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Abstract 
 
This study considers the problem of attenuating the vibration at a certain location 
on a flexible cantilevered beam mounted on a vibrating base which is the tip in 
this case. Attenuation is achieved without the need for sensor placement at that 
location. A modal state-space model of the flexible beam is constructed from the 
beam’s first ten modes of vibration. A reduced-order optimal observer is utilized 
to estimate the deflection of the beam’s tip from measurements of vertical 
deflections at mid-span and actuator locations. An inertial actuator is mounted on 
the beam itself, provides the control effort necessary for attenuating the tip 
vibration, resulting from shaker excitation. Experimental and simulation results 
have demonstrated the effectiveness of the proposed control technique.   
 
Keywords: Inertial actuator, optimal control, LQG, estimation, cantilevered beam, modal analysis.  

 
  
 
 
NOTATION  
 
A  dynamics matrix of full order modal model 

cA  dynamics matrix of the controller 

rA  dynamics matrix of reduced-order modal model 

aA  dynamics matrix of augmented system 
b  actuator damping coefficient  

fB  input vector of transmitted force 

mB  input matrix of full order modal model 

rB  input matrix of reduced-order modal model 

rcB  control distribution modal matrix 

cB  controller input vector  

cC  controller output matrix  

mdC  modal displacement output matrix 

vmC  modal rate output matrix 

rC  output matrix of reduced-order system 
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D  nodal damping matrix  
urD  reduced-order feed through matrix 

2e  model reduction error 

iF  Excitation force from the shaker (support) 

cF  actuator control force 

cG  Actuator transfer function  

rG  transfer function of reduced model 
I  identity matrix 
J  quadratic cost performance index 
k  actuator stiffness  
K  nodal stiffness matrix 

cK  controller modal Matrix of gains 
L  Estimator gain matrix 
M  nodal mass matrix 
m  number of actuators 

om  mass of inertial actuator 
n  dimension of nodal model 
N  dimension of modal model 

rN  dimension of reduced order modal model 
p  number of sensors 

cP  solution of the controller algebraic Riccati equation  

eP  solution of the estimator algebraic Riccati equation 
Q  Controller weighting matrix 
q  vector of nodal displacements 
R  controller weighting matrix 
s  Laplace variable 
t  time 
u  input to transmitted force model 

cU  control law 
V  estimator weighting matrix 
v  measurements noise 
w  vector of external inputs 
W  estimator weighting matrix 

cW  controllability grammian 

oW  observablility grammian 
y(t)  displacement at actuator location 

rY  nodal output vector of reduced model 

sY  nodal output vector of full model 
z  modal states 
Δ  modal damping matrix 
ηη, modal displacement and velocity vectors 

Φ  matrix of eigenvectors 
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Ω  diagonal matrix of eigenvalues 
 
1.   INTRODUCTION 
 
Accuracy of the model of a flexible structure plays a major role in the design of an 
appropriate control system that will force the structure to perform certain tasks or 
attenuate structural vibration. Flexible structures are inherently distributed parameter 
structures with infinite degrees of freedom. A model of such structure will have to be a 
reduced order model but adequate enough to yield a controller that will carry out the 
necessary manipulation and/or vibration attenuation.  
 
Research efforts in this field have provided a wealth of techniques for modeling and 
control of flexible structures. Once the model is constructed, the accuracy and precision 
of control systems, needed to manipulate the structure, or to perform certain tasks, 
depends solely on the accuracy of the structure’s model. Since, models of flexible 
structures are reduced order, the control scheme has to either, focus on certain dynamic 
characteristics and try to control the structure based on the available model, or it has the 
ability to somewhat estimate or predict the un accounted for dynamics. In either case, 
the model and the controller will have limited ability in predicting the actual structural 
behavior [1]. As it is known, any active control scheme must keep track of the behavior 
of the physical system in order to adjust its effort to suite the current status of the 
structure and perform the predefined requirements on that structure. This also poses 
another problem in large flexible structures, since sensor placement on large flexible 
structures increases the complexity of both the model and the controller. Therefore, to 
actively control a flexible structure, one has to keep in mind all the aforementioned 
challenges.  
 
From modeling standpoint, many research efforts have utilized FEM to obtain models of 
flexible structures that can be used for control purposes. However, modal models 
obtained by FEM are not sufficient for providing a reliable model for control purposes for 
many reasons, one of which is that, FEM provides no information about damping in the 
structure [1]. This aspect is crucial to the model since damping dictates the transient 
behavior of the structure as well as the phase of the control effort in relation to structural 
vibration.  
 
