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Abstract 

 
This paper presents improved relaxed stabilization conditions and design 
procedures of state observer based controllers for continuous nonlinear systems 
in T-S model representation. First, the T-S model approach for nonlinear systems 
and some stabilization results are recalled. New stabilization conditions are 
obtained by relaxing those derived in previous works in this field. The asymptotic 
and exponential stabilization are considered with the maximization of the 
convergence rate. Design procedures for stabilizing T-S observer based 
controller using the concept of PDC (Parallel Distributed Compensation) and 
improved relaxed stabilization conditions are proposed. 
 
Keywords: Continuous T-S systems, Observer based controller, PDC. 

 
 

1. INTRODUCTION 

The design of state feedback control, as well as the design of state observer, for nonlinear 
systems, has been actively considered during the last decades in many works using the Takagi-
Sugeno (T-S) models [1], [2], [3], [4], [5]. 
 
The T-S model approach consists to construct nonlinear or complex dynamic systems that cannot 
be exactly modelled, by means of interpolating the behaviour of several LTI (Linear Time 
Invariant) submodels. Each submodel contributes to the global model in a particular subset of the 
operating space [2], [6], [7], [8]. 
 
Note that this modelling approach can be applied for a large class of physical and industrial 
processes as electrical machines and robot manipulators [9], [10], [11]. 
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Recently, T-S observer based controller has attracted increasing attention, because it can provide 
a suitable solution to the control of plants that are complex and ill-defined and have 
immeasurable state variables [12], [13], [14], [15], 
 
The T-S observer based controller has been considered to develop some systematic design 
algorithms to guarantee the stability and specific performances for the T-S model based systems 
[16], [17], [18].  
 
The synthesis of the observer based controller can be considered as a convex problem and 
solved by Linear Matrix Inequalities (LMI) optimization techniques [19]. In spite of the advantages 
of LMI, the existence of a solution that satisfies the sufficient conditions is not guaranteed, 
especially, when the number of submodels increases or if many constraints are added such as 
control performance, the problem may become infeasible [20]. 
 
In attempt to avoid this situation, in some works relaxed stabilization conditions are derived to 
minimize the conservatism on LMIs [2], [3], [21]. However, the maximization of the convergence 
rate hasn’t been considered.  
 
This paper extends these works by proposing new relaxed conditions stabilization and design 
procedures for the observer based controller, using the concept of Parallel Distributed 
Compensation (PDC), with maximization of the convergence rate for the T-S model systems. An 
optimization tool is then used instead of LMIs. 
 
This paper is organized as follows. Section 3 presents the structure of T-S models and recalls 
previous stability results. In Section 4, the observer design for T-S model is presented. In Section 
5, we derive improved stabilization conditions and new design procedures of T-S observer based 
controller.  To illustrate the proposed approaches a numerical example is considered in Section 6.  

2. NOTATIONS 

In this paper, we denote the minimum and maximum eigenvalues of a matrix X  respectively by 
( )min Xλ and ( )max Xλ , the symmetric positive definite matrix X  by 0X >  (the symmetric 

positive semidefinite matrix  X  by 0X ≥ ) and  the transpose of  X  by  TX .  
The following notations are also considered: 

, 1 1

n n n

i j i j

i j i j

x x x x

= =

=∑ ∑∑ , 
1 1

n n n

i j i j

i j i i j

x x x x

≤ < = <

=∑ ∑∑   and 
, , , 1 1 1 1

n n n n n

i j k l i j k l

i j k l i j k l

x x x x x x x x

= = = =

=∑ ∑∑ ∑∑ . 

 

3. T-S MODEL AND STABILITY RESULTS 

3.1 T-S model representation 

A T-S model is based on the interpolation of several LTI local models as follows [2], [22]: 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

1

1

n

i i i

i

n

i i

i

x t z t A x t B u t

y t z t C x t

µ

µ

=

=


= +



 =


∑

∑

&

        (1) 

where n is the number of submodels, ( ) p
x t ∈ R is the state vector, ( ) l

Ry t ∈ is the output vector, 

( ) m
Ru t ∈  is the input vector, ( ) q

z t ∈ R  is the decision variables vector and ( )( )i z tµ  is the 

activation function. 
p p p m l p,   and C

i i i
A B× × ×∈ ∈ ∈R R R  are respectively the state matrix, the input matrix and the output 
matrix.  
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Different classes of models can be considered with respect to the choice of the decision variables 
and the type of the activation function.  
In this paper, all the decision variables of the T-S model (1) are assumed measurable.  
Each linear consequent equation represented by ( ) ( )( )i iA x t B u t+  is called “subsystem” or 

