
Z.H. Ahmed 

International Journal of Engineering (IJE) Volume (4): Issue (3) 233 

Solution algorithms for a deterministic replacement problem 
 
 
Zakir H. Ahmed                zhahmed@gmail.com 
Department of Computer Science, 
Al-Imam Muhammad Ibn Saud Islamic University, 
P.O. Box No. 5701, Riyadh-11432 
Kingdom of Saudi Arabia 

 
Abstract 

We consider the life of a k-series system with n-k standbys, which are to replace the working items as 
they fail in a specified order. Also the life of each item is assumed to be known. The problem is to 
find the first k elements to be used in the system to start with and the sequence in which 
replacements are to be made such that the system life is maximized. It is pointed out that this 
problem is essentially a ‘bottle-neck’ problem in that it is equivalent to partitioning n numbers into k 
subsets (parts) such that the minimum of the k part-sums is maximized. Effective bounds can be 
computed for the optimum solution value and this can be used to develop an efficient lexisearch 
algorithm for optimization. Also the paper develops a genetic algorithm which gives heuristically 
optimal solution to the problem. The efficiency of the genetic algorithm to the ‘bottle-neck’ maximin 
problem as against lexisearch algorithm has been examined for some randomly generated instances 
of different sizes. 

Keywords: Deterministic replacement, bottleneck, lexisearch, genetic algorithms. 

 

1. INTRODUCTION 

In reliability engineering, the k-out-of-n series system is an important system as most systems can be 
modeled as series system. It is defined to a complex coherent system with n independent components such 
that the system operates if and only if at least k of these components function successfully. For a complex 
and expensive system, it may not be advisable to replace the system just because of the failure of one 
component. In fact, the system re-operates on repair or replacement of the failed component by a new one. 
Such replacement does not renew the system, but enable the system to continue to operate. So, the 
system can re-operate as long as number of failed components does not exceed n-k. However, once the 
number of failed components surpasses n-k, the system does not re-operate [16]. This system is also 
referred as a series system with standbys [10, 14].  

There are many application of the system, such as process and energy system, transport system, bridges, 
pipelines, space shuttles, etc. Reliability, availability and maintenance model of the system have been 
studied in the reliability literature [10, 14, 15, 16]. There are some literatures on this, but with group 
replacement, which is referred as opportunity based maintenance [11]. Savic et al. [13] have proved that 
this opportunistic problem is NP-complete, and developed genetic algorithm for analyzing this optimal 
opportunistic problem for real-sized systems. They analyzed different operators using a system that 
consists of 50 maintenance significant parts, and paid special attention to the sensitivity of solutions to the 
maximum number of maintenance group. A dynamic opportunistic maintenance policy for continuously 
monitored system has been proposed [17]. An opportunistic maintenance policy for a multi-component 
damage shock model with stochastically dependent components was proposed [5]. Zhaou et al. [18] 
introduced an opportunistic preventive maintenance (PM) scheduling algorithm based on dynamic 
programming for the multi-unit series system. A genetic algorithm for time and cost analysis for a Potash 
industry has been developed to build an intelligent maintenance system to predict whether the opportunity 
based maintenance strategy is cost effective or not [12]. 

We consider the problem as optimization of the component replacement sequence when the data is 



Z.H. Ahmed 

International Journal of Engineering (IJE) Volume (4): Issue (3) 234 

deterministic and replacement is single. Of course, we do not consider the replacement cost or time. We 
show that the system is equivalent to a ‘bottleneck-maximin’ problem, of partitioning a set of n numbers into 
k parts, such that the minimum of the k part-sums is maximized. A preliminary study was carried out by 
Ahmed et al. [4]. It is a combinatorial optimization problem in nature. An interesting feature of combinational 
optimization problems is that it may be easy to hit upon the optimal solution but in contra-distinction to the 
‘continuous’ mathematical programming problems, it is almost impossible to identify it as such by ‘general 
methods’. No necessary conditions, let alone necessary and sufficient conditions, for a solution to be 
optimal, of the usual type (like the derivatives being zero) are available. However, it often happens that 
efficient bounds to optimal value (either globally or over well-defined subsets of the set of solutions) can be 
found, making possible non-trivial statements about the ‘goodness’ of a proposed solution. In fact, this 
possibility is at the heart of search algorithms like the lexisearch [2, 3, 9] and branch and bound [8] 
algorithms. In this paper, we are going to develop a lexisearch algorithm to find exact optimal solution and a 
genetic algorithm to find heuristic solution to the problem. 

