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Abstract

In this study, thermal buckling of thin plate made of Functionally Graded
Materials (FGM) with linearly varying thickness is considered. The material
properties are also graded in the thickness direction according to a simple
power law distribution in which the properties are stated in terms of the
volume fractions of the constituents. All edges of the plate are simply
supported. The equilibrium and stability equations of a FGM plate under
thermal loads can be derived based on higher order plate theories via
variation formulation, and are then used to determine the governing
deferential equation of the plate and the pre-buckling forces. The buckling
analysis of a FGM plate is conducted by assuming a uniform temperature rise,
temperature gradient through the thickness, and linear temperature variation
in the thickness. Closed—form solutions are obtained the buckling load defined
in a weighted residual approach. In a special case the obtained results are
compared with the results of FGM plates with uniform thickness. The
influences of the plate thickness variation and the edge ratio on the critical
loads are investigated. Different gradient exponent k, different geometries and
loading conditions were studied.

Keywords: Thermal buckling; FGM plates; Thin plate; Higher Order plate theories; Variable thickness
plate.

1. INTRODUCTION

Functionally graded materials (FGMs) have received considerable attention in many
engineering applications since they were first reported in 1984 in Japan [23]. The main
advantage of such materials is the possibility of tailoring desired properties to needs.
Obviously, FGM's can be used in a variety of applications which have made them very
attractive. Theories of plates and shells have already been applied to high extent, and there
are many text books available, such as [1- 3]. Later on, the concept of FGM was proposed in
[4] and [5]. The main advantage of FGMs is their high resistance to environments with
extremely high temperature and extreme changes in temperature. Ceramic due to low thermal
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conductance constituents causes resistance to high temperature. One of the main
applications of Functionally Graded Materials is their use in power reactors, electronic and
magnetic sensors, medical engineering of artificial bones and teeth, chemical industry and in
new technologies such as ceramic engines and as resistant covers and protection against
corrosion.

Chi and Chung [9, 10] examined the mechanical behavior of FGM plates under transverse
load. Najafizadeh and Eslami [14] studied the buckling behavior of circular FGM plates under
uniform radial compression. Shariat and Eslami [16] investigated thermal buckling of
imperfect FGM plates. Huang and Chang [13] carried out studies on corner stress
singularities in an FGM thin plate. Nonlinear analysis, such as nonlinear bending, nonlinear
vibration and post-bucking analysis of homogeneous isotropic or FGM plates and shells can
be found in the articles by Sundararajan et al. [17], Chen et al. [7], Hsieh and Lee [12],
Ghannadpour and Alinia [11]. Further research can be found in the articles by Navazi et al.
[15], Woo et al. [18], Chen and Tan [8] and Li et al. [20]. Morimoto et al. [19] and Abrate [6]
noticed that there is no stretching—bending coupling in constitutive equations if the reference
surface is properly selected. Classical nonlinear laminated plate theory and the concept of
physical neutral surface are employed to formulate the basic equations of the FGM thin plate.
Da-Guang Zhanga and You-He Zhou studied functionally graded materials as thin plates in
2008 [27], whereas Wu [21] has examined the effect of shear deformation on the thermal
buckling of FGM plates. Chen and Liew [22] have examined the buckling of rectangular FGM
plates subjected to in-plane edge loads. Based on third order shear deformation theory,
Shariat and Eslami [27] studied the buckling of thick functionally graded material under
mechanical and thermal load and Javaheri and Eslami [28] studied the buckling of functionally
graded plate under in-plane compressive loading based on classical plate theory. Previous
studies reported that critical buckling temperature differences for the functionally graded
plates are generally lower than the corresponding values for homogeneous plates. They used
classical plate theory for the buckling analysis of functionally graded plates under in—plane
compressive loading.

In the present study, equilibrium and stability equations for functionally graded thin plates are
derived based on higher order shear deformation plate theory. The resulting equations are
employed to obtain closed—form solutions for the critical buckling loads. In order to establish
the fundamental system of equations for the buckling analysis, it is assumed that the non-
homogeneous mechanical properties of the material are given by a power law formulated in
Cartesian coordinates.

