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Abstract 

 
Nonlinear permanent progressive wave is one of the most important applications in water waves. 
In this study, analytic formulation of the steep water gravity waves is presented. Abohadima and 
Isobe [1] showed that Cokelet solution [2] is the most accurate among many other solutions. Due 
to the nonlinearity of analytic equations, the need to numeric simulation is raised up. In the 
current paper, consequence numerical models, using one of the artificial intelligence techniques, 
are designed to simulate and then predict the non linear properties of permanent steep water 
waves. Artificial Neural Network (ANN), one of the artificial intelligence techniques, is introduced 
in the current paper to simulate and predict the wave celerity, momentum, energy and other wave 
integral properties for any permanent waves in water of arbitrary uniform depth. The ANN results 
presented in the current study showed that ANN technique, with less effort, is very efficiently 
capable of simulating and predicting the non linear properties of permanent steep water waves. 

 
Keywords: Steep water gravity waves; Nonlinear permanent progressive wave; Numerical simulation; 
Artificial Neural Network. 

 
 

1. INTRODUCTION 

The Nonlinear permanent progressive wave is one of the most important applications in water 
waves. Although, the problem boundary conditions are simple, however wave nonlinearity is main 
source of complexity especially near limiting waves. For calculating the integrated properties of 
nonlinear waves, various nonlinear wave theories are used. Dean [3, 4], Chaplin [5], and 
Rienecker and Fenton [6] used the stream function wave theory while Longuet-Higgins and 
Fenton  [7], Schwartz [8], Longuet-Higgins [9], and Cokelet [2] used higher order perturbation 
techniques with different expansion parameters. Yamada and Shiotani [10] used complete 
integral functions. Abohadima and Isobe [1] showed that Cokelet solution [2] is the most accurate 
among many other solutions, however the solution was very complicated.   
 
Due to complexity of Cokelet solution, The ANN was examined in this article to get solution at any 
wave conditions and to keep the same level of Cokelet accuracy. Artificial intelligence has proven 
its capability in simulating and predicting the behavior of the different physical phenomena in 
most of the engineering fields. ANN is one of the artificial intelligence techniques that have been 
incorporated in various scientific disciplines. Minns [11] investigated the general application of 
ANN in modeling rainfall runoff process. Kheireldin ([12] presented a study to model the hydraulic 
characteristics of severe contractions in open channels using ANN technique. The successful 
results of his study showed the applicability of using the ANN approach in determining 
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relationship between different parameters with multiple input/output problems. Abdeen [13] 
developed neural network model for predicting flow characteristics in irregular open channels. 
The developed model proved that ANN technique was capable with small computational effort 
and high accuracy of predicting flow depths and average flow velocities along the channel reach 
when the geometrical properties of the channel cross sections were measured or vice versa. 
Allam [14] used the artificial intelligence technique to predict the effect of tunnel construction on 
nearby buildings, which is the main factor in choosing the tunnel route. Abdeen ([15] presented a 
study for the development of ANN models to simulate flow behavior in open channel infested by 
submerged aquatic weeds. Mohamed [16] proposed an artificial neural network for the selection 
of optimal lateral load-resisting system for multi-story steel frames. Abdeen [17] utilized ANN 
technique for the development of various models to simulate the impacts of different submerged 
weeds' densities, different flow discharges, and different distributaries operation scheduling on 
the water surface profile in an experimental main open channel that supplies water to different 
distributaries. Abdeen et al. [18] introduced the ANN technique to investigate the effect of light 
local weight aggregate on the performance of the produced lightweight concrete. The results of 
their study showed that the ANN method with less effort was very efficiently capable of simulating 
the effect of different aggregate materials on the performance of lightweight concrete. Hodhod et 
al. [19] introduced the ANN technique to simulate the strength behavior using the available 
experimental data and predict the strength value at any age in the range of the experiments or in 
the future. The results of the numerical study showed that the ANN method was very efficiently 
capable of simulating the effect of specimen shape and type of sand on the strength behavior of 
tested mortar with different cement types. 
 

