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Abstract 

 
In this paper, Imperialist Competitive Algorithm (ICA) and Genetic Algorithm (GA) 
are used to find the optimal form for torispherical dome ends under internal 
pressure load. According to fabrication and strength of material requirements, a 
group of compromised counters are studied. According to ASME Section VIII and 
BS5500 pressure vessel codes, a reasonable buckling pressure limit is 
proposed. Four-centered ellipse method is used to describe the geometry of the 
torispherical dome end that this method is commonly used in engineering 
drawing. A minimum weight optimization problem based on buckling pressure is 
studied. Two different size torispherical dome end examples are selected and 
studied. Imperialist Competitive Algorithm is found to be very efficient and easy 
to use for the applications, such as torispherical dome end and subjected to 
internally pressurized loading.  
 
Keywords: Imperialist Competitive Algorithm, Genetic Algorithm, Four-Centered Ellipse Method, 

Torispherical, Buckling Pressure, Internal Pressure 

 
 
1. INTRODUCTION 

Pressure vessels are very important in shell structures and a majority of them are axisymmetric. 
Torispherical dome ends are frequently used as end closures on pressure vessels and different 
types of cylindrical containers which can be found in various fields, such as aerospace, food 
processing, chemical, nuclear, oil industries, and so on. In this paper, we are only concerned with 
the structural honesty of the dome ends of the pressure hull. 
  
Designers are seeking for maximum strength of structure with minimum weight. Minimum weight 
design of cylindrical and conical shells have been studied in details [1-3]. It seems that, for 
external pressurized cased, the optimization of torispherical dome ends under buckling 
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constraints was attempted in [4-6]. But studies concerned with the optimal shape design of 
torispherical dome end which under internal pressure loading are still limit. In this paper, we 
looked for an optimal deign of torispherical dome end according to elastic – plastic buckling 
pressure.  
 

The British pressure vessel code BS5500 gives the design pressure 
w

P  of internally pressurized 

dome ends which is not allowed to exceed 1/8.33 of the elastic plastic buckling pressure 
b

P  while 

for the ASME section VIII it is 1/19.4. Therefore, in this paper, reasonable buckling pressure 

range is proposed between 8.33
w

P  and19.4
w

P .  

 
By using four-centered ellipse, three commonly used dome geometries that namely hemispherical 
dome, ellipsoidal dome, and torispherical dome can be described [7]. This method is commonly 
used in engineering drawing and it is very useful in the design and construction of the dome 
structure.  
 
Imperialist Competitive Algorithm (ICA) is a new socio – politically motivated global search 
strategy that has recently been introduced for dealing with different optimization task [8]. This 
evolutionary optimization strategy has shown great performance in both convergence rate and 
better global optima achievement [9-11]. In this paper, we used imperialist Competitive Algorithm 
in optimizing torispherical dome ends and compared it with the genetic algorithm results. 

 
2. GEOMETRY OF TORISPHERICAL DOME ENDS 
At first, consider an elastic torispherical dome end with constant thickness t (Figure 1) under 

static internal pressure. It can be assumed that there is not any flange and the torispherical dome 
end is fully clamped at the edge.  
 
The geometry of torispherical dome end can be constructed by using the four-centered ellipse 
method (Figure 1).  
 

If we know the ratio
b

K
a

= , then the other parameter , , rθ φ , and R  can be determined from the 

following equation: 

 

 
 

FIGURE 1: Geometry of torispherical dome end 
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Finally, the total weight of torispherical dome end with constant thickness is [5, 6] 

 

 ( )2 2
2 cos 1 cos

2
W t r r R

π
πγ ω= − Φ + Φ + − Φ

  
    

                                  (5) 

Where  

2

D
r a rω = − = −                                                                   (6) 

1
sin

R r

ω−
Φ =

−

 
 
 

                                                                  (7) 

And γ  is the specific gravity.  

 

In the [5, 6] Thickness t  and the ratios / , /r D R D  were selected for the design variables of the 

optimum shape design of torispherical dome end. However, in this article, when the four-centered 

ellipse method is used, the radius of spherical cap R  and the radius of toroidal knuckle r  have 

certain relations which can be expressed as function of the angle of spherical cap θ and the 

ratio K . Therefore the thickness t  and the ratio K  are selected for design variables. 