In modeling of flexible structures, FEM technique is widely used for constructing 
analytical models of flexible structures. This method is well established but may not be 
accurate for controller design due to drawbacks mentioned above [2, 3]. Another 
approach for modeling flexible systems is to determine the model directly from 
experimental data, such as experimental modal analysis [2]. Analytical methods have 
also been used to obtain working models for flexible structures [4-6].  
 
As for the control of flexible structures, considerable research has been done in this field 
with various approaches and techniques. A common form of vibration control of flexible 
structure is done using passive means such as using viscoelastic materials, and passive 
damping [7, 8]. Other control approaches utilize various forms of feedback control 
techniques to achieve certain manipulation, attenuation, suppression or isolation 
requirements [9-13]. Other techniques involve robust control, optimal and fuzzy control 
[14-19]. Control techniques of flexible structures focus mainly on improving the agility, 
efficiency and bandwidth of the controller in the presence of noise as well as modeling 
and excitation uncertainties. A comprehensive review of shape control of flexible 
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structures with emphasis on smart structures using piezoelectric actuators is presented 
by [20, 21].  
 
In this work, vibration attenuation of the tip of a cantilevered beam subjected to 
excitation at the support is presented. A novel control technique uses a non-collocated 
sensors and actuators to attenuate the vibration at the beam’s tip. The control effort is 
determine by an LQG-based controller that uses feedback measurements at locations 
other than the tip to determine the required control force needed to attenuate the 
vibration at the tip. A non-reactive actuator (i.e. inertial actuator) is mounted close to the 
support and used to apply an appropriate control force to attenuate the tip vibration. The 
sensor-actuator non-collocation is utilized in this work to accommodate situations where 
sensor placement at the control location is prohibitive. Inertial actuators react directly off 
a mass; therefore, they can be placed directly on the vibrating structure without the need 
for a reactive base [11, 12, 22]. LQG is utilized to estimate the control effort needed 
without the need for sensor placement at the control location. LQG-based controller 
reduces computational cost and provides robustness in the presence of model 
uncertainties as well as measurements and excitation noise. Dynamic modal model of 
the flexible structure is constructed from the first ten modes of vibration obtained via 
finite element analysis of the structure. To improve the agility of the controller and 
reduce its sensitivity, the proposed control technique uses a reduced order modal model 
of the structure. The latter eliminates the least effective modes of vibration at the control 
location, i.e., modes with the least 2H norms are truncated from the modal model [23]. 
Both simulation and experiments are carried out to verify the integrity of the proposed 
control technique. 
 

2. CONTROL STRATEGY DESCRIPTION  
 

In the following sections, the linear quadratic Gaussian (LQG) based controller is 
constructed. The LQG has two parts, namely, an optimal observer, and an optimal 
controller. The observer generates estimates of the vertical nodal displacement of three 
locations on the beam, which are the actuator location, mid-span, and the beam tip. The 
controller output is a control force lateral to the beam axis. As for the inputs, the 
observer is subject to all external inputs that the actual beam is subject to. Those inputs 
are the force applied to the beam at the support iF , and the vertical control force cF . 
Moreover, optimal observers in general require feedback of errors between state 
estimates and state measurements.  

The demand on LQG is to reduce the vibration of the beam tip.  To fulfill this demand, 
the LQG has to perform the two nearly-simultaneous tasks of, (a) producing optimal 
estimates of the vibration at three locations along the beam’s span and (b) generating a 
control vector that will drive the inertial actuator to minimize the force transmitted to the 
tip and subsequently reduce its vibration.  

3.   INERTIAL ACTUATOR  

To better explain the control scheme proposed by this study. The layout of the dynamic 
system is shown in Figure (1-a). In Figure (1-b) a free body diagram of the beam is 
shown where the inertial actuator is applying force cF to cancel out the effect of force iF  
on the section of the beam to the right of the inertial actuator. The actuator is particularly 
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targeting the attenuation of the vibration at the tip through transferring a force to the 
beam with required magnitude and phase such that the tip’s vibration is minimized. 
Modeling the actuator as a spring mass damper system, the transmitted force from 
actuator to the beam can be expressed in the form  

 co Fzm                                                                     (1) 

where om  is the mass of the actuator and z is the actuator’s mass displacement. 
Therefore,  

)()( yzkyzcFc                                                       (2) 

 

where y  is the displacement of the beam at the actuator’s location. Assuming that the 
ultimate objective of the controller is to nullify the displacement of the actuator mass 
relative to the beam (i.e., 0z ), will yield an a required actuator force of the form,  