2. AIM OF THE WORK 

The analytic formulation for the steep water gravity waves is presented in details. The Cokelet 
analytic solution is described in the present work and is considered the most accurate among 
many other solutions. Consequence numerical models are developed in the current work, using 
ANN technique, to understand, simulate and predict, the wave celerity, momentum, energy and 
other wave integral properties for any permanent waves in water of arbitrary uniform depth. 
 

3. ANALYTICAL FORMULATION 
Consider two dimensional, periodic, surface waves of wavelength λ and wave number k=2π/λ 

propagating under the influence of gravity, g, in the fluid of constant density, ρ. Take units of 
mass, length and time such that k = ρ = g = 1 and hence λ =2π. Assume that the fluid is inviscid 
and incompressible and the flow is irrotational. The waves are assumed to flow from left to right 
over a horizontal bottom without change in form. By a choice of reference frame, the fluid velocity 
at any fixed depth always within the fluid averaged over one wave cycle may be taken as zero. 
The frame of reference is unique as is the propagation speed, c, of the waves with respect to that 
frame. 
 
Choose rectangular coordinates (x, y) such that the x-axis is horizontal and the y-axis is directed 

vertically upwards. Locate the free surface at y= η and the bottom at y=-d where d is referred to 
the undisturbed fluid depth and represents the depth of a uniform stream flowing with speed c 
whose mass flux, Q= c d equals that of the wave. The mean elevation of the free surface is 

η where an over bar denotes an average over one wave cycle. Therefore the mean depth is 

D=d+η and does not in general equal-to-equal d. Since the fluid is irrotational and 

incompressible, a velocity potential, φ, and stream function, ψ, can be defined such that the 
velocity, (u, v), may be written as follows: 
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FIGURE 1: Wave Profile in Z-Plane 
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And both φ and ψ satisfy Laplace's equation, ∇
2φ =∇

2ψ =0    
 
Now considering a second rectangular coordinate system (X, Y) moving in the positive x-direction 
with the waves at speed c, In this reference frame the motion is independent of time, t. The 

velocity potential, Φ, stream function, Ψ, and velocity ( U, V ), in this frame are related to similar 
quantities in the (x, y) frame by: 
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It is convenient to define the complex variables Z=X+iY and W=Φ+iΨ which are analytic functions 
of one another. The Z-plane is shown in Figure (1) 
 
The boundary conditions to be imposed on the flow are that the free surface and bottom are 
streamlines, that is 
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In addition, the pressure along the free surface is assumed to be equal to the constant 

atmospheric pressure (ρ=0) with the effects of surface tension neglected. So the Bernoulli 
equation at the free surface becomes: 

2 2 2U V Kη+ + =  on Ψ=0, (4)  

Where K is the Bernoulli constant in the moving coordinates system. 
 
Following Cokelet, by taking Z as a Fourier series in W of the form 
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Applying the bottom boundary condition (3) and the fact that wave profile must be symmetric, 
Equation (5) will simplified to 
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The real constant aj in equations (6) and (7) are determined by satisfying the Bernoulli equation 
(4) on the free surface. The complex velocity, q, is given by 
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Substitution of (6), (7) and (8) into (4) gives 
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Where two parameters depending only on d and defined by 
2 21 , 1jd jd

j j
e eσ δ− −= + = −  (10) 

 
 
Expanding equation (9) as a cosine series and equating the harmonic coefficients to zero, we get: 
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Where fj have been introduced for convenience and are defined in terms of the aj by 
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In all summations, each term is taken to be identical zero if the lower limit exceeds the upper. 
 