The paper is organized as follows: Section 2 gives a detailed statement of the problem. A lexisearch 
algorithm is applied in Section 3 to find exact optimal solution to the problem. Section 4 develops a genetic 
algorithm for the same. Section 5 describes computational experience for the algorithms. Finally, 
Section 6 presents comments and concluding remarks. 

2. STATEMENT OF THE PROBLEM 

Let S0 = {C1, C2,.........,Cn} be a set of n components or elements, with corresponding lives {t1,t2,.......,tn}. A 
system requires k of these elements for it to be in operation. Thus initially one has k components put to 
work in the system, keeping the remaining n-k components as standbys, to replace ‘active elements’ in the 
system, sequentially, as and when they fail. The objective is to choose the initial set of active elements and 
the sequence in which the standby elements are to replace the elements on failure, so that the system life is 
maximized. 

2.1. Illustration 

Let Ci, (i =1, 2, 3, ...., 8) be 8 components, with lives {ti, i=1, 2, .., 8} = {4, 7, 8, 9, 10, 15, 15, 20} in suitable 
time units. Let k=3 and the replacement sequence be {C1, C2, C3; C4, C5,..., C8}. That is, one starts with the 
three items C1, C2, C3, with lives 4, 7 and 8 respectively, in the system, and as the active items fail, they are 
replaced by the items with lives 9, 10, 15, 15 and 20 in that order. The sequence of failures/ replacements 
can be schematically represented as shown in Table 1. 

Stage 
No. 

Cumulative 
time till failure 

Time to 
failure 

Active element life in 
respective points of failure 

Lives of ordered 
set of standbys 

0 0 0 4(C1), 7(C2), 8(C3) 9, 10, 15, 15, 20 
1 4 4 9*(C4), 3(C2), 4(C3) 10, 15, 15, 20 
2 7 3 6(C4), 10*(C5), 1(C1) 15, 15, 20 
3 8 1 5(C4), 9(C5), 15*(C6) 15, 20 
4 13 5 15*(C7), 4(C5), 10(C6) 20 
5 17 4 11(C7), 20*(C8),  6(C6) * 
6 23 6 5(C7), 14(C8), 0(C6)  

TABLE 1: The sequence of failures / replacements 

Starting with C1, C2 and C3, we find that C1 fails first, at time t = 4, to be replaced by C4; with t4 = 9. Now C2, 
C3 and C4 have 3, 4 and 9 units of time left for failure and the four items Cj,(j= 5, 6, 7 and 8) with life 10, 15, 
15, 20 are the ordered spares. The process is continued till the system fails totally. For the sequence (1, 
2,..., 8), the system breakdown time is 23 time units. The same set of units, with different orders of 
replacement, leads to different system lives. For instance, the sequence (5, 1, 3, 6, 4, 8, 2, 7) gives a 
system life of 24 units and the sequences (4, 2, 6, 7, 8, 5, 1, 3) and (8, 1, 3, 5, 6, 7, 2, 4) lead to system 
lives of 26 and 27 units respectively. Our aim is to obtain the maximum system life by choosing an 
appropriate sequence. 



Z.H. Ahmed 

International Journal of Engineering (IJE) Volume (4): Issue (3) 235 

2.2. Bound setting 

It is easy to get some good upper bounds to the optimal values of this problem. Two such bounds are given 
below: 

(i) Let 



n

i
itT

1
0  Then, 1 = 





k

T0  is one such upper bound. 