)()( ykycFC        (3) 

With an actuator stiffness that is relatively large compared to the stiffness of the beam, 
and assuming only natural damping in the beam and actuator, the force acting on the 
actuator mass will vanish only if the vibration of the beam at the actuator location 
vanishes. However, since the purpose of the control is to eliminate the vibration at the 
beam tip not the actuator location, the controller will assume the actuator’s mass 
vibration is indirectly caused by the vibration of the tip, and therefore, must keep track of 
the tip’s vibration despite the fact that physical measurements at that tip are 
inaccessible. Therefore, if estimates of the tip vibration is fed to the actuator, the result 
will be a control force that will minimize the tip vibration with cF  in Equation (3) replaced 
by  

)ˆ()ˆ( ttC ykycF                                                                       (4) 

Where tŷ is the estimate of the tip’s vibration and the transfer function mapping the tip’s 
displacement estimates to the control force is, 

    kbs
sY
sFsG

t

s 
)(ˆ
)()( .                                                           (5) 

this resembles a PD controller with proportional and derivative gains equal to the 
stiffness and damping of the actuator, respectively.  

It is clear, that actual implementation of the inertial actuator will cause the dynamics of 
the latter to be part of the overall dynamics of the system. Therefore, actuator dynamics 
will be later on augmented with those of the structure (i.e., beam) during the design of 
the LQG-based controller.  

4. STATE-SPACE REPRESENTATION OF THE BEAM 
To implement the proposed concept of controlling the tip vibration using inertial actuator, 
a state-space model is formulated, in this case, for a distributed parameter system such 
as the beam shown in Figure (1). The beam is considered as an n-dimensional model of 
a modally damped flexible structure having (m) actuators and (p) sensors, not 
necessarily collocated. The beam system retrofitted with an actuator is shown in Figure 
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(1). The beam’s structure is represented in nodal coordinates by the following second-
order matrix differential equation:  

wqqq BKDM                                                            (6.a) 

qqYs vd CC                                                              (6.b) 

In the above equation q  is the 1n displacement vector, w is the 1m external input 
vector, sY is the 1p nodal output vector,M , D , and K  are the nn  mass, damping, 
and stiffness matrices, respectively. dC , and vC are respectively, the np output 
displacement and output velocity matrices. The mass matrix is positive definite and the 
stiffness and damping matrices are positive semidefinite. The damping matrix D  is 
assumed to be proportional to the stiffness matrix K  without any significant effect on the 
integrity of the model [23, 24]. Dynamic model such as the one shown in Equation (6) is 
usually obtained from finite-element codes and has the dimension n which is 
unacceptably high to use in producing a state-space model suitable for structural control. 
Therefore an alternative approach is to use an N-dimensional second-order modal 
model of the system where nN  .  

A second order modal-model of the system can be expressed as  

)( twηηη m
2 BΩΔΩ   2                                                (7.a)     

 ηηYs mvmd CC                                                               (7.b)                             

where qη Φ , andΦ is the Nn modal matrix, Ω  is the NN  diagonal matrix of 
modal natural frequencies, Δ  is the NN  modal damping matrix, mB  is the mN   
modal input matrix, mdC  and mvC  are the Np  modal displacement and rate matrices, 

respectively. Defining the state vector    TT
21 ηηzzz  , a flexible structures 

having point force(s) as the input(s) and point displacement(s) as outputs will have the 
state space representation,  

wzz 



















m

2 BΔΩΩ
I0 0

2
                                                 (8.a) 

  uzYs umd D0C                                              (8.b) 

where, )(tYs  and )(tw are the nodal output and input vectors, respectively. Matrix uD  is 
the mp  feed through matrix. Equation (8) can also be represented by the following 
compact form, 

wzz )()(  BA                                                 (9.a)                                                     
wzYs )()(  uDC                                                           (9.b) 

where A , B , C , and uD  matrices are functions of the system (natural frequency, 

damping ratio, and mode shapes (i.e.,   Niiii andf 1,,   ) . The dimension of 
this state-space representation is N2  and it is much more manageable than the n2  
state-space model obtained from the corresponding nodal model. Detailed information 
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on constructing state-space model from natural frequencies and mode shapes is given in 
[15, 23]. 

