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Abstract 

 
The biodynamic response behaviors of seated human body subject to whole-
body vibration have been widely investigated. The biodynamic response 
characteristics of seated human subjects have been extensively reported in 
terms of apparent mass and driving-point mechanical impedance while seat-to-
head vibration transmissibility has been widely used to characterize response 
behavior of the seated subjects exposed to vibration. These functions (apparent 
mass, driving-point mechanical impedance) describe “to-the-body” force–motion 
relationship at the human–seat interface, while the transmissibility function 
describes “through-the-body” vibration transmission properties. The current study 
proposed a  4-DOF analytic biomechanical model of the human body in a sitting 
posture without backrest in vertical vibration direction to investigate the 
biodynamic responses  of different masses and stiffness. Following the analytical 
approach, numerical technique developed in the present paper to facilitate and 
rapid the analysis. The numerical analysis used here applies one of the artificial 
intelligence technique to simulate and predict the response behaviors of  seated 
human body for different masses and stiffness without the need to go through the 
analytic solution every time. The Artificial Neural Network (ANN) technique is 
introduced in the current study to predict the response behaviors for different 
masses and stiffness rather than those used in the analytic solution. The results 
of the numerical study showed that the ANN method with less effort was very 
efficiently capable of simulating and predicting the response behaviors of seated 
human body subject to whole-body vibration. 
 
Keywords: Biodynamic Response, Analytic Seated Human Body Model, Numerical Simulation Model, 
Artificial Neural Network. 

 

1. INTRODUCTION 

The biodynamic responses of seated human occupant exposed to vibration have been widely 
characterized to define frequency-weightings for assessment of exposure, to identify human 
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sensitivity and perception of vibration, and to develop seated body models [1]. The biodynamic 
response of the human body exposed to vibration have been invariably characterized through 
measurement of force motion relationship at the point of entry of vibration ''To-the-body response 
function'', expressed as the driving-point mechanical impedance (DPMI) or the apparent mass 
(APMS) and transmission of vibration to different body segments ''Through-the-body response 
function'', generally termed as seat-to-head transmissibility (STHT) for the seated occupant. 
Considering that the human body is a complex biological system, the ''To-the-body'' response 
function is conveniently characterized through non–invasive measurements at the driving point 
alone.  
 
The vast majority of the reported studies on biodynamic response to whole-body vibration have 
considered vibration along the vertical axis alone. In many of the early studied, such as those 
conducted by Coermann [2], Vogt [3], and Suggs [4], the numbers of subjects was usually 
relatively small, and only sinusoidal excitation was used, not generally representative of the type 
of excitation and levels of vibration usually encountered in practice. In many of these studies, the 
feet of the subjects were either not supported or supported but not vibrated, a condition not 
common in most driving situations. Fairley and Griffin [5], reported the vertical apparent mass of 
60 seated subjects including men, women and children, which revealed a large scatter of data 
presumably owing to large variations in the subject masses.  Boileau et al. [6] investigated the 
relationships between driving point mechanical impedance and seat-to-head transmissibility 
functions based upon 11 reported one dimensional lumped parameter models. The majority of the 
models showed differences in frequencies corresponding to peak magnitudes of the two 
functions, which were expressed as resonant frequencies. Toward [7], summarized that a support 
of the back caused higher resonance frequency and slightly lower peak magnitude of the APMS 
response for subjects sitting on a horizontal plane. Wang et al. [8], study the vertical apparent 
mass and seat-to-head transmissibility response characteristics of seated subjects are derived 
through measurements of total biodynamic force at the seat pan, and motions of the seat pan and 
head along the applied input acceleration direction, using 12 male subjects. The data were 
acquired under three different back support conditions and two different hands positions 
representative of drivers and passengers-like postures. Steina et al.[9], analyzed apparent mass 
measurements in the y- direction with a group of 13 male test subjects exposed to three 
excitation intensities.  
 
In early studies, various biodynamic models have been developed to depict human motion from 
single-DOF to multi-DOF models. These models can be divided as distributed (finite element) 
models, lumped parameter models and multi-body models. The distributed model treats the spine 
as a layered structure of rigid elements, representing the vertebral bodies, and deformable 
elements representing the intervertebral discs by the finite element method. Multi-body human 
models are made of several rigid bodies interconnected by pin (two-dimensional) or ball and 
socket (three-dimensional) joints, and can be further separated into kinetic and kinematic models. 
It is clear that the lumped-parameter model is probably one of the most popular analytical 
methods in the study of biodynamic responses of seated human subjects, though it is limited to 
one-directional analysis. However, vertical vibration exposure of the driver is our main concern. 
Therefore, this paper carries out a thorough survey of  literature on the lumped- parameter 
models for seated human subjects exposed to vertical vibration.  
 