2. FGM PLATE AND ITS PROPERTIES

Consider a FG thin plate made from a mixture of ceramics and metals and subjected to a kind
of thermal load. The plate coordinate system (x, y, z) is chosen such that, x and y are in-plane
coordinates and z is in the direction through the thickness and normal to the middle plane.
The corresponding displacements in the x-, y- and z-directions are designated by u, v and w,
respectively. The origin of the coordinate system is located at the corner of the plate on the
middle plane. The plate side lengths in the x- and y-directions are designated as a, and b
respectively. The thickness of the plate, h, varies the x and y directions such that (see Fig. 1);

FIGURE 1: Geometry and coordinate system of rectangular plate (a Xb)
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h=h(x)= & = c,x+c, & h=h(y)= &=c,y+c,. (1)

in which £is a general parameter indicating the thickness change in either of x or y
directions, ¢, is the nominal thickness of the plate at the origin and c,is a variable parameter
called the non-dimensional parameter. When ¢,=0, it means that the plate has a constant
thickness. When x = 0, one has &= ¢, = hand for the case of x=a, £ (@) = ¢, a+c,

To get the change in through thickness properties, it is assumed that the plate composition is
varied from the outer (top) to the inner (bottom) surface; i.e. the outer surface of the plate is
ceramic rich whereas the inner surface is metal-rich. The material properties of the FGM
plate, are such that the coefficient of thermal expansion, &, modulus of elasticity E, and
coefficient of thermal conduction k are assumed to be functions of the constituent materials,
while the Poisson’s ratio v is assumed to be constant across the plate thickness such that:

E(z)=EV . +E, (1-V,

a(z)=aV . +a,1-V)),
K(z)=K)V.+K, K A-V), (2)

v(z)=v,

where subscripts m and c refer to the metal and ceramic constituents, respectively. The
volume fractions of ceramic v_and metal v, are related by

V. =(z/h+1/2)", k20, k=oo,
V,,,(Z)"‘VL-(Z) =1, (3)

where volume fraction exponent k dictates the material metal-ceramic variation profile
through the plate thickness. k assumes values greater than or equal to zero. K = 0 represents
a fully ceramic plate. From Eqgns. (2) and (3) material properties of the FGM plate are
determined, which are the same as the equations proposed by many references.

E(z)=E, +E, (z/h+1/2)",

az)=a,+a, (z/h+1/2), (4)
K(z)=K, +K, (z/h+1/2)",

v(z)=v,

in which;

E =E -E_, a,=a.—o, K, =K -K, (5)

3. BASIC AND EQUILIBRIUM EQUATIONS

The higher order plate theories which is considered in the present work is based on the
assumption of the displacement field in the following form:

u(x,y,z) =uy(x,y)—zw,
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V(X ,2) = v, (X, y) = 2w, (6)

w(x, y,z) =w,(x,y)

in which u, v, w are the total displacement and (uo,vo,wo)are the mid-plane displacements

in the x, y and z directions, respectively. For the thin plate i.e. (h/b)<(1/20), where h and n
are the thickness and smaller edge side of the plate, respectively.
Hook’s law for a plate with thermal effects is defined as:

G = 1E—(2 6. +ve, —+var]
= 1E @ e +ve, —(+var] (7)
v =127 6
5 = E@ 2

Y o04y) 0

The plate is assumed to be comparatively thin and according to the Love-Kirchhoff
assumption, planes which are normal to the median surface are assumed to remain plane

and normal during deformation, thus out-of-plane shear deformations (7“,7},1) are
disregarded. Strain components at distance z from the middle plane are then given by:

E =€ +7k_,
g}')' = g}')' + Zk}'}' ’ (8)

7xy = 7)@' +2 kay

Here, € .€,,,7, denote the corresponding quantities at points on the mid-plane surface

xx° y
only,and k. .k,,

components. The relations between the mid-plane strains and the displacement components
according to the Sander’s assumption are;

kXy are the curvatures which can be expressed in term of the displacement

xx?

L,
E.=u _+—w,
T2 9)
_ 1 2
¥ _v,y+EW>’

k. =-w k., =-w k. =-w (10)

xx SXx 2 yy R Xy »Xy

Substituting Eqgns. (9) and (10) into Egns. (8), the following expressions for the strain
components are obtained:

E,=u, + %wi - ., (11)
-~ |

»—V)+EW7),—ZW»,
V2 :u”‘,—i-vﬁx—i-wtxwt),—Zzwvn.

