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Abstract 

Power management systems for embedded devices can be developed in real-time 
operating system (RTOS) or in applications. If power management policies are applied 
in operating system (OS), then designers and developers will not have to worry about 
complex power management algorithms and techniques. They can rather concentrate 
on application development. The OS contains specific and accurate information about 
the various tasks being executed. An RTOS further has a comprehensive set of power 
management application programming interfaces (APIs) for both device drivers and 
applications within a power management component. Therefore, it is logical to place 
policies and algorithms in the OS that can place components not being used into lower 
power states. This can significantly reduce the system energy consumption. We present 
here an abstract model of a system power manager (PM), device power managers, and 
application power managers. We present relationship and interactions of these 
managers with each other using Unified Modeling Language (UML) class diagrams, 
sequence diagrams and state charts. We recommend that the PM must be implemented 
at the OS level in any embedded device. We also recommend the interfaces for 
interactions between PM and the devices power manager, as well as PM and 
application power manager.  Device driver and application developers can easily use 
this object oriented approach to make the embedded system more power efficient, easy 
to maintain, and faster to develop. 
 
 
Keywords: Embedded Device, Object Oriented Design, Policy Manager, Real-Time Operating Systems, System 
Level Power management 

 

1. INTRODUCTION 

Due to the nature of the use and blend of computationally extensive applications, power consumption is 
one of the major concerns in developing real-time OS devices [1, 2, 3]. There is always a need for longer 
battery life in order to avoid catastrophic data loss [4, 5]. The environmental impact of power consumption 
from electronic systems has raised serious concern [6]. Furthermore, excessive heat dissipation is a 
major obstacle in improving performance. Power management is widely employed to contain the energy 
consumption in power-constrained devices. The advancement in processor and display technology has 
far outpaced similar advancements in battery technology [4]. On the other hand, the battery capacity has 
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improved very slowly (a factor of two to four over the last 30 years), while the complexity of applications, 
the computational demands, and therefore the power needs have drastically increased over the same 
time frame. Power management techniques date back to 1989, when Intel shipped processors with the 
technology to allow the CPU to slow down, suspend, or shut down part or all of the system platform, or 
even the CPU itself, to preserve and extend the time between battery charges [7]. Since then, several 
power consumption strategies have been developed [8, 9, 10, 11, 12, 13, 14].  
 
Figure 1 shows the embedded processor performance and power consumption evolution for the data in 
Table 1. It should be noted that higher MHz/mW implies higher efficiency. Thus, power management 
techniques have evolved along time. These techniques have been able to reduce (or keep constant) 
power consumption in portable devices. 
 
Table 1: Embedded Processor performance and Power Consumption Data [15] 

 

Processor 
Intel StrongARM 

SA-1110 
Intel Xscale 

PXA-250 

Intel 
Xscale 

PXA-250 

Intel 
Xscale 
PXA-250 

Clock Speed (MHz) 206 200 300 400 

Power Draw (mW) 800 256 411 563 

MHz/mW 0.26 0.78 0.73 0.71 

 

 
 

Figure 1: Embedded Processor performance and Power Consumption Evolution [15] 

 
Power management has been a center of focus since the early 90’s. Power management policies have 
been described at different levels of abstraction starting from the lowest level of abstraction: Transistor 
Level. Figure 2 shows the use of power management techniques at various levels of abstractions.  
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Figure 2: Power Management Schemes at Different Level of Abstractions 

 
At the transistor, level dynamic voltage scaling (DVS) and dynamic frequency scaling have been exploited 
to reduce the power consumption in circuits at this level [16, 17]. Extensive research has been done on 
lower-levels such as transistor level, gate level and application level power management in the past few 
decades [18, 19]. Researchers have developed innovative bus protocols [20, 21], memory optimization 
algorithms [22, 23], and advancement in cache technology [24, 25] for managing power. Power 
management techniques in device drivers have resulted in power management techniques at architect’s 
level of abstraction [26, 27, 28]. A system architect performs system level trade-offs by selecting an 
optimum architecture that satisfies power, area, cost, latency and other quality-of-service (QoS) and 
performance parameters [29, 30, 31]. Similarly, power management techniques have evolved at the 
application level [32, 33]. An application is usually given full control to choose the value of CPU power 
setting and parameters. The OS is then responsible for keeping track of all the power settings of different 
applications and applying them on different resources such as processors.  
 