The lumped parameter models consider the human body as several rigid bodies and spring-
dampers. This type of  model is  simple to analyze and easy to validate with experiments. 
However, the disadvantage is the limitation to one-directional analysis. Coermann [2], measured 
the driving-point impedance of the human body and suggested 1-DOF model. Suggs et al. [4], 
developed a 2-DOF  human body. It was modeled as a damped spring-mass system to build a 
standardized vehicle seat testing procedure. A 3-DOF analytical model for a tractor seat 
suspension system is presented by Tewari et al. [10]. It was observed that the model could be 
employed as a tool in selection of optimal suspension parameters for any other type of vehicles. 
Boileau et al. [11] used an optimization procedure to establish a 4-DOF human model based on 
test data. It is quite clear from the literature mentioned previously the amount of effort 



Mostafa A. M. Abdeen & W. Abbas 

International Journal of Engineering (IJE), Volume (4): Issue (6) 493 

(experimentally or analytically) required to accurately investigate and understand the biodynamic 
response behaviors of seated human body subject to whole-body vibration of different types and 
magnitudes. This fact urged the need for utilizing new technology and techniques to facilitate this 
comprehensive effort and at the same time preserving high accuracy. 
 
Artificial intelligence has proven its capability in simulating and predicting the behavior of the 
different physical phenomena in most of the engineering fields. Artificial Neural Network (ANN) is 
one of the artificial intelligence techniques that have been incorporated in various scientific 
disciplines. Ramanitharan and Li [12] utilized ANN with back-propagation algorithm for modeling 
ocean curves that were presented by wave height and period. Abdeen [13] developed neural 
network model for predicting flow depths and average flow velocities along the channel reach 
when the geometrical properties of the channel cross sections were measured or vice versa. 
Allam [14] used the artificial intelligence technique to predict the effect of tunnel construction on 
nearby buildings which is the main factor in choosing the tunnel route. Allam, in her thesis, 
predicted the maximum and minimum differential settlement necessary precautionary measures. 
Azmathullah et al. [15] presented a study for estimating the scour characteristics downstream of a 
ski-jump bucket using Neural Networks (NN). Abdeen [16] presented a study for the development 
of ANN models to simulate flow behavior in open channel infested by submerged aquatic weeds. 
Mohamed [17] proposed an artificial neural network for the selection of optimal lateral load-
resisting system for multi-story steel frames. Mohamed, in her master thesis, proposed the neural 
network to reduce the computing time consumed in the design iterations. Abdeen [18] utilized 
ANN technique for the development of various models to simulate the impacts of different 
submerged weeds' densities, different flow discharges, and different distributaries operation 
scheduling on the water surface profile in an experimental main open channel that supplies water 
to different distributaries. 

2. PROBLEM DESCRIPTION 

To investigate the biodynamic response behaviors of seated human body subject to whole-body 
vibration (sinusoidal wave with amplitude 5 m/s

2
 ), analytical and numerical techniques will be 

presented in this study. The analytical model and its results will be described in detail in the 
following sections. The numerical models presented in this study utilized Artificial Neural Network 
technique (ANN) using the data and the results of the analytical model to understand the 
biodynamic response behaviors and then can predict the behaviors for different data of the 
human body without the need to go through the analytical solution. 

 

3. ANALYTICAL MODEL 
 
3.1 Biomechanical Modeling 
The human body in a sitting posture can be modeled as a mechanical system that is composed of 
several rigid bodies interconnected by springs and dampers. (Boileau, and Rakheja [11]). This 
model as shown in Fig. 1 consists of four mass segments interconnected by four sets of springs 
and dampers. The four masses represent the following four body segments: the head and neck 
(m1), the chest and upper torso (m2), the lower torso (m3), and the thighs and pelvis in contact 
with the seat (m4). The mass due to lower legs and the feet is not included in this representation, 
assuming they have negligible contributions to the biodynamic response of the seated body. The 
stiffness and damping properties of thighs and pelvis are (k4) and (c4), the lower torso are (k3) and 
(c3), upper torso are (k2) and (c2), and head are (k1) and (c1).  
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FIGURE 1: Biomechanical  Boileau and Rakheja 4-DOF model. 