 

5. MODEL REDUCTION  
To show the effectiveness of the proposed control strategy, the N2 -dimension state 
space model of the beam-hub system constructed in Equation (9) will be reduced even 
further to a 2 rN -dimension state-space representation. This will reduce the 
computational cost and further validate the effectiveness of the proposed technique. In 
this study the reduction is based on retaining only half the number of modes 
(i.e., )2/(NN r  ) and the modes retained will be those with the largest 2H norm [25]. In 
such case, the 2H reduction error is expressed as: 

22 rGGe                                                                      (10) 

where G  is assumed to be the transfer function of the full model corresponding to 
equation (9), and rG is the transfer function of the reduced model. The square of the 
mode norms are additive [25], therefore the norm of the reduced system with rN modes 
is the root-mean-square sum of the mode norms 


rN

j
jr GG

2

2

2

2
                                                                  (11) 

and the reduction error is, 





N

Nj
ir

r

GGGe
1

2

2

2

2

2

2
2
2                                                      (12) 

The term 
2iG is the modal cost of Skelton [26], which for the jth mode has the form  

jj

jj
j

CB
G

2
22

2
                                                               (13) 

It can be seen from Equation (12) that near optimal reduction is attained if the truncated 
mode norms for NNj r ,1  are the smallest. It should be noted that after 
truncation, modes should be rearranged such that the reduced model has a modal 
natural frequency ],[ 1 kf diag    where, 1  has the highest 2H norm. This also 
implies rearranging the corresponding modal states as well. The new state space 
representation of the truncated system is:  

wzz )()(  rr BA                                                 (14.a)                                                            
wzYr )()(  urr DC                                                     (14.b) 

where the subscript r denotes a reduced –order model. This state-space model has the 
dimension rN2 . 

6. AUGMENTATION OF THE CONTROLLR WITH THE STRUCTURE 



A.H. El-Sinawi 
 

International Journal of Engineering (IJE), Volume (4), Issue (2) 
 

126 

As it was mentioned in the Section (3) above, the dynamics of the actuator must be 
augmented with the dynamics of the beam because the actuator will e mounted on 
the beam itself. The augmented system will have the following state-space matrices,  

  ][,,,
0

curarcura
cr

c
a

rcr

c
a DDDandCCDC

DB
B

B
ACB

A
A 


















           

(15) 

Where cccc DCBA ,,, , are the state space matrices of the controller given in 
Equation (5). Notice that the transfer function in Equation (5) is unrealizable at its 
current state, but it can be with a second order filter in the denominator assuming that 
measurements of acceleration rather than displacement are to be fed to the actuator; 
see [15] for details. 

7. OPTIMAL OBSERVER-CONTROLLER SYNTHESIS   

In this section, the optimal observer-controller is formulated. The formulation is based on 
the augmented model of Equation (15). Measurements of the beam’s acceleration in the 
vertical direction are assumed to be available at actuator location and at beam’s mid-
span. The beam support is assumed to be mounted on a shaker the cause the excitation 
at the support. The optimal observer-controller will be an LQG type for which the plant is 
described as follows: 

wzz arca BUBA c                                                    (16.a) 

v zY aa C                                                            (16.b)   

The plant model of equation (19) is perturbed by the external input w , and the output aY  
is corrupted with noise v . The term urD  is dropped because the denominator of 
Equation (5) has been replaced by the second order filter.  The optimal control problem 
is formulated by finding the linear quadratic regulator (LQR) gains and the Kalman 
estimator gains that will minimize a quadratic performance index,  

dt)(J cc URUQ



0

TT zz                                                              (17) 

The estimator dynamics are given by the following state-space matrix differential 
equation 

wBzYUzz aarcrca  )ˆ(ˆˆ CLBA                                                  (18.a) 

zY aa ˆˆ C                                                                            (18.b) 

Here ẑ is the vector of estimated modal states, rcB is the modal feedback control 
distribution matrix, and zU ˆcc K , where cK , and L are respectively, the LQR and 
Kalman gains. The feedback gain vector cK is give by  

c
T1

c PBRK rc
                                                                         (19) 
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where cP  is the solution of the controller algebraic Riccati equation  

0QPBRBPAPPA c
T1

ccc
T  

rcrcaa ,                                           (20) 

and the estimator gain matrix L is given by  
1T

e VCPL  a                                                                          (21) 

where eP  is the solution of the estimator algebraic Riccati equation  

0WBBPCVCPAPPA T
e

1T
e

T
ee  

aaaaaa                                          (22) 

In this study, Equation (18) produces the vector 
 Tlocationactspanmidtipca qqqqY _ˆˆˆˆˆ

 where, cq  are the controller states. It should be 

noted that the matrix cK is the LQR modal gains and the portion of aŶ  namely; 

 Tlocationactspanmidtip qqq _ˆˆˆ   is the vector of beam’s nodal displacements, and 
thus, before utilizing the optimal feedback, this portion has to be transformed back to the 
modal domain using the modal matrixΦ . Matrices R and V are positive definite while 
matrices Q and W are positive semidefinite. The latter four matrices can be treated both 
as weighting matrices and as tuning parameters for the LQG [26, 27].  