As per the Moore’s law, the number of transistors on a chip doubles every eighteen months [34]. This has 
resulted in exponential increase in the complexity of embedded systems. Therefore, power control at 
lower levels, even though it is more accurate, becomes unfeasibly complex and is compounded by time-
to-market pressures. Thus, with time the designs are now being described at higher levels of abstraction 
leading to the era of system level design, system-on-chip and networks-on-chip [30, 35]. Therefore, there 
is a strong need for specifying the power issues related to the design at the same level of abstraction, 
leading to the concept of system level power management. Moreover the application, semiconductor 
technology, cost, and time-to- market trends are causing a shift towards increased software content in 
embedded system and systems-on-chip. As a result, designers and users of embedded software must be 
increasingly aware of power issues. While power dissipation is inherently a property of the underlying 
system hardware, knowledge of embedded software that runs on the hardware is useful in order to 
analyze and improve system’s power consumption characteristics. Modern OS not only contain precise 
information about the various tasks being executed but are also well developed with algorithms, that 
selectively place components into lower power states, thereby drastically reducing energy consumption 
[1]. However, the importance of reducing the power consumption in embedded OS has not been widely 
recognized and a large body of work has focused on estimating, managing, and reducing power 
consumption in various system components. An RTOS serves as an interface between the application 
software and the hardware. The embedded system design and its issues such as hardware resource 
management, memory management, process management and development of device drivers can be 
simplified by providing the designers with a well defined interface. With more features being supported by 
embedded systems, the applications and their development is becoming complex everyday. RTOS must 
provide a simple and encapsulated Application Programming Interface (API) so that the software remains 
portable across product users, product families and companies [36]. 
 
The motivation behind this paper is the need for the applications to provide well-defined interfaces 
between RTOS and device devices that can be used by the power manager to manage the overall power 
of the system. This paper also aims at providing a simple programming interface for the application 
developers to inform RTOS about applications’ power and device requirements. Conversely, we also 
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recognize the need for RTOS to inform the application about the current battery status so that the 
application can keep user informed. Once the RTOS is aware of the power requirements, it should be 
able to bring the complete system into a lowest possible power state.  For a simplified and well-
encapsulated design, we provide an object-oriented representation for the power manager components 
that are embedded in the RTOS, device drivers and applications. We present encapsulated behavior of 
power management features in the form of classes and their interaction in the form of sequence 
diagrams. A proper graphical representation of these complex power management processes can give 
the user a capability to manage the complexity, tight performance and power constraints in the system. 
These features can then be used by the different application and device vendors to evolve test cases for 
verifying the compatibility among the various devices and the applications being used with this OS in their 
prototype. 
 
Section 2 provides typical software architecture of power manager in an RTOS. Section 3 discusses the 
power states in the RTOS. Section 4 describes the proposed model for power management in RTOS. 
Section 5 concludes this research. 
 

2. SOFTWARE ARCHITECTURE of POWER MANAGER in RTOS 

Figure 3 shows the layered software architecture of an RTOS. The top layer consists of user defined 
applications and OS supported applications. OS supported application include user interfaces and client-
services. Embedded system designers and developers design their applications and link them with some 
dynamic link library (Core DLL library). Multimedia, networking, and other applications, along with device 
drivers are supported at the OS layer. Below this layer there is OS kernel that handles the major OS 
functionality such as scheduling, task management, memory management, I/O management among 
other. Under this layer, there is a original equipment manufacture (OEM) layer.  

 
 

Figure 3: Layered Software Architecture of OS 
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OEM layer usually supports all the OEM hardware and contain device drivers for various hardware 
devices originally supported by OS. This layer also contains boot loader and configuration manager which 
loads OS every time we start this system. This part of the OS is write-protected and 
application/device/embedded system developers are not allowed to alter the content of this layer.  
 