A loaded plate is in equilibrium if its total potential energy V remains stationary ( 0V =0), and
Vis stationary if the integrand in expression for V satisfies the Euler equations.
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The total potential energy V of a plate subjected to thermal loads is defined as:
v=U,+U,+U_+U,, (12)

where U, is the membrane strain energy, U, is the bending strain energy, U is the coupled

strain energy, and U, is the thermal strain energy. The strain energy for thin plate based on
classical plate theory is defined as;

U= ([flo.(.~ar)+o, (&, ~ar)+t, 7, iy (13)

Substituting Egns. (7) and (8) into Eqn. (13), and integrating with respect to z from- 5/2 to
5/2, the total potential energy results in;

V= H Fdxdy. (14

where, the function Fis;

1-
gl +e, +2ve £ +2v;/f)}+

A
2(1—\}2) XX yy

[k2 K2 20k k20— )k |+

XX°Tyy

[gxx xx \\ \\ +v(8xxk\\ \\ Xx)+(1 V)}/X‘ x\]_
% [@(gm + g\'\') + (b(kxx + k\'\-) - l//]
-y ke ke

where

£72

A= jE(z)dzzEmg+E_ o

En k+1
£i2 2
k
B= [ E(d:=E, o
i Rk+2)(k+2)

£12

) &? 1 1 1
C= J- E(Z)Z dz: mi+ELm§ - + ’
. 12 k+3 k+2 4k+4

£12
(©.9)=  (LD)E@a()T (x, 3. 2)dz,

W= ;//2 E()a* ()T (x, v, 2)dz.

The total potential energy is a function of the displacement components and their derivatives.

Hence, minimization of total potential energy in terms of the function F yields the following
Euler Equations:

OF d OF d OF
ﬁ_g.auvx_g.au’y
JOF 9 JF 9d OF

v g.avyx g.avd,_ (17)

OF 0 OF 9 OoF 9° oF = d° OF 9° OF
ow dx dw, 8y.8wd, ox* ow 8x8y.8wvn, 3y2.3w’3.}.
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Substituting Eqns. (9) and (10) into Egn. (15) and using Eqgns. (17), the equilibrium equations
for general rectangular plate made of functionally graded material are given by;

N, ,+N, = 0
NX}'aX + N}'a}' = 0 (18)

M, . +2M + Mw +Nw, . + 2nyw,xy + Nyw,yy +P =0

XY, Xy

where stress resultant N,, M are given by:
£/2 _ .
(N.M;)= L/z (1,2).5.dz, i=Xy, xy (19)

By substituting Eq. (7) into Eqg. (19), one can arrive to the following constitutive relation is
obtained;

(N.M )= %[(A,B)(gn +vE, ) +(B,C)k, +vk )~ (1+v)(©,d)]
-V
(N, M )= %[(A,B)(S”, +vE )+ (B, Ok, +vk,)—(1+v)(0,D)}

1

WM = T [ca,Byy, +2(8,0)k, ]

(N

4. PLATE STABILITY EQUATIONS

Stability equations of thin plates are derived using the energy method. If V is the total
potential energy of the plate, then expanding V about the equilibrium state using Taylor series
yields;

AV:(W+%52V+%53V+.... (21)
The first variation JVv is associated with the state of equilibrium. The stability of the plate in
the neighborhood of equilibrium condition may be determined by the sign of second variation.
The condition §*v =0is used to derive the stability equations for buckling problems [16].
Assume that i, denotes the displacement component of the equilibrium state and dit, the
virtual displacement corresponding to a neighboring state. Denoting J the variation with
respect to i, , the following rule, known as the Trefftz rule, is adopted for the determination of
the critical load. The external load acting on the plate is considered to be the critical buckling
load if the following variation equation is satisfied 5(621/) =(0. The state of primary
equiliorium of a rectangular plate under general loading is designated byu,,V,,w,. In
deriving the stability equations, virtual displacements are defined as:

u—>uy,+u,

V=V, v, (22)
w—=w, +w,

where u,,V,,w, are the virtual displacement increments. Substituting Eqgns. (22) into Eqn.