Equations (11) and (12) are a set of nonlinear algebraic equations that determine the Fourier 
coefficients aj completely. These can be solved in a consistent manner by perturbation expansion 

technique. Let ε denote a global perturbation parameter, which is zero for infinitesimal waves and 
is positive for higher waves. 
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Substituting of (13) into (11) and (12), then equating coefficients of equal powers of ε yields the 
following recurrence relations: 
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Cokelet selected the expansion parameter ε as follow: 
2 2

2

4
1

crest trough
q q

c
ε = −  (19) 

The fluid speeds at the wave crest and trough are obtained from (8) with Ψ=0 and Φ/c=0 and π 

respectively. Expanding the right hand side of (19) in powers of ε leads to: 
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Rearrange and expanding (20) and equating powers of ε gives 
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The calculation procedure is as follows: 
 
1- Specify the maximum order, N, of the perturbation expansion, 

2- Specify the undisturbed fluid depth, d, and calculate δj σj using (10) 

3- Calculate the coefficient at order ε
p
 in terms of the previously determined coefficients with p=0, 

1,…..., 2M, 2M+1, …., N 
(a) Within any even order, 2M, 

(i) Calculate αij and βij by solving equations (15) and (17) simultaneously proceeding in 
the sequence (i,j)=(2M,0), (2M-2,1), ….,(4,M-2) 

(ii) Calculate α1,M-1 , β1,M-1 , α2,M-1 , and β2,M-1 by simultaneously solving equations (17) 
with j=1, k=M-1, (15) with j=2, p=M-1, (17) with j=2, k=M-1, and equations (14) to (18) with j=M, 

(iii) Calculate β0M from equation (18) with k=M, 
(b) Within any odd order, 2M+1, 

(i) Calculate ∆M from (15) with j=1, p=M 

(ii) Calculate αij and βij by solving equations (15) and (17) simultaneously proceeding in 
the sequence (i,j)=(2M+1,0), (2M-1,1), ….,(3,M-1) 

4- Calculate γn from (14) with n=0, 1,….,
1

2
N  

Notice that the odd-order coefficients α1,M-1 and β1,M-1 can not be determined until the next higher 

order even order, and also that even-order ∆M can not be determined until the next higher odd 
order. 
 
After calculation of all coefficients, wave properties can be computed as follows: 
the wave hieght,  

2 1

2 1 2 1 2 1, 1 2 1

1 1 1

1 1 1

2 2 1 2 1

j
j

j j j j j

j j k

a H a
j j

δ α δ ε
∞ ∞

−
− − − − −

= = =

= = =
− −

∑ ∑∑  (22) 

η  the mean  elevation  of  free water surface,  
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Table 1 gives all relation required to compute integral properties analytically using the computed 
coefficients. 
 

 
Integral propety Calculation Relation 
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TABLE 1: Relations of integral properties 

 
Where po is the hydrostatic pressure defined as follws: 
 

( )o
p g yρ η= − −  (25) 

 

4.  NUMERICAL MODEL STRUCTURE 
Neural networks (NN) are models of biological neural structures. Abdeen [13] described in a very 
detailed fashion the structure of any neural network. Briefly, the starting point for most networks is 
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a model neuron as shown in Fig. 2. This neuron is connected to multiple inputs and produces a 
single output. Each input is modified by a weighting value (w). The neuron will combine these 
weighted inputs with reference to a threshold value and an activation function, will determine its 
output. This behavior follows closely the real neurons work of the human’s brain. In the network 
structure, the input layer is considered a distributor of the signals from the external world while 
hidden layers are considered to be feature detectors of such signals. On the other hand, the 
output layer is considered as a collector of the features detected and the producer of the 
response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2:  Typical picture of a model neuron that exists in every neural network 
 
 

4.1 Neural Network Operation 
It is quite important for the reader to understand how the neural network operates to simulate 
different physical problems. The output of  each neuron is a function of its inputs (Xi). In more 
details, the output (Yj) of the j

th
 neuron in any layer is described by two sets of equations as 

follows: 
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( )jtjU
th
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For every neuron, j, in a layer, each of the i inputs, Xi, to that layer is multiplied by a previously 
established weight, wij. These are all summed together, resulting in the internal value of this 
operation, Uj. This value is then biased by a previously established threshold value, tj, and sent 
through an activation function, Fth. This activation function can take several forms such as Step, 
Linear, Sigmoid, Hyperbolic, and Gaussian functions. The Hyperbolic function, used in this study, 
is shaped exactly as the Sigmoid one with the same mathematical representation, as in equation 
12, but it ranges from – 1 to + 1 rather than from 0 to 1 as in the Sigmoid one (Fig. 3) 