In this study it is assumed beforehand that tipq  is not available for measurements, 
therefore, no estimate error for this state is available for feedback. However, estimate 
errors for the actuator location and the mid-span states are available and must be 
fedback to the estimator through the Kalman matrix of gainsL . This implies that poles of 
the closed loop system depicted by Equation (18) are placed in such manners that only 
optimal LQG estimates of actuator location and mid-span displacements are obtained. 
This is a major deficiency and it will cause an arbitrary change in the tip state due to the 
lack of information available to the estimator about measured tip displacements. Such 
estimator will not be of much use if the tip deflection is to be controlled. Therefore, the 
last term of equation (18) (i.e., waB ) is utilized to both eliminate this deficiency and 
achieve the demand on the LQG. In other words, the term wBa  will have to enable the 
LQG to (a) force subsequent estimates of tip modal states (i.e., ẑ ) to be dependent  on 
previous estimates of tip deflection and (b) generate a control force that will minimize the 
difference between the actuator mass and tip deflections through manipulation of the 
actuator location only. If the inertial actuator utilized to generates a force that is a 
function of the difference between the actuator mass displacement (i.e., zero in this case 
based on the reasoning in Equations (3-5)) and tip deflections, then equation (18) will 
have  Tci FFw  where, ci FandF  are the excitation and control forces, 
respectively. we obtain, 

)q̂0()(F _
1

locationactccci BC  AsI ,                                                     (26) 

where s is the Laplace variable, I is a 22 identity matrix.  

For effective implementation of the proposed control strategy it is important to determine 
early on whether the system is controllable (i.e., actuators excite all modes) and 
observable (i.e., the sensors detect the motion of all modes).  It is clear, however, that 
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the proposed control strategy may very well have a value of N  large enough to prohibit 
accurate calculation of the controllability and observability matrices of the system. To 
avoid such problem, the controllability and observability grammians are used instead of 
the original method proposed by Kalman [22, 23]. The grammians are determined from 
the following Lyapunov equations: 

0CCAWWA
0BBAWAW

T
oo

T

TT
cc



 ,
                                                        (30) 

where A , B , and C  , are the dynamic , input, output matrices of the overall model of 
the system, respectively. Matrices cW  and oW  are, respectively, the controllability and 

observability grammians. The system is controllable and observable if T
cc WW  , and 

T
oo WW  . The synthesized controller is implemented and the results are presented in 

the next section. 

 

8. EXPERIMENTAL AND NUMERICAL SIMULATION RESULTS 
Vibration attenuation of the beam tip of Figure (1) is investigated. The beam-actuator 
system is subject to excitation shown in Figure (2) exerted on the beam’s support. 
Dimensions and properties of the system under study are listed in Table 1.  Actual 
behavior of the beam-actuator is constructed based on the first ten modes of vibration of 
the beam-actuator system for which the modal frequencies and modal norms are listed 
in Table (2). The reduced-order dynamics model used in the design of LQG is 
constructed from four modes only. The four modes are those with the largest 2H  norms 
as shown in Table 2, namely, modes 1, 2, 3, and 5. The reduced order model of the 
system is constructed from those four modes and the states are arranged according to 
the same sequence.  

Using four modes of vibration to synthesize the LQG-based controller indicates that 
exact knowledge of the dynamics of the system is not necessary for successful 
implementation of the controller; rather a carefully reduced-order model is sufficient. The 
controller and estimator gain matrices, cK , and L are generated in Matlab using 
weighting matrices 1010IQ  α , 22 IR , 2210  IV ,  and 33IW  , 100 . Modal 
damping of 0.01 is used for all modes of vibration. Notice that the two extra states in cK , 
and L belong to the controller as shown by Equation (15). 

The control effort is tuned to reduce the relative vibration between the beam’s tip and the 
actuator mass via (1) feedback of two error signals; which are the difference between 
measured and estimated displacements at actuator location and mid-span, which are 
used to produce better estimates of deflections including that of the tip. And (2) 
estimates of the tip deflection, are fed through the inertial actuator with a demand to 
produce the control effort necessary to reduce the tip vibration. Block diagram of the 
control scheme used in this simulation is shown in Figure (3).   