 
The equation of motion of the human body can be obtained as follows: 
 

            (1)                      

 
The system equations  of motion, equation (1),  for the model can be expressed in matrix form as 
follows:  
 

                                                                                          (2)                                                           

 

where  , and  are  mass, damping, and stiffness matrices, respectively;  is 

the force vector due to external excitation. 
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And, 

  

 
By taking the Fourier transformation of equation (2), the following matrix form of equation can be 
obtained: 
 

                                                                     (3)                                                                     

 

where,  are the complex Fourier transformation vectors of 

, respectively. ω is the excitation frequency. Vector  contains complex 

displacement responses of n mass segments as a function of ω 

( ).  consists of complex excitation forces 
on the mass segments as a function of ω as well. 

 
3.2 Biodynamic Response of Human Body 

The biodynamic response of a seated human body exposed to whole-body vibration can be 
broadly categorized into two types. The first category "To-the-body" force motion interrelation as 
a function of frequency at the human-seat interface, expressed as the driving-point mechanical 
impedance (DPMI) or the apparent mass (APMS). The second category "Through-the-body" 
response function, generally termed as seat-to-head transmissibility (STHT) for the seated 
occupant. 

The DPMI relates the driving force and resulting velocity response at the driving point (the seat-
buttocks interface), and is given by [1]: 

                                                                                                              (4)                                       

where,  is the complex DPMI,    and  or (  ) are the driving force and 

response velocity at the driving point, respectively.  is the angular frequency in rad/s , and j 

=   is the complex phasor. 

 
Accordingly, DPMI for the model can be represented as:  
 

                                                                            (5)                                       

In a similar manner, the apparent mass response relates the driving force to the resulting 
acceleration response, and is given by [19]: 
 

                                                                                                                    (6)                                                                                

where,   is the acceleration response at the driving point. 

The magnitude of APMS offers a simple physical interpretation as it is equal to the static mass of 
the human body supported by the seat at very low frequencies, when the human body resembles 
that of a rigid mass. The above two functions are frequently used interchangeably, due to their 
direct relationship that given by: 
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                                                                                                              (7)                                                                 

APMS for the model can be represented as: 

                                              (8)                                           

The biodynamic response characteristics of seated occupants exposed to whole body vibration 
can also be expressed in terms of seat-to-head transmissibility (STHT), which is termed as 
"through-the-body" response function. Unlike the force-motion relationship at the driving-point, the 
STHT function describes the transmission of vibration through the seated body. The STHT 
response function is expressed as: 

                                                                                                                         (9)                                                       

where,  is the complex STHT,  is the response acceleration measured at the 

head of seated occupant, and  is the acceleration response at the driving point. According 

to equation (9) seat-to-head transmissibility for the model is: 

                                                                                                                     (10)                                                                                            

The above three functions have been widely used to characterize the biodynamic responses of 
the seated human subjects exposed to whole body vibration.  
 

4.  ANALYTIC RESULTS AND DISCUSSIONS 
On the basis of anthropometric Boileau data [19], the proportion of total body weight estimated for 
different body segments is 7.5% for the head and neck, 40.2% for the chest and upper torso, 
12.2% for the lower torso, and 18.2% for the thighs and upper legs. For a seated driver with mean 
body mass, maintaining an erect back not supported posture, 78% of the weight was found to be 
supported by the seat. The biomechanical parameters of the human model (Stiffness, Damping) 
are listed in Table 1. 
 

Stiffness Coefficient 
(N/m) 

Damping coefficient 
(N.s/m) 

k1  = 310000 c1   = 400 
k2  = 183000 c2  = 4750 
k3  = 162800 c3  = 4585 
k4   = 90000 c4  = 2064 

 

TABLE 1: The  biomechanical parameters of the Boileau and Rakheja model. 

 
 
4.1 Response Behaviors of the Human Body 
In the following subsections the effect of body's mass, stiffness coefficient, and damping 
coefficient on the response behaviors  of the human body (STHT, DPMI, and APMS) will be 
investigated using the analytical solution presented in the current study. 
 
4.1.1 Effect of Human Body’s Mass 
Three different total body masses (65, 75, and 85 kg) are used to investigate the effect of mass 
on the response behaviors of human body (STHT, DPMI and APMS) as shown in Fig. 2 (a, b, and 
c) respectively. From these figures, one can see that by increasing the human body mass, the 
biodynamic response characteristics of seated human body (STHT, DPMI, and APMS) are 
increased. 
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                 (a)                                                               (b)                                                              (c) 
FIGURE 2: Effect of human body’s mass on the biodynamic response behavior (Analytic Results)((a) STHT, 

(b) DPMI and (c) APMS). 