We have abstracted power management functionality of an OS in Figure 4. An integral part of OS-level 
power management is the policy manager. Policy Manager is responsible for the efficient management of 
the various applications and devices running on the portable system. This is one typical scenario of OS 
and is very similar to WindowsCE.NET. Other RTOS may or may not follow the similar architecture. 
Figure 4 shows the interaction of devices, applications and battery with the power manager (PM). The PM 
acts as a mediator between devices, applications, and the processor. Information from the various 
interfaces about their power status is then collected and managed by PM. On the basis of the collected 
information, the entire system is put into the lowest possible power state for a particular application.  
 
The PM also co-ordinates the different devices, system and processor states to decrease the overall 
system power consumed. While maintaining critical resources in the system and monitoring processor 
utilization to ensure its operation at the lowest possible state, it also provides a means for the drivers to 
inter-communicate about their power states. The Software architecture of the PM is responsible for 
providing the services to the device drivers of the system, to get notified, and respond upon power 
changes. 
 
  

 
 

Figure 4: Interaction of power manager with devices and applications 

Power management with power manageable hardware comprises one or more layers of software. 
Hardware specific power management software and operating system policy manager, which are in 
between the hardware independent software interface, are also defined. This creates a layered 
cooperative environment through software interfaces, and allows applications, operating systems, device 
drivers and the PM to work together, thereby reducing the power consumed. The higher-level application 
software is therefore able to use PM without any inkling of the hardware interface as the details of the 
hardware are masked by the PM. This leads to increased usage due to extended system battery life. 
 

3. POWER STATES 

In any system, under certain circumstances some hardware components are always in an idle state. This 
applies to the devices, to the processor and to the applications. Under these conditions, when no task is 



Ankur Agarwal & Eduardo Fernandez 

 

International Journal of Engineering (IJE), Volume (3): Issue (5)  493 

 

being executed, the particular device or application can be put into a lower power state. In an RTOS, 
there are different power states associated with applications, devices and the processor. Thus, it is 
possible that a processor may be in sleeping state, a device in soft off and an application in full-on state. 
Figure 5 shows the state transitions for a complete system. Power managed devices receive power state 
change notifications in the form of I/O control codes (IOCTLs). This diagram separates device power 
states from the system power states. 
 

NoPower Boot

BatteryInserted

Reset

PowerOnReset

On

WarmBoot

ColdBoot

Idle

SchedulerIdle

AnyInterrupt

CriticalOff

CriticalBatteryLowEvent

OnBattery

Suspend

ActivityTimerTimeOut

WakeUpEvent

 
 

Figure 5: System Power States 

There are seven predefined power states in a typical system. 1) The system is said to be in the 
“NoPower” state (S0), when the system has no power. 2) Upon the insertion of the battery the system 
moves to “Boot” state (S1). 3) The “On” state (S2) used for the normal operation, is a state in which the 
system dispatches user mode (application) threads for execution. Dynamic Frequency Management 
(DFM) and Dynamic Voltage Management (DVM) optimizations are done in this state. 4) The “Idle” state 
(S3) is a low-wake-latency sleep state. In this state, system context is maintained by the hardware while 
there is no loss of system context in the CPU or peripheral devices. Upon detection of some events such 
as user activity, the system moves back to the On state. 5) The “Suspend” state (S4), is a low-wake-
latency sleep state where all system contexts are lost except system memory. 6) The “Critical Off” State 
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(S5) is a non-volatile sleep state.  In this state system context is saved and restored when needed. Here 
the operating system saves the necessary information in the non-volatile memory and tags the 
corresponding context markers. 7) Finally, the “Reset” state (S6)is also referred to as soft restart state. In 
this state the system contexts are properly saved before being lost. All the data and other user 
information are also stored in memory before the system restarts itself. These system states are shown in 
Figure 5. This state diagram can also be considered as the state transition diagram of the active class 
[37] Policy Manager discussed in the next section. 
 
A system may be in any of the above-explained seven states depending upon the task, which is being 
executed on the device. However, transition among states can consume some time depending on the 
thread executed by the PM. 
 