(15) and collecting the second—order terms, the second variation of the potential energy are
obtained as;

International Journal of Engineering, (IJE), Volume (4): Issue (5) 343



Hamid Mozafari, Amran Ayob & Amran Alias

1 A 1-v
20v=1l {mi R &

71 =2 [ul,xwl,n VW, Tt V(”wal,,\;\- VW )+ - V)(”L,\- + vlyx)wlyx}, ]+
_C | ) 21 2 ]
2= vz) Wi twi, +2vw, ow o+ 1- v)wlyx}_ +

%[waﬁx + 2N, wy, + NOw?, | Jdxdy

Applying the Euler equations (17) to the functional of Eq. (23), the stability equations are
obtained as;

N,.+N, , =0

N, .+N,,=0 (24)
M, +2M ,  +M A+ (Now, +2Nw,  +Niw,  )=0

where

(N, M_)= [(A B)u,, +w,,)~(B,C)(w . +vwi_ )}

(N, M) = [(A B, +vi, )~ (B,C)w,, +w,)}

Ny M )= 2(1 [(A B)u,, +v,,)~2(B,Cw,, | (25)

N!= - Lt W)= B(w +vw0”"')]_i’

NS = 1_ [A(vo) +viy )= B(w, +VWOM)]—1

0

A ( +v,.) B w
= WUy, x) T T xy *
T4y Y 1y OO

4.1 Governing Differential Equation for FGM

By substituting Eq. (25) into Eq. (24), the stability equations in terms of displacement
components become;

A (u, + vvl,y) +Au,,, + vvm) —-B, (w,, + vwl,yy) —B(w,,, + vwl,m,)
A(l—v)
+(—(u1,yy +v1,xy)— B(l—v)wl,xy =0,
1-
A g v )+ A— 2 (”1)@ V) —A=v)B w,  —(1-v)Bw,

+ AW, +Hvuy )= B(w,,, +vw ) =0, (26)

B, (u, + vvl,y) +2B . (u,, + vvm) +B(u, . + Wi )+ B(vLyyy + vul,m)
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+(A=v)B, (u,,, +v, )+ A=v)Bu,,, +v, ,)—C (W +vw )
=2C, (W +Vw ) —2C A=v)w, = 20=v)Cw, ., —C(W, s

2 0 0 0
vy )= COm + 9wy )+ A=D)NOw  + Moy 28w, |=0

In the next step variables u, v are eliminated in above relation, then the equations of stability
Eqgn. (26) can be merged into one equation in terms of deflection component w and pre-
buckling forces only for linear thickness variation, as:

2 2
(%— C)AAw, + (3§BJ -2C)) aa—wal + (% B+ IZ* -C )(w,  +
(27)
vw, )+ A=v)(NIw,  +Njw,  +2Now, )=0.
where
2> 9°
= $+a—y2. (28)

4.2 Solution Method

The method of solving Eq. (27) is based on the series expansion developed by Galerkin [16].
It was originally proposed by Bubnov and sometimes is referred to as the Bubnov-Galerkin
method. If the FGM plate is simply supported at all four edges, then the boundary condition
are:

w, =0, W =0 at x=0,a
w, =0, w,, =0 at x=0,b (29)

The proposed deflection function w;,for this case is assumed to be in the following series
form;

w, =B, sin(max/a)sin(nny/b), (m n)=1,2,3,... (30)

mn

where B _ are constant coefficients, and m, n are the half wave numbers in the x, y

directions, respectively.
In this study, in order to determine the critical load, the Galerkin method is used. According to
this method,

[[ o0mR(x, y)dxdy=0, (31)

Q

in which R(x, y) is the residue function and @(w) is the weight function.

5. THERMAL BUCKLING ANALYSIS

Consider a plate made of functionally graded material with simply supported edge conditions
and subjected to an induced in-plane loading in two directions, as shown in Fig. 1. To obtain
the critical thermal loading, the pre-buckling forces should be found. Solving the membrane
form of equilibrium equations, results in the following force resultants.

El

1+
m cm cm m Ecmacm ] 0
2n+1 2 E

1

N =

1
. -[AT(E,«,+—(E, 2, +E, &, )+ cx—
n+l1

m m
—U

1+ 1 1 1
0 c.a)———[AT(E, (@, +E,0) 4 E,0,)lexe)

2 E 1 ) m~'m 'm~cm cm~"m 2]’[ +1 cm™~em
1 0

International Journal of Engineering, (IJE), Volume (4): Issue (5) 345



Hamid Mozafari, Amran Ayob & Amran Alias

1+
N, =By ATE e, +—— ! (B, B, ) 4o L g oa oyt
+

Y, m-"m m-"cm cmTTm cm-Tcm
N B s 2n+1

1+, 1 1
ca)— AT(E +— Eo +E o )+——E a )lcx+c,)
2F, @ 1—1)0[ (En ( ot ( ?