(ii) Let the components be re-labeled, if necessary, such that ti  ti+1. Also, let t1, t2.....tr1  1, but 
tr1+1<1. Then, 

 

1

1
0

2

1

rk

tT
r

i
i







  

is also an upper bound. This bounding process can be recursively applied, treating the set S1=S0-{Ci ,i 
=1,2,..r1} as the set to be partitioned into k1= k - r1 subsets, where S0 is the set of all component lives 
in non-increasing order. Let us illustrate it as below. 

(i) Let S0 = {20, 15, 15, 10, 9, 8, 7, 4} and k=3. We have T0=88, and then 1=29. Since the sequence 
{20,4,8,10,15,15,9,7} leads to a solution value 27, any improvement, if at all achieved, will be not 
more than 2 (=29 - 27 ). 

(ii) Let S0= {40, 17, 10, 9, 8, 5} and k=3. Then 1 = 29. Hence, S1= {17, 10, 9, 8, 5} with sum, say 
T1=49, and 2 = 24 and the best partition of S1 into two parts is equivalent to the best partition into 3 
parts of S0. The partition S11={17,8}, S12={10,9,5} of S1 is of value 24 and hence a best partition of S0 
into three parts is S01= {40}, S02={17,8} and S03={10,9,5}, with value 24. 

It is worth noting that this problem, formulated as a ‘bottleneck’ problem in a ‘dynamic background’ (viz., 
replacing an item as and when it fails) and thus is one with ‘permutations’ as the ‘variable’ over whose 
domain an objective function is to be maximized, is equivalent to the ‘static’ problem - of partitioning a set 
of numbers into k parts such that the minimum among the part sums is maximized. For instance, take the 
case of the set {4, 7, 8, 9, 10, 15, 15, 20}, with k =3 considered already in Table 1. On examining the failure 
patterns table vertically with the top entries 4, 7 and 8, one is easily led to the partitions {4, 9, 15} U {7, 10, 
20} U {8, 15}, with part sums 28, 37 and 23 and hence the objective function value 23 = min. {28, 37, 23}. A 
permutation of these parts within themselves gives rise to a different sequence but give the same objective 
function value. For instance, consider the following permutation: {9, 15, 4} U {7, 20, 10} U {15, 8}. The 
sequence is assembled as follows: 

Take the first element of each of these parts, to start the system. Whichever is the smallest among 
them in failure time will fail first; replace it by the next element in the corresponding part. The process 
is repeated till an element fails but the corresponding part is ‘empty’. Details are given in Table 2(a). 

Failure time  Partition Lives of standbys  
Cum. Stage  I    II    III in the partitions 
0 0  9 , 7, 15 {15,4}U{20,10}U{8} 
7 7  2, 20*, 8 {15,4}U{10}U{8} 
9 2  15*, 18, 6 {4}U{10}U{8} 
15 6  9, 12, 8* {4}U{10}U{*} 
23 8  1, 4, 0 {4}U{10}U{*} 

TABLE 2(a): Permutation of parts 



Z.H. Ahmed 

International Journal of Engineering (IJE) Volume (4): Issue (3) 236 

Finally the sequence is got, in the above case, as {9, 7, 15; 20, 15, 8, 4, 10}. Obviously, if the 
columns I, II and III of the Table 2(a)  are permuted, along with the ‘part-sets', one gets a different 
sequence which is equivalent to the first, with the same objective function value: Thus, writing the 
columns as I = III, II = II, and III= I, we get the sequence {15, 7, 9; 20, 15, 8, 4, 10} as in the failure 
Table 2(b). 

Failure time Partition 
Cum. Stage I    II    III 

Lives of standbys 
in the partitions 

0 0 15, 7, 9 {8}U{20,10}U{15,4} 
7 7 8, 20*, 2 {8}U{10}U{15,4}    
9 2 6, 18, 15* {8}U{10}U{4} 
15 6 8*, 12, 9 {*}U{10}U{4} 
23 8 0, 4, 1 {*}U{15}U{4} 