The PM makes state transition decisions according to same power management policy, which is 
discussed in the next section. The power states of devices and processor are based on the same 
structure as that of the system. However, different devices may be in different power states, while the 
system and processor are in another state. For instance, a device can be in the Off state while the system 
is in the On state. 

 

4. A MODEL for POWER MANAGEMENT 

We have developed a UML model for power management features. The model uses three Manager 
(controller) classes that coordinate the basic power related functions. 

 
4.1. Policy Manager 
The Policy Manager constantly monitors battery state. It also orchestrates all system-level and device-
level state changes. These notifications are passed to applications polymorphically using the interface 
specified in the ApplicationDriverPowerManager (APM) and to the devices using the interface specified in 
DeviceDriverPowerManager (DDPM). On detecting a low battery state, the Policy Manager decides to 
force the system into the Idle state. It sends a notification to the APM and DDPM, which in turn notifies all 
application and drivers registered with it respectively. 

 
Figure 6 depicts the class diagram of power management in an RTOS. It can be seen from the figure that 
Policy Manager and Battery are singleton class whereas the DDPM and APM are abstract class 
associated with the Policy Manager. The relationships shown are used to notify drivers and applications 
about the various system level state changes. For example, when a new application is plugged in, the 
drivers are notified through the policy manager notification interface regarding the different system level 
state changes that may occur. The “BootInitilizer” class is for loading important application and drivers 
while the system is booted.  
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PolicyManager

«Singleton»

DevicePowerNotify():unsigned char
GetSystemPowerState():unsigned char
PlatformResumeSystem():void
PlatformSetSystemPowerState():void
RequestPowerNotification():unsigned char
SetSystemPowerState():unsigned char
StopPowerNotification():void

BootInitilzer

«Singleton»

DeviceDriverPolicyManager

«Abstract»

GetDevicePower():unsigned int
RegisterPowerRelationship():void
ReleasePowerRelationship():void

1..*

ApplicationDriverPolicyManager

«Abstract»

ReleasePowerManager():void
SetPowerRequirements():void

1..*

Battery

«Singleton»

 
Figure 6: UML Class Diagram of Power Management 

 
4.2. Device Driver Power Manager 
Figure 7 depicts several possible concrete subclasses of the DeviceDriverPolicyManager, each 
associated with a specific device driver   such as camera, keyboard, display, headset among others. 
These devices (referred as subclasses in UML) are presented here just as examples.  

 

DeviceDriverPolicyManager

«Abstract»

GetDevicePower():uns igned int
RegisterP owerRelatio nship():void

ReleasePowerRelationship():void

CameraPM1

DisplayPM1 HeadsetPM1

KeyboardPM1

 
Figure 7: UML Class Diagram of DDPM 
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In a specific embedded system, some of these subclasses may not be present, but these subclasses may 
instead have other subclasses contained in them. Various applications, services and device drivers are 
notified upon the (dis)appearance of device interfaces by the DDPM Interface notification.  This feature of 
RTOS can be regarded as similar to the plug and play of Windows OS. Using the device policy manager’s 
interface, the PM can receive and set specific capabilities of the device driver. However, to be compatible 
with this power management framework, the device driver must support all the power management 
states. The DDPM’s interaction with the Policy Manager is shown in the sequence diagram of Figure 8.  

 

DeviceDriver
PolicyManager

PolicyManager

RequestPowerNotification()

Acknowledge()

GetDevicePower()

DevicePowerNotify()
GetSystemPowerState()

RegisterPowerRelationship()
SetSystemPowerState()

SetSystemPowerState()

StopPowerNotification()

:Battery

GetBatteryState()

GetBatteryState()

 
Figure 8: Sequence Diagram of Device Driver Interaction with the Power Manager 
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Initially, all the device drivers (DeviceDriverPowerManager) register themselves with the Policy Manager 
through RequestPowerNotification() and receive an acknowledgement. The PM reads a list of device 
classes from the registry and uses RequestPowerNotifications() to determine when devices of that class 
are loaded. In order to for a device to get activated in the system, the device finds out its current power 
state by GetDevicePower() and then notifies the policy manager to change its state. DevicePowerNotifiy() 
informs the device about the change in its power state. Once the power state of the device has been 
changed the system changes its previous power state to a new power state in order to accommodate the 
change in the power state of the device. The Policy Manager constantly monitors battery status. Upon 
detection of an idle state, the Policy Manager sends a query, to transfer into idle state. Upon the 
acceptance of the query by the device, the Policy Manager changes the system state. Concurrently, if the 
Policy Manager detects a low battery state, it notifies the DeviceDriverPolicyManager, to change the 
device state of all devices to idle. As the device state of the device changes to idle state, an 
acknowledgement is sent to the Policy Manager, which puts the system state to idle.  
 
