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Abstract 

 

In this study, thermal buckling of thin plate made of Functionally Graded 
Materials (FGM) with linearly varying thickness is considered. The material 
properties are also graded in the thickness direction according to a simple 
power law distribution in which the properties are stated in terms of the 
volume fractions of the constituents. All edges of the plate are simply 
supported. The equilibrium and stability equations of a FGM plate under 
thermal loads can be derived based on higher order plate theories via 
variation formulation, and are then used to determine the governing 
deferential equation of the plate and the pre-buckling forces. The buckling 
analysis of a FGM plate is conducted by assuming a uniform temperature rise, 
temperature gradient through the thickness, and linear temperature variation 
in the thickness. Closed–form solutions are obtained the buckling load defined 
in a weighted residual approach. In a special case the obtained results are 
compared with the results of FGM plates with uniform thickness. The 
influences of the plate thickness variation and the edge ratio on the critical 
loads are investigated. Different gradient exponent k, different geometries and 
loading conditions were studied.  
 
Keywords: Thermal buckling; FGM plates; Thin plate; Higher Order plate theories; Variable thickness 

plate.  

 

1.  INTRODUCTION 

Functionally graded materials (FGMs) have received considerable attention in many 
engineering applications since they were first reported in 1984 in Japan [23].  The main 
advantage of such materials is the possibility of tailoring desired properties to needs. 
Obviously, FGM's can be used in a variety of applications which have made them very 
attractive. Theories of plates and shells have already been applied to high extent, and there 
are many text books available, such as [1- 3]. Later on, the concept of FGM was proposed in 
[4] and [5]. The main advantage of FGMs is their high resistance to environments with 
extremely high temperature and extreme changes in temperature. Ceramic due to low thermal 
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conductance constituents causes resistance to high temperature. One of the main 
applications of Functionally Graded Materials is their use in power reactors, electronic and 
magnetic sensors, medical engineering of artificial bones and teeth, chemical industry and in 
new technologies such as ceramic engines and as resistant covers and protection against 
corrosion. 
 
Chi and Chung [9, 10] examined the mechanical behavior of FGM plates under transverse 
load. Najafizadeh and Eslami [14] studied the buckling behavior of circular FGM plates under 
uniform radial compression. Shariat and Eslami [16] investigated thermal buckling of 
imperfect FGM plates. Huang and Chang [13] carried out studies on corner stress 
singularities in an FGM thin plate. Nonlinear analysis, such as nonlinear bending, nonlinear 
vibration and post-bucking analysis of homogeneous isotropic or FGM plates and shells can 
be found in the articles by Sundararajan et al. [17], Chen et al. [7], Hsieh and Lee [12], 
Ghannadpour and Alinia [11]. Further research can be found in the articles by Navazi et al. 
[15], Woo et al. [18], Chen and Tan [8] and Li et al. [20]. Morimoto et al. [19] and Abrate [6] 
noticed that there is no stretching–bending coupling in constitutive equations if the reference 
surface is properly selected. Classical nonlinear laminated plate theory and the concept of 
physical neutral surface are employed to formulate the basic equations of the FGM thin plate. 
 Da-Guang Zhanga and You-He Zhou studied functionally graded materials as thin plates in 
2008 [27], whereas Wu [21] has examined the effect of shear deformation on the thermal 
buckling of FGM plates. Chen and Liew [22] have examined the buckling of rectangular FGM 
plates subjected to in-plane edge loads. Based on third order shear deformation theory, 
Shariat and Eslami [27] studied the buckling of thick functionally graded material under 
mechanical and thermal load and Javaheri and Eslami [28] studied the buckling of functionally 
graded plate under in-plane compressive loading based on classical plate theory. Previous 
studies reported that critical buckling temperature differences for the functionally graded 
plates are generally lower than the corresponding values for homogeneous plates. They used 
classical plate theory for the buckling analysis of functionally graded plates under in–plane 
compressive loading.  
 
In the present study, equilibrium and stability equations for functionally graded thin plates are 
derived based on higher order shear deformation plate theory. The resulting equations are 
employed to obtain closed–form solutions for the critical buckling loads. In order to establish 
the fundamental system of equations for the buckling analysis, it is assumed that the non-
homogeneous mechanical properties of the material are given by a power law formulated in 
Cartesian coordinates. 