TABLE 2(b): Permutation of parts 

In fact, every partition n=n1+n2+.....+nk gives rise to n1! n2! ........nk! permutations of n components, 
each of which corresponds to a unique failure pattern, all of them giving the same part sums and 
hence the same objective function value. For instance, the same partition as above, by taking the 
ordering within parts as given in Table 3, leads to a different failure pattern: 

{15, 4, 9} U {10, 20, 7} U {15, 8} => {15, 10, 15; 20, 4, 8, 9, {7}}                  

Failure time Partition 
Cum Stage I    II    III 

Lives of standbys 
in the partitions 

Sequence 
Buildup 

0 0 15, 10, 15 {4, 9}U{20, 7}U{8} * 
10 10 5,  20*, 5 {4, 9} U{7} U{8} 20 
15 5 4*, 15, 0 {9} U{7} U{8} 20, 4 
15 0 4, 15, 8* {9}  U{7} U{*} 20, 4, 8 
19 4 9*, 11, 4 {*} U{7} U{*} 20, 4, 8, 9 
23 4 5, 7, 0 {*} U{7} U{*} 20, 7, 8, 9, {7} 

TABLE 3: Permutation of parts 

However, it should be noted that this particular permutation as shown in Table 3 leads to the situation 
at the final stage, where one of the ‘parts’ is exhausted, there are items in other parts (namely, when 
part III is exhausted, there is an item in part II with life 7 units), which are not yet introduced into the 
failure pattern table. In other words, in this example we have part III with only two elements, namely, 
{15, 8} has all its elements failed by 23 units; then, part I also has no spare element left, but part II 
has an element (of life 7 units) yet untouched as a spare. Hence, it is obvious that by transferring this 
element from part II to part III one can infuse another 5 (=min. {5, 7, 7}) units of life to the system. Of 
course, this gives rise to (or rather, changes the present partition into) the partition {15, 4, 9} U {10, 
20} U {15, 8, 7} with the minimum 28 = 23 + min.{5, 7, 7}. 

It is obvious that with a total T0 = 88, with a part sum S02 = 30, an upper bound to the objective 

function is 29
2

3088,30min 











 

. By inspection of the present partition with S0i =28, 30, 30 one 

can see a further, final improved partition {15, 4, 10} U {9, 20} U {7, 8, 15} leading to the best value 
29. 

In this particular problem, it was possible to obtain- with a little inspection and intelligent guess-work, a 
solution value which equaled an upper bound to the optimal solution of the problem and hence one 
could get a solution which could be shown to be optimal and the obtained trial solution could be 
recognized as optimal; which need not be the situation in general. Hence a natural question arises: is 
there a computationally efficient way of picking up and recognizing an optimal solution? We shall 
present below a procedure which appears to achieve this aim.   



Z.H. Ahmed 

International Journal of Engineering (IJE) Volume (4): Issue (3) 237 

Without loss of generality, we shall arrange the items in a non ascending order of their values and 
require that the partitions S01, S02, ...S0k are so named - or, as the algorithm proceeds, are rearranged 
(re-named) if necessary, such that T01  T02   .....  T0k. Thus the value of the partition will be also 
equal to T0k. 

We shall illustrate the algorithm by ‘working out’ an example problem. Consider the same example in 
section 2.1. Initially we arrange the elements as {20, 15, 15, 10, 9, 8, 7, 4} and form the k = 3 subsets 
as per the zigzag heuristic scheme as shown below: 

            

It is leading to the parts {20, 8, 7} U {15, 9, 4} U {15, 10}, giving the part sums 35, 28, 25 while the 
‘ideal’ upper bound is 29. Thus, the three part sums are having as excess of +6, -1, -4 from the bound 
and maximum of differences between part-sums is 35-25=10. Since the part I, which is the biggest, 
has one element of value 7, less than 10, a simple transfer from part I to part III of this value 7 gives 
a better partition. But a transfer of value 7 from I to III leaves ‘deficit’ of 1 in I, retaining its criticality, 
leading to {20, 8} U {15, 9, 4} U {15, 10, 7} with part sums 28, 28, 32 with excess  -1, -1, +3 and the 
solution value 28 . Now the one part with positive excess, namely, III does not have an element of 
value not more than the maximum of differences between part sums (i.e., 4) and hence, no simple 
transfer of items can give a better partition. Any improvement, if at all possible, could be brought 
about only by an exchange - and not by simple transfer of elements between parts. Since 28 is an 
achieved value, we can see that no optimal partition can have part sums greater than 88-(28)2= 32. If 
it were possible to have an improved solution, of value 29, the largest allowable part sum will be 88 - 
2(29) = 30 only. Hence, one can now go for an implicit enumeration approach like the lexisearch, for 
picking up and establishing optimality of a partition. 