The ideal outcome of the control strategy is to reduce the estimates of the beam tip 
vibration to zero. Figures 4 and 5 show significant reduction in the vibration both at the 
tip, and at the actuator location. Figure 6 shows the control force needed to achieve the 
attenuation and it is within the capabilities of the actuator.  
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To verify simulation outcomes, experiments are carried out under conditions identical to 
those used in the simulation. The experimental setup shown in Figure 7 is utilized to 
verify the integrity of the proposed technique. Significant reduction in the magnitude of 
the transfer function (approximately 30% at resonant frequencies) is attained as shown 
in Figure 8. No abnormal vibration is created at the actuator location when the controller 
is targeting the tip vibration as shown in Figure 9. Experimental actuator force is shown 
in Figure 10 which is reasonable and within the capabilities of the actuator used. 

It should be pointed out that this control technique has draw backs mostly in its 
sensitivity to excitation changes, mass of the inertial actuator, and overestimates of the 
force which appear to be related to the choice of values for the weighting matrices of the 
controller and observer as well as the derivative term in the transfer function of Equation 
(5).  
 
9.   CONCLUSIONS 
 
A novel approach for attenuating the vibration of a cantilevered beam mounted on a 
vibrating base has been presented. The proposed technique is particularly useful 
considering the fact that, real-life systems exhibits considerable variations in their 
properties. Thus, the characteristics of a structure corresponding to these properties 
show some stochastic variations. This makes it necessary to take into account the 
uncertainties of the system if a reliable control system is to be implemented. To this 
purpose, a robust and effective control system using optimal estimation and control 
techniques would be a suitable choice. The control strategy uses available 
measurements at various locations on a flexible structure to produce estimates of the 
vibration at inaccessible locations. Latter estimates are then used to control the vibration 
at those inaccessible locations using inertial actuator. The inertial actuator is non-
collocated with the sensors, and can be mounted directly on the structure, providing 
flexibility in locating sensors and actuators according to needs and constraints. 
Experimental and simulation results of the proposed method show significant reduction 
in the tip vibration without the need for any sensor(s) placement at the control location 
(the tip in this case). This is an important feature which could prove useful in applications 
where use of sensory devices at any location on the flexible structure is difficult to attain. 
The proposed strategy managed to reduce the vibration of the beam’s tip by 
approximately 30% at resonant frequencies using only estimates of the tip vibration 
rather than actual measurements.  
 Fine tuning of the weighting matrices should be carried to obtain the optimal results for 
the control force and the reduction in the tip vibration. Further work is needed in the 
implementation of this technique and two and three dimensions where the processes 
can be duplicated for the other two dimensions that were not discussed by this work.  
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Table 1: Simulation and Experimental Data  
 

Component Properties Dimensions  
Thin beam Aluminum 6061 

35.0'
/2710

1089.6
3

10






RatiosPoisson
mkg
PaE

  

Length =0.53 m 
Thickness =2.1 mm 

Depth=0.035 m 

Actuator ETREMA Terfenol-D 
Actuator 

Stiffness 300 kN/mm 
Mass=0.203 kg 

Damping =11560 kg/s 
Excursion=10 micro-meter pk-pk 

Excitation B&K shaker 1-100 Hz chirp signal + Random 
input 

 
 

Table 2: Beam-Actuator system modal frequencies and modal 2H Norms 
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Mode Number Frequency Hz 2H Norm 
1 10.106 0.05043736496038 
2 54.732 0.00179075345056 
3 139.72 0.00021895088343 
4 195.05 0.00021895088343 
5 271.71 0.0000000000000012 
6 457.76 0.00004501906852 
7 461.14 0.00000000000000 
8 590.08 0.00002132364349 
9 720.38 0.00000521173674 

10 1000.4 0 
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Figure 1: (a) Cantilevered beam mounted on a shaker (b) Free body diagram of the beam  
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Figure 2: Excitation at the beam’s support 
 

 
 

Figure 3: Block Diagram of the control scheme 
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Figure 4: Tip vibration with and without control 
 

 
Figure 5: Vibration at the actuator location 
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Figure 6: Control force, simulation 
 

 
 

Figure 7: Experimental Setup 
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Figure 8: Frequency response function of the beam: tip displacement/shaker displacement 
 

 
 

Figure 9: FRF of the beam with and without control 
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Figure 10: Control force, experimental 
 