 

2. FGM PLATE AND ITS PROPERTIES   
Consider a FG thin plate made from a mixture of ceramics and metals and subjected to a kind 
of thermal load. The plate coordinate system (x, y, z) is chosen such that, x and y are in-plane 
coordinates and z is in the direction through the thickness and normal to the middle plane. 
The corresponding displacements in the x-, y- and z-directions are designated by u, v and w, 
respectively. The origin of the coordinate system is located at the corner of the plate on the 
middle plane. The plate side lengths in the x- and y-directions are designated as a, and b 
respectively. The thickness of the plate, h, varies the x and y directions such that (see Fig. 1);  

 

FIGURE 1: Geometry and coordinate system of rectangular plate (a ×b) 
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h = h(x) = ξ  = 21 cxc +   &   h = h(y) = .21 cyc +=ξ                                                        (1) 

in which ξ is a general parameter indicating the thickness change in either of x or y 

directions, 2c is the nominal thickness of the plate at the origin and 1c is a variable parameter 

called the non-dimensional parameter. When 1c =0, it means that the plate has a constant 

thickness. When x = 0, one has ξ = 2c = h and for the case of x = a, ξ (a) = 1c a+ 2c  

 
To get the change in through thickness properties, it is assumed that the plate composition is 
varied from the outer (top) to the inner (bottom) surface; i.e. the outer surface of the plate is 
ceramic rich whereas the inner surface is metal-rich. The material properties of the FGM 
plate, are such that the coefficient of thermal expansion,α , modulus of elasticity E, and 
coefficient of thermal conduction k are  assumed to be functions of the constituent materials, 
while the Poisson’s ratio v is assumed to be constant across the plate thickness such that:  

),1()( cmcc VEVEzE −+=                                                                         

),1()(
cmcc

VVz −+= ααα                                                                         

),1()(
cmcc

VKVKzK −+=                                                                     (2) 

,)( vzv =                                                                                               

where subscripts m and c refer to the metal and ceramic constituents, respectively. The 

volume fractions of ceramic cv and metal mv  are related by  

,,0,)2/1/( ∞=≥+= kkhzV k

c
                                                  

,1)()( =+ zVzV cm                                                                                                   (3) 

where volume fraction exponent k dictates the material  metal-ceramic variation profile 
through the plate thickness. k assumes values greater than or equal to zero. K = 0 represents 
a fully ceramic plate. From Eqns. (2) and (3) material properties of the FGM plate are 
determined, which are the same as the equations proposed by many references.  

 

,)2/1/()( k

cmm hzEEzE ++=  

,)2/1/()( k

cmm
hzz ++= ααα                                                                                       (4) 

,)2/1/()( k

cmm hzKKzK ++=  

,)( vzv =  

in which;  

,mccm EEE −=                         ,
mccm

ααα −=          ,mccm KKK −=                   (5) 

3. BASIC AND EQUILIBRIUM EQUATIONS  

The higher order plate theories which is considered in the present work is based on the 
assumption of the displacement field in the following form: 

,,00 ),(),,( xzwyxuzyxu −=  
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,,00 ),(),,( yzwyxvzyxv −=                                                                                               (6) 

),(),,( 0 yxwzyxw =  

in which u, v, w are the total displacement and ( )000 ,, wvu are the mid-plane displacements 

in the x, y and z directions, respectively. For the thin plate i.e. (h/b) ≤ (1/20), where h and n 
are the thickness and smaller edge side of the plate, respectively.  
Hook’s law for a plate with thermal effects is defined as: 
 
 
 
       
                                                                                                                                        (7) 
 

 
 
 
 
The plate is assumed to be comparatively thin and according to the Love-Kirchhoff 
assumption, planes which are normal to the median surface are assumed to remain plane 

and normal during deformation, thus out-of-plane shear deformations ( )yzxz γγ ,  are 

disregarded. Strain components at distance z from the middle plane are then given by: 

,xxxxxx zk+= εε  

,yyyyyy zk+= εε                                                                                                            (8) 

.2 xyxyxy zk+= γγ  

Here, xyyyxx γεε ,, denote the corresponding quantities at points on the mid-plane surface 

only, and xyyyxx kkk ,,  are the curvatures which can be expressed in term of the displacement 

components. The relations between the mid-plane strains and the displacement components 
according to the Sander’s assumption are; 
 
 
                                                                                                                                     (9)                                                