As already noted, the partitions are made almost unique by defining only non-decreasing part-sums 
as valid. Further, the largest part sum, as just established, has to be between 30 and 29, if an optimal 
value of 29 can be obtained. In fact, with 29 as optimal value (the total of all parts being necessarily 
88); the largest part sum should be 30 only in the present illustration. We now use the lexisearch 
algorithm to obtain optimal solution to the problem. 

3. A LEXISEARCH ALGORITHM 

The lexisearch algorithm is a systematic branch and bound approach, which derives its name from 
lexicography, the science of effective storage and retrieval of information. It was developed by Pandit 
[9], and since then it has been applied to many combinatorial optimization problems efficiently [2, 3].  

In lexisearch algorithm, we first arrange the set of solutions of a problem in a hierarchy, like words in a 
dictionary, such that each incomplete word represents the block of words with this incomplete word as the 
leader of the block. We calculate bounds for the values of the objective function over these blocks of words. 
These bounds are then compared with the best solution value found so far. If no word in the block can be 
better than the best solution value found so far, then we jump over the block to the next one. However, if 
the bound indicates a possibility of better solutions in the block, we enter into the sub block by 
concatenating the present leader with appropriate letter and set a bound for the new (sub) block so obtained 
[2, 3, 9].  

3.1. The algorithm 

A pseudo-code for the lexisearch algorithm for our problem is as follows: 
READ n, k and the component lives Ci, for i = 1, 2, 3, ……., n; 
Set Vi = 0, for i = 1, 2, 3, …….., n; 
Set Xij = 0, for i = 1, 2, 3, …….., k, and j = 1, 2, 3, …….., (n-k+1); 
Compute bound; 

20  15  15 
8     9   10 
7     4 



Z.H. Ahmed 

International Journal of Engineering (IJE) Volume (4): Issue (3) 238 

For i = 1 to (k-1) do 
Set j = m = sum = index(i) = Si = 0; 
Label – j: 
j = j + 1; 
if(j > n) then do the following: 

Si = Si – Cindex(i); 
j = index(i); 
index(i) = 0; 
Vi = 0; 
Xij = 0; 
m = m – 1; 
if(m < 0) then "Optimal solution is not possible", so, Stop. 
    else go to Label – j; 

   endif; 
   if(Vi = 1) then 

 go to Label – j; 
  endif; 
  sum = Si + Ci; 
  if(sum > bound) then  

 go to Label – j; 
  endif; 
  Si = sum; 
  m = m + 1; 
  Xij = Ci; 
  index(i) = j; 
  Vi = 1; 
  If(Si = bound) then 

 go to Label – k; 
  endif; 
  go to Label – j; 
  Label – k: 

 endfor; 
Set Sk = m = 0; 
For j = 1 to n do 

if(Vj = 0) then 
Sk = Sk + Cj; 
m = m + 1; 
Xij = Cj; 

endif; 
endfor; 
Find Solution = min.{Si, i = 1, 2, 3, ……., k}; 
Print the Solution and Stop. 

3.2. Illustration 

The ‘Search Table’ for the life values {20, 15, 15, 10, 9, 8, 7, 4} is shown in Table 4. Thus an optimal 
partition is {20, 9} U {15, 10, 4} U {15, 8, 7}. This optimal partition with sequence and failure pattern is 
shown in Table 5. So, the optimal sequence is {20, 15, 15; 10, 8, 9, 7, 4}. 