 
 

4.1.2 Effect of Stiffness Coefficient 
Three different values of pelvic stiffness k4 (Boileau value (B.V.), B.V. +40%, and B.V. -40%) are 
used to investigate the effect of pelvic stiffness on the response behaviors of human body (STHT, 
DPMI and APMS) as shown in Fig. 3 (a, b, and c) respectively. From these figures, it is clear that 
by increasing the pelvic stiffness, the biodynamic response characteristics of seated human body 
(STHT, DPMI, and APMS) are increased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                (a)                                                                (b)                                                              (c) 

FIGURE 3: Effect of stiffness coefficient on the biodynamic response behaviors (Analytic Results) ((a) 
STHT, (b) DPMI and (c) APMS). 

 
 
4.1.3 Effect of Damping Coefficient 
Three different values of pelvic damping coefficient C4 (Boileau value (B.V.), B.V. +40%, and B.V. 
-40%) are used to investigate the effect of pelvic damping coefficient on the response behaviors 
of human body (STHT, DPMI and APMS) as shown in Fig. 4 (a, b, and c) respectively. From 
these figures, it is clear that by increasing pelvic damping coefficient, the biodynamic response 
characteristics of seated human body (STHT, DPMI, and APMS) are decreased. 
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                (a)                                                                 (b)                                                              (c) 

FIGURE 4:  Effect of damping coefficient on the biodynamic response behaviors (Analytic Results) 
 ((a) STHT, (b) DPMI and (c) APMS) 

 
 

5.  NUMERICAL MODEL STRUCTURE 

Neural networks are models of biological neural structures. Abdeen [13] described in a very 
detailed fashion the structure of any neural network. Briefly, the starting point for most networks is 
a model neuron as shown in Fig. (5). This neuron is connected to multiple inputs and produces a 
single output. Each input is modified by a weighting value (w). The neuron will combine these 
weighted inputs with reference to a threshold value and an activation function, will determine its 
output. This behavior follows closely the real neurons work of the human’s brain. In the network 
structure, the input layer is considered a distributor of the signals from the external world while 
hidden layers are considered to be feature detectors of such signals. On the other hand, the 
output layer is considered as a collector of the features detected and the producer of the 
response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5:  Typical picture of a model neuron that exists in every neural network 
 
 

5.1 Neural Network Operation 
It is quite important for the reader to understand how the neural network operates to simulate 
different physical problems. The output of  each neuron is a function of its inputs (Xi). In more 
details, the output (Yj) of the j

th
 neuron in any layer is described by two sets of equations as 

follows: 
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∑ 







=
ij

w
i

XjU                                                                                                                     (11) 

And 

( )jtjU
th

FjY +=                                                                                                                     (12)                                                                                      

For every neuron, j, in a layer, each of the i inputs, Xi, to that layer is multiplied by a previously 
established weight, wij. These are all summed together, resulting in the internal value of this 
operation, Uj. This value is then biased by a previously established threshold value, tj, and sent 
through an activation function, Fth. This activation function can take several forms such as Step, 
Linear, Sigmoid, Hyperbolic, and Gaussian functions. The Hyperbolic function, used in this study, 
is shaped exactly as the Sigmoid one with the same mathematical representation, as in equation 
3, but it ranges from – 1 to + 1 rather than from 0 to 1 as in the Sigmoid one (Fig. 6) 

( ) x
e

xf −
+

=
1

1
                                                                                                                         (13)                      

 
The resulting output, Yj, is an input to the next layer or it is a response of the neural network if it is 
the last layer. In applying the Neural Network technique, in this study, Neuralyst Software, Shin 
[20], was used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6: The Sigmoid Activation Function 

 
 
5.2 Neural Network Training 
The next step in neural network procedure is the training operation. The main purpose of this 
operation is to tune up the network to what it should produce as a response. From the difference 
between the desired response and the actual response, the error is determined and a portion of it 
is back propagated through the network. At each neuron in the network, the error is used to 
adjust the weights and the threshold value of this neuron. Consequently, the error in the network 
will be less for the same inputs at the next iteration. This corrective procedure is applied 
continuously and repetitively for each set of inputs and corresponding set of outputs. This 
procedure will decrease the individual or total error in the responses to reach a desired tolerance. 
 