 

The choice of boundary values for the thickness t  and the ratio K  depends on practical 

application. From Harvey’s study [14] in order to minimize the hoop stresses, the torispherical 
dome end must should a large knuckle radius. Must of pressure vessel contraction codes 
recognize this fact and therefore specify a minimum permissible knuckle radius. For instance, the 
British pressure vessel codes BS5500 and the ASME version VIII specify the minimum value of 
the knuckle radius as 6%  of the crown radius. Therefore, the lower limit on the knuckle 

shallowness ( / 0.06r D = ) is chosen in this article. Blachut [5] showed that an unexpected drop in 

the buckling strength with the range 0.45 / 0.5r D≤ ≤ . Therefore, the range of /r D  is selected to 

be 0.06 / 0.45r D≤ ≤ in this paper.  

 
3. MATHEMATICAL FORMULATION 
An internally pressurized torispherical dome end is designed for the minimum weight objective 
satisfying specified design requirement. The manufacturing limitations on the geometric 
parameters and the mechanical properties of the shell material are the preassigned parameters 
for this design problem. The following optimization problem can then be formulated. 
 
3.1 Cost function 
Accompanying engineering demands for high pressure vessels with and without large sizes are 
often the economic ones of weight reduction to save materials, to enhance shipping and erection 

procedures and reduce fabrication costs. Therefore, cost function ( )F x%  for weight is considered 

to be minimized in this paper 

Minimize   ( ) /
d s

F x W W=%  
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Where 
s

W  is the weight of hemispherical dome end (
2

1

2
s

W D tπγ= ) and 
d

W  is the weight of 

torispherical dome end.  
 
3.2 Design variables 
The dimensions of the torispherical dome end are selected as the independent design variables. 
These variables are:  

(a) The thickness of torispherical dome end, 
1

x t=  

(b) The ratio of minor axis to the major axis, 
2

/ tanx K b a θ= = =  

(c) The major axis of the torispherical dome end, 
3

x a=  

 
According to engineering design consideration, the length of major radius a  is specified which 

must coincide with cylindrical shell at the junction. Therefore, there are two independent design 

variables taken for this problem. Therefore the vector x%  will be given as  

( ),
opt

x t K=%  

 
3.3 Constraints 
The lower and upper bounds are imposed on all the design variables. Based on the standard of 
practical design, a reasonable buckling pressure range is proposed. The BS5500 design pressure 

is not allowed to exceed / 8.33
b

P , and the corresponding ratio for ASME is /19.4
b

P . 

The constraints 
i

g  are represented by the following: 

 
(a) The lower bound on buckling pressure  

1

( )
0L b

b

P P
g

P

−
= ≤  

Where 
b

P is the critical buckling pressure and 
L

P is the lower bound of critical buckling pressure, 

( 8.33
L w

P P= where 
w

P is the maximum work pressure).  

 
(b) The upper bound on buckling pressure 

2

( )
0b U

U

P P
g

P

−
= ≤  

Where 
U

P is the lower bound of critical buckling pressure. ( 19.4
U w

P P= ) 

 
 (c) The lower bound on design variables 

3

( )
0

( )

Li

i

Ui Li

x x
g

x x

−
= ≤

−
 

Where 
i

x  are design variables ( 1, 2)i = , 
Ui

x  is the upper bound value of design variable 
i

x and 

Li
x  is the lower bound value of design variables 

i
x  

 
 (d) The upper bound on design variables 

4

( )
0

( )

Ui

i

Ui Li

x x
g

x x

−
= ≤

−
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4. IMPERIALIST COMPETITIVE ALGORITHM 
Imperialist competitive algorithm (ICA) is a new evolutionary algorithm for optimization. This 
algorithm starts with an initial population. Each population in ICA is called country. Some of the 
best countries in the population selected to be the imperialists and the rest form the colonies of 
these imperialists. In this algorithm the more powerful imperialist, have the more colonies. When 
the competition starts, imperialists attempt to achieve more colonies and the colonies start to 
move toward their imperialists. So during the competition the powerful imperialists will be 
improved and the weak ones will be collapsed. At the end just one imperialist will remain. In this 
stage the position of imperialist and its colonies will be the same. The flowchart of this algorithm 
is shown in Figure 2 [11]. More details about this algorithm are presented in [8-13]. 
 

 

 
 

FIGURE 2: Flowchart of the imperialist competitive algorithm (ICA) [11]. 

 
5. MODEL DESCRIPTION 
In this paper, two reference models of the torispherical dome end were considered. Both Models 

have the same poisson’s ratio of 0.3 and the same elastic modulus of
7 2

3.0 10 /lbf in× . The fixed 

major axis a  for model 1 is 63.98 in  and 91.73 in for model 2. The principal dimensions for two 

references models are showed in table 1. The range of the ratio K  is selected as 

0.21 0.95K≤ ≤ , and the range of thickness t  as 50 / 150D t≤ ≤ . The preassigned lower and 

upper bound of design variables which were used in this paper are listed in table 2.  
 