20(20) ,  15(35)* 
           15(35)*     
           10(30)*      
 9(29)   ; [ 15,15,10,8,7,4 ]         
  15(15) 15(30)*    
           10(25) , 8(33) * 
           7(32)* 
           4(29)  ; [ 15,8,7 ] 
           15(15) , 8(23) , 7(30)   

TABLE 4: Search Table. 



Z.H. Ahmed 

International Journal of Engineering (IJE) Volume (4): Issue (3) 239 

 

Failure time Partition 
Cum Stage I    II    III 

Lives of standbys 
in the partitions 

Sequence 
Buildup 

0 0 20, 15, 15 {9} U {10,4} U {8,7} * 
15 15 5, 10*, 8* {9} U {4} U {7} 10,8 
20 5 9*, 5, 3 {*} U {4} U {7} 10,8,9 
23 3 6, 2, 7* {*} U {4} U {*} 10,8,9,7 
25 2 4, 4*, 5 {*} U {*} U {*} 10,8,9,7,4 
29 4 *, *, 1   

TABLE 5: Optimal partition with failure pattern 

4. A GENETIC ALGORITHM 

Genetic Algorithms (GAs) are computerized search and optimization algorithms based on the 
mechanics of natural genetics and natural selection [1, 7]. They are robust search algorithms which 
are suited for problems having comparatively larger solution spaces. However, they are essentially 
heuristic and, by themselves, can not guarantee the optimality of the solutions they produce.  

They start from a population of chromosomes and then apply three operators: reproduction/ selection, 
crossover and mutation to create new, and hopefully better populations. The operator ‘crossover’ 
together with the operator ‘reproduction’ is the most powerful process in the GA search. The 
frequency of mutation is usually chosen to be considerably less than the frequency of crossover.  

4.1. Genetic modeling of the problem 

As a first step in applying the GA to the present problem, the solution space is to be mapped into the 
chromosomes of length n, the number of elements to be partitioned. In a chromosome, the genes 
indicate to which ‘part’ a particular element should belong. Then, for k-part problem of length n, one 
has to have k genes - e.g., 1, 2,….., k representing k-parts. The chromosome structure will then 
indicate the partition. For instance, let k=3 and n=8. Then, the chromosomes will be of length 8 with 
three genes, say, 1, 2 and 3. So, a chromosome will be the set of all ternary strings of length eight. 
The chromosome (3, 3, 2, 2, 1, 2, 1, 2) stands for the partition P1= {C5, C7}, P2= {C3, C4, C6, C8}, and 
P3= {C1, C2}, where C1, C2,....., C8 are the component lives arranged in non-increasing order. For any 
partition, the value of objective function is defined as the minimum of the part-sums. The fitness of 
the solution is decided by this objective function which has to be maximized. For a set of 8 
components with lives {20, 15, 15, 10, 9, 8, 7, 4} arranged in non-ascending order, one of the 
chromosomes may be (1, 2, 3, 1, 2, 3, 1, 2) representing the partition {20, 10, 7} U {15, 9, 4} U {15, 8} 
with objective function value 23 = min {37, 28, 23}. 

4.2. Genetic operators 

There are many variations of GAs formed by using different reproduction, crossover and mutation 
operators. In our implementations, stochastic remainder selection method [6], the multi-point 
crossover operator [7] that interchanges the alternative sub-strings at randomly selected points, and 
the swap mutation operator [1] which selects any two genes randomly and exchanges them, have 
been considered.  

The GA approach has been claimed to lead to very good, near-optimal solutions. However, the 
approach is obviously ‘controlled or guided’ by choice of parameters: namely, probability of crossover 
(Pc), probability of mutation (Pm), population size (Ps), and of course crossover points and mutation 
locations. As Deb [6] points out: successful working of GAs depends on a proper selection of these 
parameters, but often one is in the dark as to what values should be taken for these parameters. For 
our problem, several runs were executed with different settings of the parameters for different value 



Z.H. Ahmed 

International Journal of Engineering (IJE) Volume (4): Issue (3) 240 

of n and k. These runs allowed us to fine-tune the parameters. After substantial testing, we settled the 
parameters as: Pc=0.9, Pm=0.1 and Ps=100. 