Once the network reduces the total error to the satisfactory limit, the training process may stop. 
The error propagation in the network starts at the output layer with the following equations: 

( )ijijij XeLRww +=
'

                                                                                                                  (14)                                      

And, 

( )( )jYjdjYjYje −−= 1                                                                                                          (15)                                                           
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Where, wij is the corrected weight, w
’
ij is the previous weight value, LR is the learning rate, ej is 

the error term, Xi is the i
th
 input value, Yj is the output, and dj is the desired output.  

 

6.   NUMERICAL SIMULATION CASES 
To fully investigate numerically the biodynamic response behaviors of seated human body 
subject to whole body vibration, several simulation cases are considered in this study. These 
simulation cases can be divided into two groups to simulate the response behaviors due to 
changing of human body’s mass and stiffness respectively. From the analytic investigation, it is 
clear that the effect of damping coefficient is opposite to the effect of stiffness coefficient on the 
response behaviors of the human body. So in the numerical analysis, the effect of stiffness 
coefficient will be studied only in addition with the effect of human body’s mass. 
 
6.1  Neural Network Design 
To develop a neural network model to simulate the effect of mass and stiffness on the biodynamic 
response behaviors of seated human body, first input and output variables have to be 
determined. Input variables are chosen according to the nature of the problem and the type of 
data that would be collected. To clearly specify the key input variables for each neural network 
simulation group and their associated outputs, Tables 2 and 3 are designed to summarize all 
neural network key input and output variables for the first and second simulation groups 
respectively. 
It can be noticed from Tables 2 and 3 that every simulation group consists of three simulation 
cases (three neural network models) to study the effect of mass and stiffness on the seat-to-head 
transmissibility (STHT), driving point mechanical  impedance (DPMI) and apparent mass (APMS).  
 

Simulation 
Case 

Input Variables Output 

STHT 

m1 m2 m3 m4 Frequency 

STHT 

DPMI DPMI 
APMS APMS 

  
TABLE 2:  Key input and output variables for the first neural network simulation group (effect of human 

body’s mass) 

 
 
 
 

Simulation 
Case 

Input Variables Output 

STHT 
k4 Frequency 

STHT 
DPMI DPMI 

APMS APMS 
 

TABLE 3: Key input and output variables for the second neural network simulation group (effect of stiffness 
coefficient) 

 
Several neural network architectures are designed and tested for all simulation cases 
investigated in this study to finally determine the best network models to simulate, very 
accurately, the effect of mass and stiffness based on minimizing the Root Mean Square Error 
(RMS-Error). Fig. 7 shows a schematic diagram for a generic neural network. The training 
procedure for the developed ANN models, in the current study, uses the data from the results of 
the analytical model to let the ANN understands the behaviors. After sitting finally the ANN 
models, these models are used to predict the biodynamic response behaviors for different 
masses and stiffness rather than those used in the analytic solution.  
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Table 4 shows the final neural network models for the two simulation groups and their associate 
number of neurons. The input and output layers represent the key input and output variables 
described previously for each simulation group. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 7: General schematic diagram of a simple generic neural network 

 
 

Simulation Group 
No. of 
Layers 

No. of Neurons in each Layer 

Input 
Layer 

First 
Hidden 

Second 
Hidden 

Third 
Hidden 

Output 
Layer 

First 
Group  
(mass) 

STHT 5 5 6 4 2 1 

DPMI 
4 5 6 4 - 1 

APMS 

Second 
Group 

(Stiffness) 

STHT 

4 2 5 3 - 1 DPMI 

APMS 

 
TABLE 4: The developed neural network models for all the simulation cases 

 
The parameters of the various network models developed in the current study for the different 
simulation models are presented in table 5. These parameters can be described with their tasks 
as follows: 
 
Learning Rate (LR): determines the magnitude of the correction term applied to adjust each 
neuron’s weights during training process  = 1 in the current study.  
Momentum (M): determines the “life time” of a correction term as the training process takes 
place = 0.9 in the current study. 
Training Tolerance (TRT): defines the percentage error allowed in comparing the neural 
network output to the target value to be scored as “Right” during the training process = 0.001 in 
the current study. 
Testing Tolerance (TST): it is similar to Training Tolerance, but it is applied to the neural 
network outputs and the target values only for the test data = 0.003 in the current study. 
Input Noise (IN): provides a slight random variation to each input value for every training epoch 
= 0 in the current study. 