( ) xe
xf −+

=
1

1
 (28) 

The resulting output, Yj, is an input to the next layer or it is a response of the neural network if it is 
the last layer. In applying the Neural Network technique, in this study, Neuralyst Software, Shin 
[20], was used. 
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FIGURE 3: The Sigmoid Activation Function 

 
 
4.2 Neural Network Training 
The next step in neural network procedure is the training operation. The main purpose of this 
operation is to tune up the network to what it should produce as a response. From the difference 
between the desired response and the actual response, the error is determined and a portion of it 
is back propagated through the network. At each neuron in the network, the error is used to 
adjust the weights and the threshold value of this neuron. Consequently, the error in the network 
will be less for the same inputs at the next iteration. This corrective procedure is applied 
continuously and repetitively for each set of inputs and corresponding set of outputs. This 
procedure will decrease the individual or total error in the responses to reach a desired tolerance. 
Once the network reduces the total error to the satisfactory limit, the training process may stop. 
The error propagation in the network starts at the output layer with the following equations: 

( )'

ij ij j i
w w LR e X= +  (29) 

( )( )jYjdjYjYje −−= 1  (30) 

Where, wij is the corrected weight, w
’
ij is the previous weight value, LR is the learning rate, ej is 

the error term, Xi is the i
th
 input value, Yj is the output, and dj is the desired output.  

 

5.   CONSEQUENCE NUMERICAL MODELS 
To fully investigate numerically the wave integral properties for any permanent waves in water of 
arbitrary uniform depth, five consequence neural network models are designed in this study. 
Consequence models mean that each model uses the inputs and the outputs of the previous one 
to be as input variables for the next model to produce another group of outputs and so on until we 
reach the last one. 
 
5.1 Neural Network Design 
To develop neural network models to simulate the water wave integral properties, first input and 
output variables have to be determined. Input variables are chosen according to the nature of the 
problem and the type of data that would be collected. To clearly specify the key input variables for 
each neural network model and their associated outputs, Fig. 4 and Table 2 are designed to 
summarize all neural network key input and output variables for the five consequence neural 
network models respectively. 
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FIGURE 4: Consequence Neural Network Models 
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NN1 I I I O O O - - - - - - - - - 

NN2 I I I I I I O O O - - - - - - 

NN3 I I I I I I I I I O - - - - - 

NN4 I I I I I I I I I I O O O - - 

NN5 I I I I I I I I I I I I I O O 

Note: I  denotes for Input Variable and O  denotes for Output Variable 
 

TABLE 2: Key Input and Output Variables for Neural Network Models 

 
Several neural network architectures are designed and tested for all numerical models 
investigated in this study to finally determine the best network models to simulate, very 
accurately, the water wave integral properties based on minimizing the Root Mean Square Error 
(RMS-Error). Fig. 5 shows a schematic diagram for a generic neural network. The training 
procedure for the developed NN models, in the current study, uses the data from the results of 
the analytical model to let the ANN understands the behaviors. After sitting finally the NN models, 
these models are used to predict the wave properties for different relative fluid depth (d) rather 
than those used in the analytic solution.  
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FIGURE 5: General schematic diagram of a simple generic neural network 

 
Table 3 shows the final neural network models for the five consequence models and their 
associate number of neurons. The input and output layers represent the key input and output 
variables described previously for each model. 
 