Torispherical dome Model 1 Model 2 

Length of major axis. a  63.98 in 91.73 in 

Ratio of minor to major axis, /K b a=  0.61 0.53 

Thickness, t  1.26  in 1.77 in 

Radius of toroidal knuckle, r  29.28 in 34.35 in 

Angle of toroidal knuckle, φ  58.62
o
 61.99

o
 

Radius of spherical cap, R  95.91 in 156.83 in 

Angle of spherical cap, θ  32.38
o
 28.01

o
 

 
TABLE 1: The Principle Design Data of Reference Dome 
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Torispherical dome Side constraint Model 1 Model 2 

Major axis. a  Fixed 63.98 in 91.73 in 

Ratio of minor to major 

axis, /K b a=  

Lower bound 0.21 0.21 

Upper bound 0.95 0.95 

Thickness, t  
Lower bound 0.85 in 1.22 in 

Upper bound 2.56 in 3.66 in 

 
TABLE 2: The Upper and Lower Bounds of Design Variables 

 
6. NUMERICAL RESULTS AND DISCUSSION 
The numerical comparison between the results of the two optimal torispherical dome ends 
and two reference dome ends models are listed in table 3 and 4. Table3. The results in table 
3 are optimized by using Genetic Algorithm (GA) and in table 4 we use Imperialist 
competitive algorithm (ICA) for optimization. Also, the comparisons between optimal dome 
ends and referenced dome ends are displayed in Figure 3 and Figure 4. For a hemispherical 

dome end, the thickness effects of the dome end to weight and the effect of ratio K  to 
weight are showed in Figure 5 and Figure 6. In additional, for a hemispherical dome end, the 
thickness effects of the dome end to the buckling pressure is studied and showed in Figure 7 

and table 5. Also, if thickness is kept constant, the effect of ratio K  to the buckling pressure 
of torispherical dome end is also studied and the results are showed in Figure 8 and table 6. 

If the ratio K  is kept constant, the effect of thickness to the buckling pressure is also studied 
and the results are showed in Figure 9 and table 7. 
 

Torispherical dome 
Model 1 Model 2 

Ref. dome 
Opt. dome 

(GA) 
Ref. dome 

Opt. dome 
(GA) 

Length of major axis. a  63.98 in 63.98 in 91.73 in 91.73 in 

Ratio of minor to major axis, /K b a=  0.61 0.64 0.53 0.64 

Thickness, t  1.26  in 0.87 in 1.77 in 1.24 in 

Radius of toroidal knuckle, r  29.28 in 31.42 in 34.35 in 45.04 in 

Angle of toroidal knuckle, φ  58.62
o
 57.39

o
 61.99

o
 57.39

o
 

Radius of spherical cap, R  95.91 in 91.82 in 156.83 in 131.66 in 

Angle of spherical cap, θ  32.38
o
 32.61

o
 28.01

o
 32.61

o
 

Total weight of dome end 913.06 lbf 644.4 lbf 2486.9 lbf 1887.8 lbf 

Elastic – Plastic buckling pressure, 
b

P  8216.6 psi 2741.7 psi 6273.85 psi 2715.9 psi 

 
TABLE 3: The numerical comparison table of torispherical dome ends 
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Torispherical dome 
Model 1 Model 2 

Ref. dome 
Opt. dome 

(ICA) 
Ref. dome 

Opt. dome 
(ICA) 

Length of major axis. a  63.98 in 63.98 in 91.73 in 91.73 in 

Ratio of minor to major axis, /K b a=  0.61 0.65 0.53 0.65 

Thickness, t  1.26  in 0.85 1.77 in 1.22 

Radius of toroidal knuckle, r  29.28 in 32.14 in 34.35 in 46.09 in 

Angle of toroidal knuckle, φ  58.62
o

 56.98
o

 61.99
o

 56.98
o

 

Radius of spherical cap, R  95.91 in 90.57 in 156.83 in 129.84 in 

Angle of spherical cap, θ  32.38
o

 33.02
o

 28.01
o

 33.02
o

 

Total weight of dome end 913.06 lbf 634.1 lbf 2486.9 lbf 1870.9 lbf 

Elastic – Plastic buckling pressure, 
b

P  8216.6 psi 2737.7 psi 6273.85 psi 2742.8 psi 

 
TABLE 4: The numerical comparison table of torispherical dome ends 

 

 

              
FIGURE 3: The dome configuration comparison of model 1 for minimum weight design 

 