“submodel”. 
The normalized activation function ( )( )i z tµ  corresponding to the ith submodel is such that [6], 

[23], [24]: 

( )( )

( )( ) { }
1

1

0   1,...,

n

i

i

i

z t

z t i n

µ

µ

=


=


 ≥ ∀ ∈

∑
         (2) 

 
3.2 Basic stabilization conditions 

Let us consider the system (1) in its autonomous form, then we have: 

( ) ( )( ) ( )
1

n

i i

i

x t z t A x tµ
=

=∑&          (3) 

Stabilization conditions of system (3) are derived using Lyapunov approach. So, the equilibrium of 
the T-S control system described by (3) is globally asymptotically stable if there exist a common 
positive definite matrix P  such that [25]: 

0  for 1T

i i
A P PA i n+ < ≤ ≤          (4) 

4. OBSERVER DESIGN FOR T-S MODEL 

In order to estimate the non measurable state variables of the T-S model (1), a T-S observer can 
be designed using PDC technique [7]. In this case, the global observer is obtained by 
interpolation of the local linear observers, associated to the different submodels. 
For   the   T-S   observer   design, it is supposed that the decision variables are measurable and 
the T-S model of system (1) is locally detectable i.e. all the pairs ( ), ; 1,...,

i i
A C i n= are detectable.  

The T-S observer is written as follows [2], [3]: 

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

1

1

ˆ ˆ ˆ

ˆ ˆ

n

i i i i

i

n

i i

i

x t z t A x t B u t L y t y t

y t z t C x t

µ

µ

=

=


 = + + −  


 =


∑

∑

&

      (5) 

where ( )x̂ t  is the estimated state vector and the activation function is the same than that used in 

the T-S model verifying (2). 
One considers the following state estimation error defined as :  

( ) ( ) ( )ˆt x t x tε = −          (6) 

From (1) and (6), the state estimation error dynamic is described by the following equation: 

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( ) ( )
, ,

=
n n

i j i i j i j ij

i j i j

t z t z t A L C t z t z t R tε µ µ ε µ µ ε= −∑ ∑&     (7) 

where : 

ij i i j
R A L C= −           (8) 

The T-S observer is required to satisfy ( ) ( )x̂ t x t→  when t → ∞ , this condition is guaranteed 

when the error ( )tε  converges to zero.  

5. OBSERVER BASED CONTROLLER DESIGN FOR T-S MODEL 

When the estimated state ( )x̂ t  is available, we can consider the global control law with PDC 

technique as follows: 
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( ) ( )( ) ( )
1

ˆ
n

i i

i

u t z t K x tµ
=

= −∑         (9) 

From (5), (6) and (9), one obtains: 

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )

, ,

1

ˆ ˆ

ˆ ˆ

n n

i j i i j i j i j

i j i j

n

i i

i

x t z t z t A B K x t z t z t L C t

y t z t C x t

µ µ µ µ ε

µ
=


= − +



 =


∑ ∑

∑

&

      (10) 

The augmented system is given by: 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )2

, 1

2
2

n n n
ij ji

i j ij i ii i j

i j i i j

H H
X t z t z t H X t z t H X t z t z t X tµ µ µ µ µ

= <

+ 
= = +  

 
∑ ∑ ∑&  (11) 

where: 

( )
( )
( )

ˆ
 ,  H

0 0

i i j i j i j i j

ij

i i j i j

A B K L C G L Cx t
X t

A L C Rtε

−     
= = =     −    

      (12) 

whith: 

i j i i j
G A B K= −           (13) 

The equation (11) makes appear the dominant submodels characterized by the matrices 
ii

H and 

the coupled submodels characterized by the matrices 
2

ij ji
H H+ 

 
 

. 

