
Uday H. Farhan, Simona O’Brien & Majid T. Rad

International Journal of Engineering (IJE), Volume (6) : Issue (6) : 2012 290

SolidWorks Secondary Development with Visual Basic 6 for
an Automated Modular Fixture Assembly Approach

Uday H. Farhan u.farhan@ecu.edu.au
Saff Mechanical Engineer
School of Engineering, Edith Cowan University
270 Joondalup drive, Joondalup,
Western Australia , 6027

Simona O’Brien simona.obrein@ecu.edu.au
MEng Sc MIEI, School of Engineering,
Edith Cowan University, 270 Joondalup drive,
Joondalup, Western Australia , 6027

Majid T. Rad m.rad@ecu.edu.au
Senior lecturer, School of Engineering
Edith Cowan University
270 Joondalup drive, Joondalup
Western Australia , 6027

Abstract

Modular fixtures (MFs) play an important role in terms of cost and production time reduction in
manufacturing processes. In this paper, the authors illustrate an automated approach for MFs
design and assembly. This approach is based on the secondary development of SolidWorks
integrating with Visual Basic (VB) 6 programing language. SolidWorks API (Application
programming interface) functions were applied in order to control SolidWorks commands and
assembly operations. An ActiveX DLL project was created in VB 6 and a plug-in file in .dll
format was generated. The outcomes were creating new menus in SolidWorks environment
for selecting, inserting, and assembling MFs elements. The approach was applied for a side
clamping procedure and for a semi-circular workpiece.

Keywords: Modular fixtures, SolidWorks API, Visual basic 6, Assembly simulation.

1. INTRODUCTION
As a result of the rapid development of the manufacturing systems, productivity has become
one of the goals that need to be achieved as well as production time consuming [1]. Given
this evidence, modular fixtures (MFs) have been considered as one of the important factors
for achieving these goals [1]. This became from the flexibility of MFs elements that provide
several workholding procedures for different workpieces [2] and this brought many benefits in
flexible manufacturing systems (FMSs) that use computer numerical control (CNC) machines.
The design and assembly process of MFs was the aim for many previous studies. Some of
them focused on the assembly relationships of the fixture elements [3]. Others concentrated
on information presentation of MFs [4]. For more improvement of MFs design, CAD
technology has been utilised for automating the design and assembly for fixture elements.
Information models were used as a tool for supporting fixture decision [5].

An approach for positioning the fixtures with rapid reconfiguration method was presented for
an “intelligent fixture system” [6]. ICAD system and UG-2 modelling were used for developing
MFs design system based on CAD software [7]. AutoCAD with 2D drawings was applied [8]
while AutoCAD 3D modelling was employed for this purpose [9]. For more effective
automated MFs systems, three factors should be considered by the designer, the database of
the fixture elements, the proper design approach, and a powerful 3D CAD software for
modelling MFs design and assembly process. The database of standard fixture elements was
created in the previous work as well as introducing the appropriate methodology in order to
develop a computer – assisted fixture design (CAFD) [1]. SolidWorks was used as CAD

Uday H. Farhan, Simona O’Brien & Majid T. Rad

software due to its excellent 3D capabilities for performing the modelling process for MFs.
Based on the previous work; the use of secondary development of SolidWorks with VB 6 for
automating fixture elements design and assembly is introduced in this paper.The developed
approach is shown in Figure 1. This approach includes generating ActiveX DLL project in VB
6 and integrating with SolidWorks API for creating new menus in SolidWorks environment. A
3D model of the specific workpiece was designed in SolidWorks. The database for the
standard fixture elements was established in the previous work [1]. The knowledge base for
the assembly relationships was created by using If-then rules. This knowledge base is based
on the mating features for assembly purpose in SolidWorks.

FIGURE 1: The flow chart of the developed approach.

2. WORKPIECE HOLDING PRINCIPLES
The produced workpiece should meet its specifications particularly for shape, dimensions and
tolerances and to achieve this, it is important to locate and clamp the workpiece correctly on
the machine [10]. Some other factors also influence the workpiece holding configuration
including machining operation sequence, cost considerations, direction and strength of the
cutting forces, and capabilities and orientation of the machine tools [10]. Moreover, fixture
elements may be designed for a specific workpiece; and these are called dedicated fixtures.
Conversely, fixtures can be selected and combined with a database of standard fixture
elements; and these are called modular fixtures [10]. There is a specific function for each
fixture element, and a completed fixture structure can be built from a number of elements,
including the consideration of the types, classes and the functions that will lead to the
appropriate machining operations.

2.1 Modular fixturing
Modular fixturing can be defined as a system for building several combinations of standard
components that can serve a wide variety of workpiece. These fixture elements can be
assembled and reused in order to generate different constructions of jigs and fixtures [2]. The
building process of modular fixturing system depends on selecting the necessary fixture
components to be assembled and this assembly process will be the base for building “more
detailed systems”. As a result, fixture elements can be built for any kind of workpiece by using
modular fixturing systems [2]. The benefits of modular fixturing result on reducing the design
and assembly time by eliminating the use of the “dedicated fixtures” and their special

Uday H. Farhan, Simona O’Brien &

components [10]. Moreover, the database of the modular fixtures contains the necessary
design’s information with mating features for the standard elements an
modified [10]. Modular fixturing systems were classified into three major kinds based on the
construction basics: Subplate, T

2.2 Modular fixturing building
Modular fixturing systems consist of a set of standard elements such as baseplates, locators,
supporters, clamps, and all the other accessories (Figure
together, suitable workholding systems for variety of workpiece can be achieved
assembling process starts with selecting the baseplate depending on the size of the
workpiece. Then the locating elements are chosen and assembled to the baseplate. After
that, the clamping elements are selected to suit the chosen workpiece. Finally,
elements and accessories are added for completing the modular system
workholding modular system, the machined operations are started in order to produce the
specific part or the workpiece. When the part production process is finished, the modular
system is disassembled and the elements are sent to the store to be used for building other
modular workholding systems [2

Figure 3 shows an example of modular fixturing systems. The advantages of reuse the
modular fixture elements lead to reducing time and costs. One hour of modular fixturing
building process equals to about six hours of

2.3 Visual Basic fundamentals
Visual Basic (VB) is a programming language developed by Microsoft. This language has
been used widely among a high percentage of the developers as
compared to other programming languages
language with “Integrated Development Environment (IDE)
graphical user interface [12].