 

 
 
and  

,,xxxx wk −=                       ,,yyyy wk −=                             xyxy wk ,−=                          (10) 

Substituting Eqns. (9) and (10) into Eqns. (8), the following expressions for the strain 
components are obtained: 
 
 
                                                                                                                                    (11) 
 

 

 
 

A loaded plate is in equilibrium if its total potential energy V remains stationary ( Vδ =0), and 
V is stationary if the integrand in expression for V satisfies the Euler equations.  
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The total potential energy V of a plate subjected to thermal loads is defined as: 

,Tcbm UUUUV +++=                                                                                              (12) 

where mU is the membrane strain energy, bU is the bending strain energy, cU  is the coupled 

strain energy, and TU  is the thermal strain energy. The strain energy for thin plate based on 

classical plate theory is defined as;  
                                           (13) 
                                                                                                                                 

 

Substituting Eqns. (7) and (8) into Eqn. (13), and integrating with respect to z from- ξ /2 to 

ξ /2, the total potential energy results in;  

                                                                                                           (14) 
                                                    

 
where, the function F is; 

 

                                                                           

                                                   

                                                                                                          (15) 

 

 

 

where 

 

 

 

                                

                                                                                                          (16) 

 

 

 
 
The total potential energy is a function of the displacement components and their derivatives. 
Hence, minimization of total potential energy in terms of the function F yields the following 
Euler Equations:  

                                                                         

                                                                                                          (17) 
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Substituting Eqns. (9) and (10) into Eqn. (15) and using Eqns. (17), the equilibrium equations 
for general rectangular plate made of functionally graded material are given by; 

0,, =+ yxyxx NN  

0,, =+ yyxxy NN                                                                                                          (18) 

022 ,,,,,, =++++++ nyyyxyxyxxxyyyxyxyxxx PwNwNwNMMM  

where stress resultant ii MN , are given by: 

,.).,1()(
2/

2/
, dzzMN iii σ

ξ

ξ∫=                                    i = x, y, xy                                         (19) 

By substituting Eq. (7) into Eq. (19), one can arrive to the following constitutive relation is 
obtained;  

 

                                                                                                         (20) 

 

                                                   

4. PLATE STABILITY EQUATIONS 

Stability equations of thin plates are derived using the energy method. If V is the total 
potential energy of the plate, then expanding V about the equilibrium state using Taylor series 
yields;  
                                                       

                                                                               (21)                                
  

The first variation δν is associated with the state of equilibrium. The stability of the plate in 
the neighborhood of equilibrium condition may be determined by the sign of second variation. 

The condition 02 =νδ is used to derive the stability equations for buckling problems [16]. 

Assume that iû denotes the displacement component of the equilibrium state and iûδ the 

virtual displacement corresponding to a neighboring state. Denoting  δ  the variation with 

respect to iû , the following rule, known as the Trefftz rule, is adopted for the determination of 

the critical load. The external load acting on the plate is considered to be the critical buckling 

load if the following variation equation is satisfied 0)( 2 =νδδ . The state of primary 

equilibrium of a rectangular plate under general loading is designated by 000 ,, wu ν . In 

deriving the stability equations, virtual displacements are defined as: 

,10 uuu +→  

,10 vvv +→                                                                                         (22) 

,10 www +→  

where 111 ,, wu ν are the virtual displacement increments. Substituting Eqns. (22) into Eqn. 

(15) and collecting the second–order terms, the second variation of the potential energy are 
obtained as;  
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                                                                                                          (23) 

 
 
 
 
Applying the Euler equations (17) to the functional of Eq. (23), the stability equations are 
obtained as;  

0,1,1 =+ yxyxx NN  

0,1,1 =+ yyxxy NN                                                                                    (24) 
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,1,1/, =+++++ yyyxyxyxxxyyyxyxyxxx wNwNwNMMM  

where  

 

 

                                    (25) 

 

 

 

 

4.1 Governing Differential Equation for FGM 
By substituting Eq. (25) into Eq. (24), the stability equations in terms of displacement 
components become;  
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)()()1()()1( ,1,1,,1,1,1,1, yyxxxxxxyxyyxyyyx vwwCvuBvvuBv +−+−++−+  

