MFBLP and the estimation of model order coefficients by using the least 
squares approach. The experiment uses the hourly electricity load demand data gathered form 
NEMMCO. The estimation process uses two years hourly load data and one year hourly data for the 
forecast validation purpose. The forecast horizon for 1, 24, 36 and 168-hours ahead are examined to 
explain the workable of model forecast. It is worth mentioning that, there is no attempt to smooth the data 
prior to the estimation which is significant from the weather change and public holiday. This proves that 
the methods manage to find the accurate model coefficients to estimate and forecast the given data 
series.  
 
The MAPE versus the forecast horizons for previous suggested approaches are also determined. The 
results show that the proposed MFBLP method is superior in others. For all forecast horizons MFBLP 
method performs remarkable results than others. Perhaps it could be a strong indicative of represent the 
performance of all suggested method. MFBLP shows a very promising result and perhaps, it can be used 
to solve any of the time series forecasting problems. In future work, it would be interesting to consider the 
public holidays and the obvious outliers prior to the estimation-forecast processes. This probably would 
enhance the forecast MAPE. Consequently, it would benefit the utility in reducing the operational cost and 
most importantly could avoid the energy being waste. Hence the daily usage power could be optimized 
significantly from less fuel being burnt and helping to reduce the pollution in our environment. 
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