=0 (32)

X) 0

where R is a non-dimensional constant. The resulting equation then may be solved for a
series of selected values of R. The simply supported boundary conditions are defined as

wy (X,0) = wy (x,0) = wy (0, y) =wy(a,y)=0

p,(x0)=p,(x,0)=p,0,y)=p,(a,y)=0
M, (x0)=M,(x,0)=M ,(0,y)=M (a,y)=0 (33)

u(l)(x,O) = u(l, (x,b)= v(l) ©0,y)= v(l, (a,y)=0
v (x,0) =1, (x,b) =, (0,y) =, (a,y) =0

The following approximate solutions are found to satisfy both the differential equations and
the boundary conditions

mrn niy
u =u,,, COS—— Xxsin ——
a
- nay mn= 1,2,3....
u =u,, COS—— xsin—-—
a
mn nuy
v =v,,,, SIN—— X COS——
(34)
- . Mm% nrw
v, =V, SIn—— xcos—y
a b

nuy

mrm
Wy = W, Sin—— xsin——=y
a b

where m and n are number of half waves in x and y directions, respectively, and
Mg, > U1mm > Vo » Vivn » P ) @r€ - constant  coefficients. Substituting Eqns. (34) into the
stability equations (24) and using the kinematic and constitutive relations yields a system of
five homogeneous equations for u,,,,,uy,,, > V> V1> @NA @, i. €.

(35

[kij] Wo | =0

in which K; is a symmetric matrix with the components
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1-9, 2r
2 b
(1+vy) mze _nrx

2 ( )(—)

ki, :El[(ﬂ)2+ )2]
a

k,, = E,

k E, G 1~y nz

2
3h2 2 b)]

1w =(E,—

E, 2E, LAt
kls—(T 3h2 )(1+ 0)( )( )

k21 = k12

1-v, (mzz , AT

ky,, = E|[ ) T) +(7)2]

kyy =— 3h2 [((_) (—) (—) ]

E, 2F, mna. nw
24—(7 I A+, ( » X 5 )

E, l1-v, mz_ , nr .,
kys =(2— 3h2)[ (a)+(b)]

ki =k

ks, =ky

33 7

16E7 2 292 _ 3 M 95
9h4[( )(b)] (h2 5 hz)

A= 27 + D21 a- v, P27 N, PP
a b a b

4E. E, 8E mrm

ky, = _(h_;_?l_h_;)(l_vo )(T)"'

16E, 4E; m7n m_f[ ﬂ

(9h4 3h2)[( ) +(—) ()] (36)
4E, E  8E nwx 16E, 4E

ks =7 5 - wIED+H 3h;)

[(a)(b)+(b)]

k, =—k,

ki, =—k,,
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ki =—ks,
SE 16 E mrn l1-v, nx
k, = S _ T _E )T 0 () -
44(3h2 o 3)[(a)+2(b)]
E 4F 8E
(71_ h23+ h45)(1_1)0)
4E. E. 8E mn_nn
. (3h2 2 9p? 3)(a)(b)
ks, = —k,s
k53:_k35
ks, =~k
k54:k45
8E. 16E 1-v, mn nrwr
koo =(—— T_FE 0 ()2 4 (52
55 (3h2 on 3)[2(a) (b)]
E 4E 8E
(71— h3+ h45)(1—vo)

Substituting pre-bucking forces from Egs. The relation of K,;and setting | K,.j|= 0 to obtain

the nonzero solution, the value of the F_ is found as

2b° k,

AT = > (37)
721+ v,)(ca+2ec)n (M2 4+ n?lk,
a
where
77* =|E o, +(Ec, +a E )n+D)+E o, /(2n+1)] (38)
k, =detlk,

k, =k ko k ks + ki kysk, ks, +kko,k ks +k ko sky ks, +k sk ky ks,

kisky k ks, + ki kyykysksy +koskooky ks, + Ky kosk ks, + Kok kysks,

kkyk, ks + K ko kokss + K koyky ks =k kosk ks — Kk ki ks,

k ok, k sks, — ki sky,ky ks, =k kysk ks, — Kk kysks, — kokosky ks,

—kysky k ks, =k kyok ks, — ki Kook Kss — Ky ko kokss — Kok Ky ks

In this section, the closed form solutions of Eqg. (27) for three types of thermal loading

conditions are presented. The plate is assumed to be simply supported in all edges and
rigidity fixed against any extension.