 
5.1 Asymptotic Stability 

The T-S system described by (11) is globally asymptotically stable if there exist a common 
positive definite matrix P  such that [2]: 

( ) ( )( ) ( )( )

0,                                   1

0,     1
2 2

, / 0,

T

ii ii

T

ij ji ij ji

i j

H P PH i n

H H H H
P P i j n

i j z t z t tµ µ

 + < ≤ ≤


+ +   
+ ≤ ≤ < ≤   

   
∀ ≠ ∀

       (14) 

One notes that the conditions (14) are conservative, because they require the stability of all the 
submodels (dominants and coupled). This result shows that the stabilization analysis of the T-S 
observer based controller system is reduced to a problem of finding a common matrix P . If n is 
large, it might be difficult to find a common P  satisfying the conditions (14). 
To reduce the conservatism, in the reference [2] relaxed conditions which require only the stability 
of the dominant submodels have been proposed. These conditions are recalled in the following 
theorem: 
 
Theorem 1 [2]: Assume that the number of rules that fire for all t is less than or equal to s  where 
2 s n≤ ≤ . The equilibrium of the T-S system described by (11) is asymptotically stable in the 
large if there exist a common positive definite matrix P  and a common positive semi definite 
matrix Q  such that: 

( )

( ) ( )( ) ( )( )

1 0,                          1

0,1
2 2

, / 0,  and 1

T

ii ii

T

ij ji ij ji

i j

H P PH s Q i n

H H H H
P P Q i j n

i j z t z t t sµ µ

 + + − < ≤ ≤

 + +   

+ − ≤ ≤ < ≤   
   
∀ ≠ ∀ >

       (15) 

5.2 Exponential stability 

It is important to consider not only stabilization, but also other control performances such as 
speed of response, which is related to the decay rate, also called degree of stabilization and 
defined to be the largest 0a > such that: 
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( )lim 0at

t
e X t

→∞
=           (16) 

holds for all nonzero trajectories ( )X t  of the system (11).  

The condition (16) is equivalent to have: 

( )( ) ( )( )2V X t aV X t≤ −&           (17) 

where : 

( )( ) ( ) ( )T
V X t X t PX t=           (18) 

is a quadratic Lyapunov function with 0P > . 
The condition (17) has to be verified for all trajectories and leads to the inequality:  

( ) ( ) ( )0
at

X t e K P X
−≤          (19) 

where: 

( )
( )
( )

1/ 2

max

min

P
K P

P

λ

λ

 
=   
 

         (20) 

and 0a >  is the minimum decay rate. 
 
The inequality (19) guarantees the global exponential stability of (11).  
In [3], conditions of global exponential stability of system (11) have been derived and the 
minimum decay rate of the system has been characterized. These results are recalled in the 
following theorem: 
 
Theorem 2 [3]: Suppose that there exist a common positive definite matrix P  and a common 
positive semi definite matrix Q  such that: 

( ) ( )( ) ( )( )

1
0,    1

2

0,  1
2 2 2

, / 0,  and 1

T

ii ii

T

ij ji ij ji

i j

H P PH s Q i n

H H H H Q
P P i j n

i j z t z t t sµ µ

  
+ + − < ≤ ≤ 

 


+ +   
+ − ≤ ≤ < ≤      

∀ ≠ ∀ >

         (21) 

Then the closed loop T-S model described by (11) is globally exponentially stable. 
The minimum decay rate in this case is: 

 
( )
( )

min

max
4

c

Q
a

P

λ

λ
=           (22) 

Note that the conditions (15) of theorem 1 and those (21) of theorem (2) can be unified in the 
following form: 

( )

( ) ( )( ) ( )( )

0,        1

0,1
2 2

, / 0,  and 1

T

ii ii

T

ij ji ij ji

i j

H P PH s Q i n

H H H H
P P Q i j n

i j z t z t t s

β

β

µ µ

 + + − < ≤ ≤

 + +   
 + − ≤ ≤ < ≤   
   
∀ ≠ ∀ >

       (23) 

with 1 or 0.5β = . 
 
Remark 1: When β  takes 1, one obtains the asymptotic stability conditions (15) and when β  is 

replaced by 0.5 , one obtains the conditions (21). 
 
5.3 Main results: generalized and improved relaxed stability conditions 

Let us note that two questions arise about the unified conditions (23): 
- When no solution exists for 0.5β = , could the conditions (23) be relaxed to obtain an 

exponential stability solution? 
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- How to maximize the minimum decay rate when the exponential stability is guaranteed? 
 