 

Model No. of layers 
No. of Neurons in each layer 

Input Layer First Hidden 
Second 
Hidden 

Output 
Layer 

NN1 4 3 5 4 3 
NN2 4 6 5 4 3 
NN3 4 9 6 4 1 
NN4 4 10 8 6 3 
NN5 4 13 9 5 2 

 
TABLE 3: The developed Neural Network Models 

 
The parameters of the various network models developed in the current study are presented in 
Table (4), where these parameters can be described with their tasks as follows: 
 
Learning Rate (LR): determines the magnitude of the correction term applied to adjust each 
neuron’s weights during training process  = 1 in the current study. 
Momentum (M): determines the “life time” of a correction term as the training process takes 
place = 0.9 in the current study. 
Training Tolerance (TRT): defines the percentage error allowed in comparing the neural 
network output to the target value to be scored as “Right” during the training process = 0.01 in 
the current study. 
Testing Tolerance (TST): it is similar to Training Tolerance, but it is applied to the neural 
network outputs and the target values only for the test data = 0.03 in the current study. 
Input Noise (IN): provides a slight random variation to each input value for every training epoch 
= 0 in the current study. 
Function Gain (FG): allows a change in the scaling or width of the selected function = 1 in the 
current study. 
Scaling Margin (SM): adds additional headroom, as a percentage of range, to the rescaling 
computations used by Neuralyst Software, Shin (1994), in preparing data for the neural network 
or interpreting data from the neural network = 0.1 in the current study. 
Training Epochs: number of trails to achieve the present accuracy. 
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Percentage Relative Error (PRR): percentage relative error between the numerical results and 
actual measured value for and is computed according to equation (6) as follows: 
PRE = (Absolute Value (ANN_PR - AMV)/AMV)*100  
Where : 
ANN_PR   : Predicted results using the developed ANN model 
AMV   : Actual Measured Value 
MPRE  : Maximum percentage relative error during the model results for the          

training step (%) 
  
 

Simulation 
Parameter 

NN1 NN2 NN3 NN4 NN5 

Training 
Epochs 

225823 256762 30077 5325 11004 

MPRE 3.5 4.4 5.3 4.8 5.7 
RMS-Error 0.0038 0.0079 0.0036 0.0035 0.0028 

 
TABLE 4: Parameters used in the Developed Neural Network Models 

 
6. RESULTS AND DISCUSSIONS 
Numerical results using ANN technique will be presented in this section for the five consequence 
neural network models (NN1—NN5) to show the simulation and prediction powers of ANN 
technique of  wave celerity, momentum, energy and other wave integral properties for any 
permanent wave in water of arbitrary uniform depth. 
 
Figures (6—9) show a comparison between ANN results (dotted lines) and analytical results 

(symbols) for a, c
2
 , K, 

2
, buη , R, I, T, V, F, Sxx and S at different undisturbed fluid depths and 

wave nonlinearity parameters. Square symbols used in training phase, and triangle symbols used 
to show the power of prediction of neural network models developed in the present work. It is very 
clear, from these figures, that the developed neural network models are very efficiently capable of 
simulating and predicting the non linear properties of permanent steep water waves. 
 
7. CONCLUSIONS 
Based on the results of implementing the ANN technique in this study, the following can be 
concluded: 
1. The developed consequence neural network models, presented in this study, are very 

successful in simulating the non linear properties of permanent steep water waves. 
2. The presented neural network models are very efficiently capable of predicting the properties 

of water waves at different undisturbed fluid depths and wave nonlinearity parameters rather 
than those used in the training step for developing the models. 
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FIGURE 6: Comparison between ANN (dotted lines) and analytical results (symbols) for a, c
2
 and K at 

different undisturbed fluid depths and wave nonlinearity parameters. Square symbols used in training phase, 
and triangle symbols used only for comparison
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FIGURE 7: Comparison between ANN (dotted lines) and analytical results (symbols) for 
2

, buη  and R at 

different undisturbed fluid depths and wave nonlinearity parameters. Square symbols used in training phase, 
and triangle symbols used only for comparison
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FIGURE 8: Comparison between ANN (dotted lines) and analytical results (symbols) for I, T and V at 
different undisturbed fluid depths and wave nonlinearity parameters. Square symbols used in training phase, 

and triangle symbols used only for comparison
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FIGURE 9: Comparison between ANN (dotted lines) and analytical results (symbols) for F, Sxx and S at 
different undisturbed fluid depths and wave nonlinearity parameters. Square symbols used in training phase, 

and triangle symbols used only for comparison
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