Case A. Uniform Temperature Rise
The initial uniform temperature of the plate 7; is uniformly raised to a final value T, such that

the plate buckles. To find the critical buckling temperature difference i.e., AT, =T, —T,,

the pre- buckling thermal forces, should be found. Solving the membrane form of equilibrium
equations i.e., Eq. (18), gives the pre- buckling force resultants as;
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AT (39)
N =- AT,G, (ca+2c,), N° = _ALG (c,a+2c,)—AT,Gcx, Nf:y =0.
2(1-v) Y 2(1-v)
where
G =|Ea +(Ea,6 +E, a)l(k+)+E_ o /(2k+1)] (40)

By substituting this type of loading condition into Egns. (16), one can get;

®O=AT,£G, (41)
Substituting Eqn. (39) into Eqgn. (27), the buckling equation for this type of loading is obtained

as;

2 2

B B P B B?
(7— C)AAw, +(3 ~B.- ZCVX)gAWI + (Z B+ == C. W +vw, )

(42)

vc,a C
1 + 2

a4 +C—2)w1 wH(ex+
’ 2(1—v) 1—v

—(-v )ATAG{(z(l_V) =

Wi, )} =0.

For the assumed displacement field given by Eqn. (30) the result of Eqns. (31), (42) becomes;

2 b a
7 O fzfzﬂ I I {7[2(;712172 +n’a’) (B*1 A—C)(c,x+c,)’ sin(mzx/ a)sin(nay / b) +
a 0 0

6([9‘2 /A - é)mabz(mzb2 + nzaz)c1 (cpx+ c2)2 cos(mzx/ a)sin(nzy /b) +
6(B>/A—C)(m*b* +vn’a®)a’b? (¢} x + clc,) sin(mzx/ a) sin(n7y / b) + (43)

(1=v))AT,G, |(c,al2(1=v>) + ¢, [ =)/ a)* +(c,x +ve,al 21— v) + ¢, [(1—v))

(n/b)* Ja*b* sin(max/ a)sin(nzy /b) Ysin(mzmx/ a)sin(nzy / b)dxdy = 0

After carrying out the integration, one would get;

AT, = H|(mbla)* +n’] (44)

in which,

7[2

H=—
b (1+v)(cal2+c,)G,
a’b*(m’b* +vn’a®)

7[2(m2b2 + n2a2)2

{(é—gz /Z)(cfa3 /4+clc,a® +3c,cial2+c))

+6(C—B*/A) (clal2+cle,) } (45)

where,
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A=E_ +E_ I(k+]1), B= E_kI2k+2)2k+1), (46)

cm

C=E,/12+E, [L/(k+3)—1/(k+2)+1/(4k +4)]

cm

The critical buckling load AT," can be obtained for different values of m, n such that it
minimizes Eq.(44). Apparently, when minimization methods are used, the critical buckling
load, AT,", is obtained for m= n=1, thus;

2 2
Y — o0 +1] {G-B21A)NCa 14+ c2e,a® +3¢,c2al 2+ )
b (+v)(cal2+c,)G,
222 2 (47)
L6(C—B2 KA OTHVa) (o) )

7 (b*+a*)’
Whenc, =0, Eq. (40) represents the critical thermal buckling load, AT, of a FGM plate with
constant thickness ¢, =h, i.e. ;

2| b2
AT"._E [(a) +1}(A.CB2]

Y b 1+ v)hG, A (48)

The result given in Eq. (41) is exactly the same as the one obtained by reference [9].

Case B. Linear Temperature variation across the thickness

For a functionally graded plate, usually the temperature change is not uniform where the
temperature level is much higher at the ceramic side than that in the metal side of the plate. In
this case, the temperature variation through the thickness is given by;

AT, g (49)

T(z)=—2(z+2)+T

(2) 7 ( 2) m
in which
T| . =T,

=3
T : =T,

=y
AT, =T, -T, (50)

T andT, denote the temperature level at the top ( ceramic side ) and the bottom ( metal side)

surfaces, respectively. The pre-buckling forces now can be obtained by solving the
membrane form of equilibrium equations, i.e. Eqn. (18) and this gives;

2+
N°=- C“ll/_ich(ATBG2 +T,G)),

vc,a C
N? =—lex+ ——+—-|(AT,G, +T,G), N, =0. (51)