4.3. Application Driver Power Manager 

ApplicationDriverPolicyManager

«Abstract»

ReleasePowerManager():void
SetPowerRequirements():void

VideoConferencePM1

EmailPM1 VoiceCommPM1

ImageViewerPM1

 

Figure 9: Class Diagram APM 
 
Class diagram for the APM is shown in Figure 9. This Figure depicts some applications such as video 

conferencing, voice communication, email, audio, and multimedia among others, associated with APM 
class. Various system level power changes are notified to the applications using the interface specified by 
APM which in turn is specified by PM. Specific guidelines are set for devices, which applications can 
request to set system power level by means of DDPM. On specific devices or systems as a whole, a 
reduced power consuming state can be set if the applications request the power manager to change the 
device’s power state. High-performance “power-smart” applications can also use battery status data 
provided by PM to provide the best experience for the user by lowering down performance (e.g., lowering 
frame-rates) in order to preserve battery.  
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Figure 10 shows the interaction of the APM with the PM and battery as a sequence diagram. Initially the 
applications register themselves (RequestPowerNotification()) with the PM and receive an 
acknowledgement. APM notifies the Policy Manager that an application has a specific device power 
requirement and sets is accordingly (SetPowerRequirement()). The application also requests the power 
notification for the specific device drivers it needs in order to execute. The system responds to its request 
by changing the power state of those device drivers (SetDevicePower()). Once the application power 
requirements are fulfilled the policy manager updates the system power state (GetSystemPowerState(), 
SetSystemPowerStstate()). The policy manager constantly monitors the battery status. Upon the 
detection of an idle state event, the APM gets the system power state (GetSystemPowerState()) and 
device power state (GetDevicePowerState()). Power states of drivers are then forced into sleep state by 
the Policy Manager. Concurrently, if the Policy Manager detects a low battery state, it notifies the 
ApplicationDriverPolicyManager, to change the application state of all applications to standby followed by 
the change in the system state to standby state. 

 

ApplicationDriver
PolicyManager

PolicyManager

RequestPowerNotification()

Acknowledge()

SetPowerRequierment()
GetSystemPowerState()

SetSystemPowerState()

ReleasePowerRequirement()

SetSystemPowerState()

StopPowerNotification()

:Battery

GetBatteryState()

GetBatteryState()

DeviceDriver
PolicyManager

SetDevicePower()

StopPowerNotification()

 
Figure 10: Sequence Diagram of Application Driver Power Manager  

Interaction with Power Manager 
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5. CONCLUSION 

We have provided an abstract model for implementing power management in an embedded RTOS. 
System level power management can be designed using an OO approaches We recommend the 
interfaces for interactions between PM and the devices power manager, as well as PM and application 
power manager. We present relationships and interactions of these managers with each using UML class 
diagrams, sequence diagrams, and state charts. This abstract object-oriented representation of power 
management clarifies the operation of the power manager in conjunction with applications, devices and 
the processors for the developers of applications and devices. If the operating system and the device 
drivers are designed using this framework, the task of managing power within applications can be 
significantly simplified resulting into longer battery life at run time.  On the other hand, well defined 
interfaces also simplify the task of power management in device drivers so that a more granular power 
management strategy can be used, thus lowering overall power needs of the system. The object-oriented 
power management interface also simplifies testing for power management scenarios, thus making it 
possible to test for cases that were not tested earlier. It is our hope that the proposed framework will 
foster development of embedded systems that are more power efficient, easy to maintain, and faster to 
develop. 
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