+−−−−−+− xxxxxxyyxyyxxyyxxxx wCCwvwvCvwwC ,1,1,1,,1,1, ()1(2)1(2)(2  

[ ] 02)1()() ,1

0

,1

0

,1
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,1,1,1 =++−++− xyxyyyyxxxxxyyyyyyxxyy wNwNwNvvwwCvw  

In the next step variables u, v are eliminated in above relation, then the equations of stability 
Eqn. (26) can be merged into one equation in terms of deflection component w and pre-
buckling forces only for linear thickness variation, as: 

 

                                                                                                       (27) 

 where 

                                                                                 (28) 

 

4.2 Solution Method  

The method of solving Eq. (27) is based on the series expansion developed by Galerkin [16]. 
It was originally proposed by Bubnov and sometimes is referred to as the Bubnov-Galerkin 
method. If the FGM plate is simply supported at all four edges, then the boundary condition 
are: 

,01 =w                 0,1 =xxw                 at                  x = 0, a 

,01 =w                 0,1 =yyw                 at                  x = 0, b                                     (29) 

The proposed deflection function 1w for this case is assumed to be in the following series 

form;  

),/sin()/sin(1 bynaxmBw mn ππ=                    (m, n) = 1, 2, 3,…                             (30) 

where mnB are constant coefficients, and m, n are the half wave numbers in the x, y 

directions, respectively.  
In this study, in order to determine the critical load, the Galerkin method is used. According to 
this method,  
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in which R(x, y) is the residue function and )(wφ  is the weight function.  

5. THERMAL BUCKLING ANALYSIS 

Consider a plate made of functionally graded material with simply supported edge conditions 
and subjected to an induced in-plane loading in two directions, as shown in Fig. 1. To obtain 
the critical thermal loading, the pre-buckling forces should be found. Solving the membrane 
form of equilibrium equations, results in the following force resultants. 
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=xyN                                                                                                                       (32) 

where R is a non-dimensional constant. The resulting equation then may be solved for a 
series of selected values of R. The simply supported boundary conditions are defined as 
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The following approximate solutions are found to satisfy both the differential equations and 
the boundary conditions   

 

1, 2, 3…. =                                                                          m, n                                                                                                                    

                                                                                          

                                                                                                                                 (34)                                 

 

 
 
 
where m and n are number of half waves in x and y directions, respectively, and 
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stability equations (24) and using the kinematic and constitutive relations yields a system of 
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3443 kk −=  

 

 

 

2552 kk −=  

3553 kk −=  

 

4554 kk =  

 

 

Substituting pre-bucking forces from  Eqs. The relation of 33K and setting 0=ijK  to obtain 

the nonzero solution, the value of the xF  is found as  

 

 where  

)]12/()1/()([* +++++= nEnEEE cmcmcmmcmmmm ααααη                                         (38) 

ijd kk det=  

5244211552412514514522145144251251422415 kkkkkkkkkkkkkkkkkkkkkc ++++=  
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5144221551422514554422115542211455412412 kkkkkkkkkkkkkkkkkkkk −−++  

5441251252452114524425115241241551452412 kkkkkkkkkkkkkkkkkkkk −−−−  

5544211255422411554122145445221154422115 kkkkkkkkkkkkkkkkkkkk −−−−− 

In this section, the closed form solutions of Eq. (27) for three types of thermal loading 
conditions are presented. The plate is assumed to be simply supported in all edges and 
rigidity fixed against any extension.  
 

Case A. Uniform Temperature Rise  

The initial uniform temperature of the plate iT is uniformly raised to a final value fT , such that 

the plate buckles. To find the critical buckling temperature difference i.e., ifA TTT −=∆ , 

the pre- buckling thermal forces, should be found. Solving the membrane form of equilibrium 
equations i.e., Eq. (18), gives the pre- buckling force resultants as; 
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  (39) 

where  

[ ],)12/()1/()(1 +++++= kEkEEEG
cmcmmcmcmmmm

αααα                                  (40) 

By substituting this type of loading condition into Eqns. (16), one can get;  

1.. GTA ξ∆=Θ                                                                                                                     (41) 

Substituting Eqn. (39) into Eqn. (27), the buckling equation for this type of loading is obtained 

as;  

          

               (42) 

 

 

For the assumed displacement field given by Eqn. (30) the result of Eqns. (31), (42) becomes;  
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After carrying out the integration, one would get;  
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),12)(22/(
~