5. COMPUTATIONAL EXPERIENCE 

The lexisearch algorithm (LSA) and genetic algorithm (GA) have been coded in Visual C++ on a 
Pentium 4 personal computer with speed 3 GHz and 448 MB RAM under MS Windows XP, and tested 
some randomly generated problems of different sizes drawn uniformly from various ranges of data 
with different values of n and k. Each system contains 20 problem instances. We include two statistics 
to summarize the results by the algorithms: average and standard deviation of solution time and 
solution ratios (only for GA). Solution ratio is defined as ratio of best solution value obtained by GA to 
the exact solution value obtained by LSA. Tables 6 and 7 summarize the results by the algorithms for 
the randomly generated instances drawn from the interval [1, 100] and [1, 10000] respectively. 

LSA GA 
Time Sol. Ratio Time 

 
N 

 
K 

Mean Std Dev Mean Std Dev Mean Std Dev 
100 10 0.01 0.02 1.00 0.02 0.11 0.03 

 20 0.03 0.05 1.00 0.05 0.15 0.05 
200 20 0.13 0.07 1.00 0.03 0.22 0.09 

 30 0.16 0.13 1.01 0.09 0.27 0.12 
300 30 0.75 0.25 1.00 0.08 0.80 0.21 

 40 0.92 0.35 1.01 0.12 0.79 0.20 
400 40 2.24 1.03 1.01 0.15 2.18 0.84 

 50 2.57 1.54 1.00 0.07 2.27 1.03 
500 50 4.59 1.87 1.01 0.23 3.37 1.32 

 60 5.64 2.43 1.02 0.56 4.77 1.55 

TABLE 6: Results by the algorithms for the instances drawn from the interval [1, 100]. 

LSA GA 
Time Sol. Ratio Time  

N 
 

K 
Mean Std Dev Mean Std Dev Mean Std Dev 

100 10 0.02 0.02 1.00 0.02 0.12 0.03 
 20 0.03 0.03 1.00 0.02 0.15 0.05 

200 20 0.14 0.08 1.01 0.05 0.23 0.07 
 30 0.19 0.18 1.01 0.12 0.26 0.11 

300 30 0.73 0.21 1.00 0.07 0.81 0.21 
 40 0.98 0.37 1.00 0.15 0.78 0.22 

400 40 2.57 0.92 1.01 0.12 2.15 0.85 
 50 2.89 1.05 1.01 0.09 2.28 1.01 

500 50 5.09 2.07 1.02 0.20 3.34 1.29 
 60 5.78 2.73 1.02 0.65 4.76 1.51 

 TABLE 7: Results by the algorithms for the instances drawn from the interval [1, 10000]. 

It is clear from the Tables 7 and 8 that for n < 300, GA takes more time than LSA, but as size 
increases LSA takes more time than GA. Of course, as the size increases solution quality by GA 



Z.H. Ahmed 

International Journal of Engineering (IJE) Volume (4): Issue (3) 241 

decreases. Also, it is seen that for same n when k increases the solution quality by GA decreases. For 
a value of n, computational times do not vary much for the different values of k for both algorithms.  

6. DISCUSSIONS AND CONCLUSIONS 

The deterministic replacement problem for serial system is viewed in such a way that lexisearch and 
genetic algorithms can be applied. Computational experience shows that both the algorithms are 
suitable for the problem. However, for the small sized instance, lexisearch algorithm is found to better 
one. In order to investigate the robustness of GAs, for each size, 20 instances were solved. Though 
the solution quality is good by GA for smaller sized instances, but the computational time is higher than 
that of by lexisearch algorithm. It is to be noted that for some systems the exact optimal solutions 
were not possible. As a whole, GA is good. The success of GA for the problem suggests the use of 
this technique in many other industrial fields, particularly in maintenance and reliability. Again the 
successful working of GA depends on the proper selection of GA parameters. So, carefully choosing 
the parameters may lead to a better performance of genetic algorithms on the above problem. We did 
not consider any case study for this problem, which may be considered, in future, to show the 
effectiveness of the algorithms. Also, we did not consider service cost/time, which may be considered 
in future. 