20-v) 1-v X“

in which
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G,=[E,a, /2+(E,a, +E a)l(k+2)+E a, [(2k+2)], (52)

m m m cm cm m cm cm

Substituting Egn. (51) into Eqn. (27), the buckling equation for this case of loading is
obtained;

2 2

(——C)AAw1+(3 B —2C) —Aw,

C,xx )(Wl,xx + vwl,yy)

(53)
+(ex+—ad DIAT,G,+T,G,)=0

—(1—v ©
( )[(2(1 v) I-v ~ 2(1-v) 1

Following similar steps to that given in case A, the buckling load for case B is;

2 2
5 == 7 Ubla) +1] {(C—§2/A)(cl3a3/4+cfcza2+301022a/2+c§)
b (1+v)(cal2+c,)G,
2 2
F6@ =B A VD) (e 1 TG 4)
(b +a*)? G2

Whenc, =0, Eq. (47) is reduced to the critical buckling load, AT;’of a FGM plate, with
constant thickness ¢, = &, which is;
o _mlbla)’+1] AC-B* TG, (55)

b1+ v)hG, A ) G,

The result given in Eq. (55) is exactly the same as the one obtained by reference.

Case C. Buckling of FGM plate under Non-linear temperature variation across the Thickness

In this section, the governing differential equation for the temperature distribution through the
thickness is given by one- dimensional Fourier equation under steady state heat condition as;

k(z)— |= (56)
di() } )

where k(z)is the coefficient of thermal conduction. Similar to what was considered for the

variation of the elastic modulus and coefficient of thermal expansion, here the coefficient of
the heat conduction is also assumed to change according to a power law in terms of z as
represented by Eq. (49).

By inserting Eq. (49) into Eq. (56) one would get;

d’T N kK, m"" dT _ (57)
dm* K,+K,m‘dm
in which
2z+¢& (58)
= 2

and the boundary conditions across the plate thickness are;
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T=T, m=1, (59)
T=T, m=0,

The solution of Eq. (50) can be obtained by means of polynomial series. Taking the first
seven terms of the series;

Tzéo+élm+ézm2+é3m3+é4m4+ésm5+é6m6, (60)
In which é, are constant coefficients to be evaluated. After substituting Eqn. (60) Into Eqn.

(57), imposing the boundary conditions and repeating similar above mathematical
manipulations, one can get;

AT
T(Z) = 'I:n + é < L(Z)

(61)
0
in which
A —1_ Kcm + Kczm _ ij + K;‘m _ Kcsm
’ (k+DK, Qk+DK?2 @k+D)K} @dk+DK: Gk+DK>’
2
L(Z)=(2Z+§)— K("” 2Z+§ k+1 + K('m - 2Z+§)2k+l
26 7 (k+DK,  2£ Qk+DK:  2&
_ Kfm 22+& 3 4 ij 22+¢ win _ Kfm 2z+ Sg)skn (62)
GBk+DK}  2& @k+1K! " 2& Sk+DHK)  2&
AT, =T.-T,

The pre-buckling resultants loads for this case can be obtained by solving the membrane

effects of the equilibrium equations i.e., (Eq. (18)) which yields;

2+
NO=_S42% G G
X l—V c 3 m—1

vc,a C
1 + 2

N} =—[cx+
: 2(1-v) 1-v

I(AT.G, +T,G,)
N! =0 (63)

xy

Substituting T (2) in Egns. (16) and calculating for ® ;

£12 AT gi2
0=, [ EQadz+=* [ L(2).E()a(2)dz
—&12 o -¢/2 (64)

By substituting Eqn. (63) into Eqn. (27) the buckling for this case of loading is obtained. By
performing an analysis similar to that done for the case A, the thermal critical buckling

load, AT for case C is determined to be.

Tor z°Db/a)’ +1]

b A+v)(cal2+¢,)G,
a’b*(b* +va®)
T (b* +a*)?