),1/(
~

++=++= kkkEBkEEA cmcmm                                                    (46) 

[ ].)44/(1)2/(1)3/(112/
~

+++−++= kkkEEC cmm  

 

The critical buckling load 
cr

AT∆  can be obtained for different values of m, n such that it 

minimizes Eq.(44). Apparently, when minimization methods are used, the critical buckling 

load,
cr

AT∆ , is obtained for m = n = 1, thus;  

 

                                                                                                         (47) 

 

When 01 =c , Eq. (40) represents the critical thermal buckling load, 
cr

AT∆ of a FGM plate with 

constant thickness hc =2 , i.e. ;  

 

                                                             (48) 

The result given in Eq. (41) is exactly the same as the one obtained by reference [9].  

 

Case B. Linear Temperature variation across the thickness 

For a functionally graded plate, usually the temperature change is not uniform where the 
temperature level is much higher at the ceramic side than that in the metal side of the plate. In 
this case, the temperature variation through the thickness is given by;  

                                                                        (49)                                       

 

in which  

 

           

                                                                                                          (50) 

 

cT and mT denote the temperature level at the top ( ceramic side ) and the bottom ( metal side) 

surfaces, respectively. The pre-buckling forces now can be obtained by solving the 
membrane form of equilibrium equations, i.e. Eqn. (18) and this gives;  
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)],22/()2/()(2/[2 +++++= kEkEEEG cmcmmcmcmmmm αααα                                    (52) 

Substituting Eqn. (51) into Eqn. (27), the buckling equation for this case of loading is 
obtained;  

           

                                                                                                          (53) 

 

Following similar steps to that given in case A, the buckling load for case B is;  

 

                                                                                                         (54) 

 

When 01 =c , Eq. (47) is reduced to the critical buckling load, 
cr

Bi
T∆ of a FGM plate, with 

constant thickness hc =2 , which is;  

                                                              (55) 

 
 
The result given in Eq. (55) is exactly the same as the one obtained by reference. 
 

Case C. Buckling of FGM plate under Non-linear temperature variation across the Thickness  

In this section, the governing differential equation for the temperature distribution through the 
thickness is given by one- dimensional Fourier equation under steady state heat condition as;  

                                                                                             (56) 

                                                                      

where )(zk is the coefficient of thermal conduction. Similar to what was considered for the 

variation of the elastic modulus and coefficient of thermal expansion, here the coefficient of 
the heat conduction is also assumed to change according to a power law in terms of z as 
represented by Eq. (49).  
 
By inserting Eq. (49) into Eq. (56) one would get;  
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in which   
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,cTT =                                       m = 1,                                                                      (59) 

,mTT =                                       m = 0, 

The solution of Eq. (50) can be obtained by means of polynomial series. Taking the first 
seven terms of the series; 

,ˆˆˆˆˆˆˆ 6
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5
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4

4

3
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2

210 mCmCmCmCmCmCCT ++++++=                                             (60) 

In which iĈ are constant coefficients to be evaluated. After substituting Eqn. (60) Into Eqn. 

(57), imposing the boundary conditions and repeating similar above mathematical 
manipulations, one can get;               

                                                                                       

                                                                                            (61)                                         

in which  

 

                        

                                                                                                                                   (62) 

 

 

The pre-buckling resultants loads for this case can be obtained by solving the membrane 

effects of the equilibrium equations i.e., (Eq. (18)) which yields; 

 

                                                  

                                                                                                                                   (63) 

Substituting T (z) in Eqns. (16) and calculating for Θ ; 

                                          

                                                (64) 

By substituting Eqn. (63) into Eqn. (27) the buckling for this case of loading is obtained. By 
performing an analysis similar to that done for the case A, the thermal critical buckling 

load,
cr

cT∆  for case C is determined to be. 
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in which 

 

{ −+++++−= 22

03 )12)(22/()1)(2/(2/1[ˆ/1 mcmmcmmm KkkKKkkKECG α  

kkKKkkKKkkK cmmcmmcm 5)(25/()14)(24/()23)(13/( 54433 +−+++++                    (66) 

25
)1)(22/()2/(1)[(])1 cmmcmmcmcmmm KKkkKkEEK +++−++++ αα  

)14)(25/()13)(24/()12)(23/(
4332 +++++−++ kkKKkkKKkk cmmcmm  

)1)(23/()22/(1[])15)(26/(
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++++−+++ kKKkkKKkkKk cmmcmmcmm 6/()13)(25/()24)(12/( 43322