Acknowledgements 

The author wishes to acknowledge Prof. S. N. Narahari Pandit, Centre for Quantitative Methods, 
Osmania University, Hyderabad, India, for his valuable suggestions and moral support. The author is 
also thankful to the honorable anonymous reviewer for his comments and suggestions. 

7. REFERENCES 

[1] Z.H. Ahmed. "Genetic algorithm for the traveling salesman problem using sequential 
constructive crossover". International Journal of Biometrics & Bioinformatics 3, pp. 96-105, 
2010. 

[2] Z.H. Ahmed. "A lexisearch algorithm for the bottleneck traveling salesman problem". 
International Journal of Computer Science and Security 3, pp. 569-577, 2010. 

[3] Z.H. Ahmed. "A sequential constructive sampling and related approaches to combinatorial 
optimization". PhD Thesis, Tezpur University, Assam, India, 2000. 

[4] Z.H. Ahmed, S.N.N. Pandit, and M. Borah. "On the solution of a deterministic replacement 
problem". Presented in National Seminar on Advancing Frontiers in Statistics and Operations 
Research, Dibrugarh University, Assam, India, During September 22 - 24, 1997. 

[5] L. Cui and H. Li. "Opportunistic maintenance for multi-component shock models". Journal of 
Mathematical Methods of Operations Research 63(3), pp. 180-191, 2006 

[6] K. Deb. “Optimization for engineering design: algorithms and examples”. Prentice Hall of India 
Pvt. Ltd., New Delhi, India, 1995. 

[7] D.E. Goldberg. “Genetic algorithms in search, optimization, and machine learning”. Addison Wesley, 
Reading, MA, 1989. 

[8] J.D.E. Little, K.G. Murthy, D.W. Sweeny and C. Karel. "An algorithm for the travelling salesman 
problem". Operations Research 11, pp. 972-989, 1963. 

[9] S.N.N. Pandit. “Some quantitative combinatorial search problems”. PhD Thesis, Indian Institute 
of Technology, Kharagpur, India, 1963. 



Z.H. Ahmed 

International Journal of Engineering (IJE) Volume (4): Issue (3) 242 

[10] K.S. Park. "Reliability of a system with standbys and spares". Journal of Korean Institute of 
Industrial Engineering 3(1), Dec 1977. 

[11] L.M. Pintelon and L.F. Gelders. "Maintenance management decision making". European Journal 
of Operational Research 58(3), pp. 209-218, 1985. 

[12] M.S. Samhouri, A. Al-Ghandoor, R.H. Fouad and S.M.A. Ali. "An intelligent opportunistic 
maintenance (OM) system: a genetic algorithm approach". Jordan Journal of Mechanical and 
Industrial Engineering 3(4), pp. 246-251, 2009. 

[13] A. Savic, G. Walters and J. Knezevic. "Optimal, opportunistic maintenance policy using genetic 
algorithms, 2: analysis". Journal of Quality in Maintenance Engineering 1(3), pp. 25-34, 1995. 

[14] K.-H. Wang and B.D. Sivazlian. "Life cycle cost analysis for availability and reliability of series 
system with warm standbys components". International Conference on Computers and 
Industrial Engineering, Puerto Rico, U.S.A., 1997. 

[15] H. Wang. "A survey of maintenance policies of deteriorating systems". European Journal of 
Operational Research 139, pp. 469-489, 2002. 

[16] H. Wang and H. Pham. "Reliability and Optimal Maintenance". Springer, 2006. 

[17] X. Zhaou, L. Xi and J. Lee. "A dynamic opportunistic maintenance policy for continuously 
monitored system". Trans. J. of Quality Management Engineering 12(3), pp. 294-305, 2006. 

[18] X. Zhaou, L. Xi and J. Lee. "Opportunistic preventive maintenance scheduling for a multi-unit 
series system based on dynamic programming". International Journal of Production Economics, 
2008. 