{(C~' —léz/g)(cfa3 l4+clc,a’ +3c,cial2+c;)

(clal2+clc,) }——T’”Gl (65)

+6(C—B*/A) ,
G,
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in which

G, =1/CJE, a,1/2-K

m m cm

[(k+2)(k+DK, + K2 /(2k +2)(2k + K

cm

K JGk+1)Gk+2)K: + K [(4k +2)@k + DK =K’ I(5k+2)(5k (66)

cm cm cm

+DK1+(E, e, +E, o )1/(k+2)— K

m cm cm m cm

Ik +2)(k+1)K, + K,

Y 15k +2)(4k +1)

cm

I3k +2)2k+DK. — K. [(4k+2)(3k+1DK +K

cm

K} —K} /(6k+2)(5k+DK 1+ E,, @, [1/(2k+2)—K,, /(3k+2)(k +1)

cm cm cm cm

k +K2 IQk+1)(4k+2)K2 - K /(5k+2)3k+ DK’ +K

cm cm

2)(4k +DK: = K> I(Tk+2)5k+1DK>] }

cm

* 16k +

cm

When ¢, =0, Eq. (65) will be reduced to the critical buckling load, A7"of a FGM plate with

constant thickness ¢, = h, which is;

o T (AC-B?)

Gi

_2—[(b/a)2+1]_Tm_Gl (67)
b2 (1+v)ALG, G,

The result given in Eq. (67) is exactly the same as the one obtained by reference

6. RESULTS AND DISCUSSIONS

In this paper, the pre-buckling and critical thermal buckling loads of a thin FGM plate with
variable thickness are obtained. The analysis on thickness variation of the plate is carried out
for two different types of linear heat conduction variations both in x- and y-directions. In order
to conduct further calculations, a functionally graded material consisting of aluminum and
alumina is considered in which the Young’s modulus, conductivity, and the coefficient of

thermal  expansion, are: for  aluminum, K, =204w/mk, a, =23x107°(1/°C)
E, =70GPa and for alumina, E.=380GPa, K, =10.4w/mk,a,=7.4x10°(1/°C).

The Poisson’s ratio v,, =v,. = 0.3 are taken for both.

The graphs of critical temperature change AT “ versus the aspect ratio b/a , ¢,, and volume
fraction exponent k for two types of linear change of thickness at x, y directions and three
types of thermal loading are shown in Figs. (2- 4). To begin with, the variation of the critical
temperature difference AT," of FGM plate under uniform temperature rise vs. different
geometric parameter (b/a), for different volume fraction exponents is analyzed. The variations
are plotted in Fig. (2). By comparing the values of the critical temperature differences AT,”

calculated with using linear change in the plate thickness in the x-direction are lower than in y-
direction. For the plate of FGM material (k > 0), the critical temperature difference of buckling
for thickness variation in the y-direction is higher than in x-direction. Therefore, the plate
resistance against buckling for all kinds of thermal loads is higher in the y-direction when the
plate has a variable thickness.
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FIGURE 2: Variation of buckling critical temperature (Case A)

Figure 2 is shown the variation of buckling critical temperature gradient against b/a for
different functionally graded material plate with linear thickness change in x-direction and y-
direction under uniform temperature rise.
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FIGURE 3: Variation of buckling critical temperature (Case B)

Figure 3 is illustrated the variation of buckling critical temperature gradient against material
index k for different FGM plate with linear thickness change in both x and y directions under
linear temperature across thickness.
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Figure 4 is shown the variation of the buckling critical temperature gradient against material
index k for different FGM plate with linear thickness change in both x and y directions under
non-linear temperature across thickness.

As an overview of all the above cases, one can say that the critical buckling temperature
gradient of a homogeneous ceramic plate (k = 0), is higher than the FGM plate. This result is
justifiable, because the coefficient of the thermal expansion of ceramic plate is lower than the
FGM plate. Referring to Figs. (2- 4) it can be said that the difference between variation of
critical buckling temperature gradient of the homogeneous ceramic plate (k = 0) and the FGM
plate (k > 0) is not significantly high. Contrary to this, for the other types of loading the
difference is much higher; therefore, this type of loading results in a more acceptable low
thermal stress distribution in the plate.

In Figs. 2- 4, it is found that the critical temperature difference of FGM plate is higher than that
of the fully metallic isotropic plate but lower than that of the fully ceramic isotropic plate. In
addition, the critical temperature change decreases as the volume fraction exponent k is
increased. In all cases, the critical temperature difference increases, when the geometric
parameter b/a is increased.

7. CONCLUSIONS

In the present paper, equilibrium and stability equations for a simply supported rectangular
functionally graded plate with its thickness varying along both the x- and y-axis as a linear
function, under thermal loading are obtained according to the classical plate theory. The
critical buckling temperature gradient for three different types of thermal loading is derived
using Galerkin method. From the results, primarily one can conclude that the thickness
change causes reinforcement of resistance of buckling.
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