}])15)(27/()14)(2
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mcmm KkkKKk ++−+  

 

When 01 =c , Eq. (65) will  be reduced to the critical buckling load, 
cr

Ci
T∆ of a FGM plate with 

constant thickness hc =2 , which is; 

 

                                                     (67)                    

                               

The result given in Eq. (67) is exactly the same as the one obtained by reference 
 

6. RESULTS AND DISCUSSIONS  

 In this paper, the pre-buckling and critical thermal buckling loads of a thin FGM plate with 
variable thickness are obtained. The analysis on thickness variation of the plate is carried out 
for two different types of linear heat conduction variations both in x- and y-directions. In order 
to conduct further calculations, a functionally graded material consisting of aluminum and 
alumina is considered in which the Young’s modulus, conductivity, and the coefficient of 

thermal expansion, are: for aluminum, )/1(1023,/204
06
CmkwK mm

−×== α  

GPaEm 70=  and for alumina, )/1(104.7,/4.10,380 06 CmkwKGPaE ccc

−×=== α . 

The Poisson’s ratio 3.0== cm νν are taken for both.  

 

The graphs of critical temperature change 
cr

T∆ versus the aspect ratio b/a , 1c , and volume 

fraction exponent k for two types of linear change of thickness at x, y directions and three 
types of thermal loading are shown in Figs. (2- 4). To begin with, the variation of the critical 

temperature difference 
cr

AT∆  of FGM plate under uniform temperature rise vs. different 

geometric parameter (b/a), for different volume fraction exponents is analyzed. The variations 

are plotted in Fig. (2). By comparing the values of the critical temperature differences 
cr

AT∆  

calculated with using linear change in the plate thickness in the x-direction are lower than in y-
direction. For the plate of FGM material (k > 0), the critical temperature difference of buckling 
for thickness variation in the y-direction is higher than in x-direction. Therefore, the plate 
resistance against buckling for all kinds of thermal loads is higher in the y-direction when the 
plate has a variable thickness. 
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FIGURE 2: Variation of buckling critical temperature (Case A) 

 
Figure 2 is shown the variation of buckling critical temperature gradient against b/a for 
different functionally graded material plate with linear thickness change in x-direction and y-
direction under uniform temperature rise. 

 

 

 

 

 

 

 

 

 

FIGURE 3: Variation of buckling critical temperature (Case B) 
 
Figure 3 is illustrated the variation of buckling critical temperature gradient against material 
index k for different FGM plate with linear thickness change in both x and y directions under 
linear temperature across thickness. 

 

 

 

 

 

 

 

 

FIGURE 4: Variation of buckling critical temperature (Case C) 
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Figure 4 is shown the variation of the buckling critical temperature gradient against material 
index k for different FGM plate with linear thickness change in both x and y directions under 
non-linear temperature across thickness. 
 
As an overview of all the above cases, one can say that the critical buckling temperature 
gradient of a homogeneous ceramic plate (k = 0), is higher than the FGM plate. This result is 
justifiable, because the coefficient of the thermal expansion of ceramic plate is lower than the 
FGM plate. Referring to Figs. (2- 4) it can be said that the difference between variation of 
critical buckling temperature gradient of the homogeneous ceramic plate (k = 0) and the FGM 
plate (k > 0) is not significantly high. Contrary to this, for the other types of loading the 
difference is much higher; therefore, this type of loading results in a more acceptable low 
thermal stress distribution in the plate.  
 
In Figs. 2- 4, it is found that the critical temperature difference of FGM plate is higher than that 
of the fully metallic isotropic plate but lower than that of the fully ceramic isotropic plate. In 
addition, the critical temperature change decreases as the volume fraction exponent k is 
increased. In all cases, the critical temperature difference increases, when the geometric 
parameter b/a is increased.  
 

7. CONCLUSIONS 

In the present paper, equilibrium and stability equations for a simply supported rectangular 
functionally graded plate with its thickness varying along both the x- and y-axis as a linear 
function, under thermal loading are obtained according to the classical plate theory. The 
critical buckling temperature gradient for three different types of thermal loading is derived 
using Galerkin method. From the results, primarily one can conclude that the thickness 
change causes reinforcement of resistance of buckling. 
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