In this work, we have been interested by these two points and we have proved that the conditions 
(23) can be extended for any β such that 0 1β< < . Then the following theorem can be stated:   
 
Theorem 3: Assume that the number of submodels simultaneously activated is s  such that 
2 s n≤ ≤ . The system described by (11) is globally exponentially stable, if there exist a common 
positive definite matrix P , a common positive semi definite matrix Q  and a scalar 0 1β< <  such 
that: 

( )

( ) ( )( ) ( )( )

0,        1

0,  1
2 2

, / 0,   and  1

T

ii ii

T

ij ji ij ji

i j
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i j z t z t t s

β

β

µ µ
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∀ ≠ ∀ >

     (24) 

Then, the minimum decay rate is: 

 ( )
( )
( )

min

max

1
2

c

Q
v

P

λ
β

λ
= −           (25) 

Proof. To prove the theorem 3, we use the following lemma 1: 
 
Lemma 1 [2], [22]: Assume that the number of submodels simultaneously activated is s  such that 
2 s n≤ ≤ , then: 

( ) 2

1 1

2

1 1

1 2 0

and  1  where 1,   0

n n

i i j

i i j

n n

i i i

i i

s

s

µ µ µ
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∑ ∑

∑ ∑
         (26) 

 
Multiplying the first term of (24) by 2

i
µ , the second by 2  

i j
µ µ and adding up all terms for 1i = to 

n , we get: 

( ) ( ) ( )2

1 1

2 0
n n

TT

i ii ii i j ij ji ij ji
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= + +∑ ∑ ∑ , then the previous inequality is equivalent to : 
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Consider the quadratic Lyapunov function ( ) T
V X X PX=  which is positive since 0P> . Then its 

derivative is given by: 

( ) ( )T T T TV X X PX X PX X H P PH X= + = +& & &  
Thus, it comes out : ( ) ( )1 0

T
V X X QXβ+ − <& . 

In the other hand, we have: 

( ) ( ) ( )
2 2

min max
0 TP X X PX V X P Xλ λ< ≤ = ≤  and ( ) ( )

2 2

min max
0 TQ X X QX Q Xλ λ≤ ≤ ≤  

These two double inequalities yield the following one:  
( )
( )

( )
( )
( )

( )min max

max min

T
Q Q

V X X QX V X
P P

λ λ

λ λ
≤ ≤

 Since 0 1β< < , we get: 

( ) ( )
( )
( )

( ) ( ) ( )min

max

1 1 0
T

Q
V X V X V X X QX

P

λ
β β

λ
+ − ≤ + − <& &  

Then, if there exist P and Q  and a scalar β  such that 0 1β< <  and the conditions (24) of 
theorem 3 are verified, the T-S system described by (11) is globally exponentially stable with 
minimum decay rate given by: 

( )
( )
( )

min

max

1
2

c

Q
v

P

λ
β

λ

 
= − 
 

 where ( )
( )
( )

min
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1 0
Q

P

λ
β

λ

 
− > 

 
 

 
Remark 2: The generalized conditions (24) of theorem 3 are: 

- less conservative than those of theorem 2 (corresponding to 0.5β = )  if 0.5 1β< < ; 
- more conservative than those of theorem 2 if 0.5β < .  

and the minimum decay rate can reach important values greater than that obtained for 0.5β = . 
 

5.4 Proposed procedures for observer based exponential stabilization of T-S system  

The observer based stabilization of T-S systems can be leaded using two procedures : the first 
one is based on the separation principle to synthesise the observer and the controller gains and 
the second one aims to the maximisation of the decay rate. 

5.4.1 Separation principle based procedure 

Using the separation principle [3], [18], the conditions of theorem 3 (or those of theorem 2 when 
0.5β = ) are developed to determine the state feedback and the observer gains. The resulted 

procedure is summarized as the separated inequalities presented in the following theorem 4: 
 

Theorem 4: If there exist positive symmetric definite matrices  
1 2 1
,  ,  P P Q and 

2
Q such  that: 
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( ) ( )( ) ( )( )

1 2 1 2
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




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




 >

      (27) 

then one can always find a quadratic Lyapunov function which prove the global exponential 
stability of the augmented system (11). 
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Proof. Consider the Lyapunov function  ( ) T
V X X PX=  with the following structure of P  and Q : 

1

2

0

0

P
P

Pσ

 
=  
 

, 1

2

0

0

Q
Q

Qσ

 
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         (28) 

with 
1 1 2 2

0,  0,  0,  0P Q P Q> > > >  and *σ +∈ � . 
 