Hidden layer 

3 neurons 

Hidden layer 

3 neurons 

Output # 2 

Input # 1 Output # 1 

Input # 2 
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Function Gain (FG): allows a change in the scaling or width of the selected function = 1 in the 
current study. 
Scaling Margin (SM): adds additional headroom, as a percentage of range, to the rescaling 
computations used by Neuralyst Software, Shin (1994), in preparing data for the neural network 
or interpreting data from the neural network = 0.1 in the current study. 
Training Epochs: number of trails to achieve the present accuracy. 
Percentage Relative Error (PRR): percentage relative error between the numerical results and 
actual measured value and is computed according to equation (16) as follows: 
 
PRE = (Absolute Value (ANN_PR - AMV)/AMV)*100                                                                 (16)                                    
 
Where : 
ANN_PR : Predicted results using the developed ANN model 
AMV       : Actual Measured Value 
MPRE: Maximum percentage relative error during the model results for the training step. 
 
 

Simulation Group 
Training 
Epochs 

MPRE RMS-Error 

First 
Group  
(mass) 

STHT 45931 1.213 0.0015 

DPMI 7560 2.609 0.0022 

APMS 7174 3.743 0.0023 

Second 
Group 

(Stiffness) 

STHT 14012 3.449 0.0014 

DPMI 100185 3.938 0.002 

APMS 101463 1.644 0.0012 

 
TABLE 5: Parameters used in the developed neural network models 

 
 
 

7. NUEMERICAL RESULTS AND DISCUSSIONS 

Numerical results using ANN technique will be presented in this section for the two groups (six 
models) to show the simulation and prediction powers of ANN technique for the effect of human 
body’s mass and stiffness coefficient on the biodynamic response behaviors (STHT, DPMI and 
APMS) subject to whole-body vibration. 
 
7.1 Effect of human body’s mass 
Three ANN models are developed to simulate and predict the effect of human body’s mass on the 
biodynamic response behaviors (STHT, DPMI and APMS). Figures 8, 9, and 10 show the ANN 
results and analytical ones for different human body’s masses. From ANN training figures (Left), it 
is very clear that ANN understands and simulates very well the biodynamic response behaviors. 
After that the developed ANN models used very successfully and efficiently to predict the 
response behaviors for different masses rather than those used in the analytic solution as shown 
in the predicted figures of ANN results (Right). 
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FIGURE 8: ANN results for the effect of human body’s mass on STHT 

(Left : ANN Training, Right : ANN Prediction) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 9: ANN results for the effect of human body’s mass on DPMI 

(Left : ANN Training, Right : ANN Prediction) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 10: ANN results for the effect of human body’s mass on APMS 

(Left : ANN Training, Right : ANN Prediction) 
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7.2 Effect of stiffness coefficient 
Another three ANN models are developed in this sub-section to simulate and predict the effect of 
stiffness coefficient (k4) on the biodynamic response behaviors (STHT, DPMI and APMS). 
Figures 11, 12, and 13 show the ANN results and analytical ones for different values of k4. From 
ANN training figures (Left), it is very clear that ANN understands and simulates very well the 
biodynamic response behaviors. After that the developed ANN models used very successfully 
and efficiently to predict the response behaviors for different values of k4 rather than those used 
in the analytic solution as shown in the predicted figures of ANN results(Right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 11: ANN results for the effect stiffness coefficient on STHT 
(Left : ANN Training, Right : ANN Prediction) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE12: ANN results for the effect stiffness coefficient on DPMI 
(Left : ANN Training, Right : ANN Prediction) 
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FIGURE 13: ANN results for the effect stiffness coefficient on APMS 
(Left : ANN Training, Right : ANN Prediction) 

 
 

8.   CONCLUSIONS 
Based on the analytical investigation conducted in the course of the current research, it could be 
concluded that the change in human body's mass, pelvic stiffness, and pelvic damping coefficient 
give a remarkable change in biodynamic response behaviors of seated human body (direct 
proportional for human body’s mass and pelvic stiffness coefficient and inverse proportional for 
pelvic damping coefficient.)  
 
Based on the results of implementing the ANN technique in this study, the following can be 
concluded: 
1. The developed ANN models presented in this study are very successful in simulating the 

effect of human body’s mass and stiffness on the biodynamic response behaviors under 
whole-body vibration. 

2. The presented ANN models are very efficiently capable of predicting the response behaviors 
at different masses and stiffness rather than those used in the analytic solution.  
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