 
FIGURE 4: The dome configuration comparison of model 2 for minimum weight design 
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FIGURE 5: The weight via thickness of hemispherical dome end 

 

 
 

FIGURE 6: The weight via the slope K of torispherical dome end 
 

 
 

FIGURE 7: The buckling pressure via thickness of hemispherical dome end 



Behzad Abdi, Hamid Mozafari & Amran Ayob 

International Journal of Engineering, (IJE), Volume (4): Issue (5)                             395 

Model 1 
1 , 63.98K a in= =  

Model 2 
1 , 91.73K a in= =  

( )t in  ( )
b

P psi  ( )t in  ( )
b

P psi  

0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

718.7 
2257 
4193 
6519 
9173 

12124 
15349 
18828 
22546 
26490 
30648 
35013 
39574 
44325 
49260 

0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

450.4 
1301 
2419 
3756 
5285 
6986 
8845 

10850 
12992 
15265 
17661 
20176 
22804 
25542 
28386 

 
TABLE 5: The buckling pressure table at some corresponding thickness of hemispherical dome end  

 
 

FIGURE 8: The Buckling Pressure via the Slope K  of Torispherical Dome End 

 

Model 1 

1.26 , 63.98t a in= =  

Model 2 

1.77 , 91.73t a in= =  

/K b a=  ( )
b

P psi  /K b a=  ( )
b

P psi  

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

91.97 
384.2 
910.6 
1703 
2787 
4182 
5902 
7954 

10341 
13064 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

89.14 
372.3 
882.6 
1651 
2702 
4054 
5721 
7709 

10023 
12662 

 
TABLE 6: The buckling pressure table at some corresponding thickness of hemispherical dome end  
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FIGURE 9: The buckling pressure via thickness of torispherical dome end 
 

Model 1 

1.61 , 63.98K a in= =  

Model 2 

0.53 , 91.73K a in= =  

( )t in  ( )
b

P psi  ( )t in  ( )
b

P psi  

0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

259.7 
750.0 
1394 
2165 
3047 
4027 
5099 
6254 
7490 
8800 

10182 
11632 
13147 
14725 
16365 

0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

114.0 
329.3 
612.4 
951.1 
1338 
1768 
2239 
2746 
3289 
3864 
4471 
5107 
5773 
6466 
7186 

 
TABLE 7: The buckling pressure table at some corresponding thickness of hemispherical dome end  

 

From table 3 and 4 and Figure 3 and 4, the ratio of K  is found to be 0.64 for optimal model 1 
and mode2 by using Genetic algorithm and it is found to be 0.65 for both of models when we 

use imperialist competitive algorithm (ICA), while the ratios of K  are chosen as 0.61 and 
0.53 for the reference models. The critical buckling pressure are 2741.7 psi for optimum 

model 1 and 2715.9 psi for optimum model 2 by using genetic algorithm and 2737.7 psi and 

2742.8 psi  for imperialist competitive algorithm (ICA) and for reference models being 

8216.6 psi and 6273.8 psi . 

   

According to this fact that the ratios of K  for the optimum models are bigger than that of 
reference models, the shape of the optimum dome ends of two models tend to be  bigger 
than the reference models, while the buckling pressures are lower than the reference models. 

Because of we set the preassigned buckling pressure bound ( 8.33 10.4
w b w

P P P≤ ≤ ) and select 

the minimum weight type of cost function, the weight is reduced by 29.4% for model 1 and 
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24.1% for model 2 when we optimized by genetic algorithm and 30% for model 1 and 24.7% 
for model 2 while imperialist competitive algorithm is our optimization method.  
 

From table 7 and Figure 9, the critical buckling pressure for a constant ratio K  torispherical 
dome end is to be raised with the increase of the thickness. Also, the other important factor 
of the total weight of the torispherical dome end is thickness. However, the larger the 
thickness, the greater the weight and this situation must be taken into account.  

 
7. CONSLUSION & FUTURE WORK 
The four-centered ellipse method is a very easy and good method to describing the shape of 
the torispherical dome end and it makes the shape optimization problem very easy. This 
methodology uses only two design variables: thickness and the ratio of minor axis to major 

axis K . Imperialist competitive algorithm is a very efficient and easy to use algorithm for 
optimization problems such as the optimization of torispherical dome end subject to internally 
pressurized loading and the results of imperialist competitive algorithm are very close to the 
results of genetic algorithm.  
 
For future study, the optimum design of composite torispherical dome end may consider such 
factor as buckling pressure, strength, space use, manufacturing cost, safety, weight, and so on.   
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