To prove (27), one can proceed with the same proof in [3] and obtains that  

1 2
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−  + +  +
  + −  
 

+  =
 + + + − 

      (29) 

 
In order to simplify the resolution of the bilinear inequalities (27) we consider the following 
variables change: 

1

1 1 1
,  

i i
X P M K X−= = , 1 1

1 1 1 1
Y P Q P− −=  and  

2i i
N P L=      (30)  

Then, one obtains the following Generalized Eigenvalues Problem (GEVP) in 
1 1 2
, ,  X Y Q , 

2
 ,  

i
P M , 

i
N and β  : 

( )

( ) ( )
( )

( ) ( )

1 2 1 2

1 1 1

1 1 1

2 2 2

2 2 2

0,  0,  0,  0

0,   1

2 0,1

0,     1

2

T T T

i i i i i i

T T T T T

i j i j j i i j i j j i

T T T

i i i i i i

T T T T T

i j i j j i i j i j j i

X P Y Q

X A M B A X B M s Y i n

X A A A A X M B M B B M B M Y i j n

A P P A C N N C s Q i n

A A P P A A C N C N N C N C Q

β

β

β

β

> > > >

− + − + − < ≤ ≤

+ + + − − − − − ≤ ≤ < ≤

+ − − + − < ≤ ≤

+ + + − − − − − 0,  1 i j n








 ≤ ≤ < ≤

   (31) 

Note that for a given scalar β , the constraints (31) are Linear Matrix Inequalities (LMI)  in 

1 1 2
, ,  X Y Q , 

2
,  

i
P M  and  

i
N . 

 

5.4.2 Maximization of the decay rate  

From the generalized exponential stability conditions of theorem 3, one can look for a control law 
(9) maximizing the minimum decay rate 

c
v .  This problem can be solved with respect to the scalar 

β  such that 0.5 1β< < , the common positive definite matrix P , the common positive semi 

definite matrix Q , the state feedback gains  , 1,...,
i

K i n=  and the observer gains , 1,...,
i

L i n=  as 
follows: 
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( )

( )

( )

min

max

( )
Maximize 1   subject to:

2 ( )

0.5 1,  0,  0

H ,  1  and 1  
0

0,         1    

0,1
2 2

, /

c

i i j i j

ij

i i j

T

ii ii

T

ij ji ij ji

i

Q
v

P

P Q

A B K L C
i n j n

A L C

H P PH s Q i n

H H H H
P P Q i j n

i j

λ
β

λ

β

β

β

µ

 
= − 
 

< < > ≥

− 
= ≤ ≤ ≤ ≤ − 

+ + − < ≤ ≤

+ +   
+ − ≤ ≤ < ≤   

   

∀ ( )( ) ( )( ) 0,  and 1
j

z t z t t sµ
















≠ ∀ >

      (32) 

The maximization problem (32) can be solved using the optimization tools of MATLAB as the 
fmincon. 
 

6. NUMERICAL EXAMPLE 

We consider the T-S system composed by two subsystems studied in [21] and characterized by: 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

2

1

2

1

i i i

i

i i

i

x t z t A x t B u t

y t z t C x t

µ

µ

=

=


= +





=


∑

∑

&

      (33) 

where: 

( )
( )

1

2
1 2( ) ,  

2 10 15 10
,  ,

1 0 0

x t
x t

x t
A A

a

     
=      

    

− −
= =  

1 2
1

,  
0 0

b
B B

  
  

   
= =  and 1 2 1 0C C   = = . 

( )
( ) [ ]1

1
1 2 1

1 , 3 3
,            13

0              otherwise

x t
x t

µ µ µ


 − ∀ ∈ −

= = −



 

a  and  b are the system parameters. 
We assume that the number of the submodels simultaneously activated is 2s = . 
With this example of multimodel system, we will show that the derived result in this paper can be 
used for two different goals: 

- the enlargement of the system parameters variation area in which the stability of the 
multimodel system is guaranteed; 

- the improvement of the decay rate of the system. 
 
6.1 Enlargement of the system parameters variation area with the guaranteed stabilization  

We study the multimodel stabilization of the system (33) with respect to the ( ),a b  parameters 

variation. The applied feedback control law is given by: 
 ( ) ( ) ( )1 1 2 2 ˆu t K K x tµ µ= − +            (34) 

where 1K  and 2K  are the local feedback gains determined such that the poles of the local 
controlled subsystems are placed to the values -1 and -2. 
The local observers gains 1L  and 2L  are determined such that the poles of the local estimation 
error dynamic are placed to the values -2 and  -4. 
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Thus we have [ ]1 5 8K = − , 1

8

0.2
L

 
=  
 

 and  the gains 2K  and 2L  depend on the values of a and 

b parameters. 
To determine the ( ),a b  area in which the stability of the controlled T-S system (33) is guaranteed, 

we vary the parameters a and b  ( 0a >  and 0b > ) and then we verify the stability conditions of 
theorem 2 ( )for 0.5β =  and those of theorem 3 ( )for 0.5 1β< < . 

The figures 1 and 2 show the feasible ( ),a b -area corresponding to the conditions given 

respectively by theorem 2 and theorem 3. The mark (*) indicates the stability conditions feasibility.  

 
FIGURE 1: Feasibility ( ),a b -area for the stability conditions of theorem 2  ( 0.5β = ). 

 
FIGURE 2: Feasibility ( ),a b -area for the stability conditions of theorem 3 ( 0.9β = ). 

 

From the figures 1 and 2, it can be noted that the theorem 3 ( )0.5 1β< <  leads to relaxed 

conditions compared to those of theorem 2. Indeed the feasibility ( ),a b -area of the figure 2 

corresponding to the application of theorem 3 is clearly larger than that of the figure 1 obtained by 
the application of theorem 2. 
 
6.2 Maximization of the decay rate  

We consider now the system (33) with 2a b= = , and we search to maximize the decay rate 

( )
( )
( )

min

max

1
2

c

Q
v

P

λ
β

λ

 
= − 
 

 subject to the optimization problem (32).  

The maximization is leaded with respect to P  and Q  matrices, the feedback gains 1K  and 2K  

and the observers gains 1L  and 2L  for different values of β . The obtained values are the 
following : 

• For 0.5β =  
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[ ] [ ]1 2
55.53 31.19 ,   46.27 18.492K K= = , 1 1

18.69 45.088
 ,   

0.722 3.542
L L

   
= =   − −   

 

max 0.046cv =  

50.621 39.337 19.409 0.338 186.62 99.644 12.877 10.071

39.337 482.69 19.278 70.198   99.644 196.66 14.082 10.328
,   

19.409 19.278 36.821 20.259  12.877 14.082 95.853 0.01

0.338 70.198 20.259 125.31

P Q

− − − − 
 − − − = =
 − − − −
 

− 

 
37

10.071 10.328 0.0137 94.084

 
 
 
 
 

− − 

 

• For 0.55β =  

[ ] [ ]1 2
38.732 27.381 ,   79.457 15.051   K K= = ,  1 2

13.062 40.503
,   

0.463 0.645
L L

   
= =   − −   

 

max 0.122cv =  

15.972 11.274 3.075 2.150 387.58 1.366 4.069 54.824

11.274 582.36 13.46 24.851 1.366 318.68 2.304 1.968
,   

3.075 13.46 44.326 31.224 4.0694 2.304 367.87 24.644

2.150 24.851 31.224 417.78 54.824 1.968 24.644 3

P Q

− 
 − = =
 − −
 
  71.51

 
 
 
 
 
 

 

It comes out from these results that the decay rate has been improved ( )max 0.122cv =  with the 

parameter 0.55β =  in comparison with that obtained for 0.5β =  ( )max 0.046cv = . This conclusion 

shows the importance of the new proposed stability conditions corresponding to 0.5 1β< <  and 
given by theorem 3.  
The figure 3 shows the simulation results ( 1x  and 2x  state variables behaviour) of the system 
(33) controlled with the multimodel law (34) in both cases of local gains: the gains values 
corresponding to 0.5β =  and the gains values corresponding to 0.55β = . 

 

 
FIGURE  3: State variables behaviour for 0.5β =  and 0.55β = . 
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It appears on the simulation curves that the dynamic of the system is faster for the control law 
corresponding to 0.55β = , which confirm the conclusion obtained with the comparison study of 
the decay rates.  
 

7. CONCLUSION 

In this paper, improved approaches are suggested for the quadratic stabilization of observer 
based controlled T-S systems. 
 
These approaches which aim to relax some results reached in previous works can be applied to 
the stabilization of nonlinear systems represented by T-S models, using the concept of parallel 
distributed compensation. 
 
Two design procedures of the improved stabilization synthesis have been proposed. The first one 
is based on the separation principle between the controller and observer gains determination and 
it is formulated as a Generalized Eigenvalues Problem. The second one aims to the maximization 
of the decay rate of the exponential stability of the controlled system and it leads to an 
optimization problem. 
 
A comparison study of the results derived in this work with previous ones has shown the 
importance of the proposed approaches for the enlargement of the availability domain of the 
stabilization conditions and the performance improvement of the stabilized nonlinear systems. 
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