FIGURE

Brien & Majid T. Rad

. Moreover, the database of the modular fixtures contains the necessary
s information with mating features for the standard elements and it is easy to be

ring systems were classified into three major kinds based on the
construction basics: Subplate, T-slot, and dowel pin [2].

Modular fixturing building
Modular fixturing systems consist of a set of standard elements such as baseplates, locators,
supporters, clamps, and all the other accessories (Figure 2). By assembling these elements
together, suitable workholding systems for variety of workpiece can be achieved
assembling process starts with selecting the baseplate depending on the size of the
workpiece. Then the locating elements are chosen and assembled to the baseplate. After
that, the clamping elements are selected to suit the chosen workpiece. Finally,
elements and accessories are added for completing the modular system [2]. After building the

odular system, the machined operations are started in order to produce the
specific part or the workpiece. When the part production process is finished, the modular
system is disassembled and the elements are sent to the store to be used for building other

2].

Figure 3 shows an example of modular fixturing systems. The advantages of reuse the
modular fixture elements lead to reducing time and costs. One hour of modular fixturing
building process equals to about six hours of “conventional jig or fixture” building [2

Visual Basic fundamentals
Visual Basic (VB) is a programming language developed by Microsoft. This language has
been used widely among a high percentage of the developers as “primary development tool
compared to other programming languages [11]. VB is the advanced version of the BASIC

Integrated Development Environment (IDE)” which API accessing and

FIGURE 2: Modular fixture standard elements [2].

. Moreover, the database of the modular fixtures contains the necessary
d it is easy to be

ring systems were classified into three major kinds based on the

Modular fixturing systems consist of a set of standard elements such as baseplates, locators,
). By assembling these elements

together, suitable workholding systems for variety of workpiece can be achieved [2]. The
assembling process starts with selecting the baseplate depending on the size of the
workpiece. Then the locating elements are chosen and assembled to the baseplate. After
that, the clamping elements are selected to suit the chosen workpiece. Finally, the other

. After building the
odular system, the machined operations are started in order to produce the

specific part or the workpiece. When the part production process is finished, the modular
system is disassembled and the elements are sent to the store to be used for building other

Figure 3 shows an example of modular fixturing systems. The advantages of reuse the
modular fixture elements lead to reducing time and costs. One hour of modular fixturing

2].

Visual Basic (VB) is a programming language developed by Microsoft. This language has
primary development tool”

. VB is the advanced version of the BASIC
which API accessing and

Uday H. Farhan, Simona O’Brien &

FIGURE

Moreover, VB is considered as then engine for building the macros in all Microsoft software
[11]. Therefore, VB has become an important tool for building different programs for many
applications. There are different types of projects can be generated in VB. For simple
programming purposes, Standard EXE is used more common by the programmers. For more
advanced programming functions, ActiveX projects are used. In this research, ActiveX DLL
(AvtiveX dynamic link libraries) has been created. This project allows the programmer to
integrate VB with different windows applications. Also, this project controls the features and
the operations of other applications by creating new menus and toolbars into the applicat
environment. For database management purposes, VB is the engine of Microsoft Access for
building the database and this gives the programmer the opportunity for controlling the
database efficiently [11].

2.4 SolidWorks API
Application programming interface (API) is a tool to write a code in a programming language
within another application. As a result, a direct integration between different applications can
be developed [14]. SolidWorks is one of the applications which support API with different
programming languages such as C++, Visual Basic, and Visual Studio. SolidWorks API
automates the design and the assembly operations by creating codes in a specific
programming language [14] and it has been applied for different design methods. API is used
to develop a web service material datab
the materials by the designer [15
using Visual Basic code with SolidWorks API functions
Visual Basic forms for improving the design efficiency. Peng, Jing, and Xiaoyan applied Visual
Basic Net in the SolidWorks second development for simulating
process” [17]. They generated add
process. SolidWorks API was employed in designing a model of
[18]. This method is based on the geometric features to
SolidWorks and VB 6. Moreover, API with the user interface implementing knowledge based
design features (KBE) application can help
[19]. Reuse software was developed by applying SolidWor
system was built by using VB for secondary development of the CAD system for a standard
part. Zhen and Yingyi introduced an assembly method based on SolidWorks
illustrated the steps of the assembly automation procedure by using Visual C++. They als
explained how the information of the parts was stored in the database. The secondary
development of SolidWorks was used by Yang for developing an intelligent system for
assembly based on the parametric design
API, and Access database were the techni

Brien & Majid T. Rad

FIGURE 3: Modular workholding system [13].

Moreover, VB is considered as then engine for building the macros in all Microsoft software
. Therefore, VB has become an important tool for building different programs for many

re different types of projects can be generated in VB. For simple
programming purposes, Standard EXE is used more common by the programmers. For more
advanced programming functions, ActiveX projects are used. In this research, ActiveX DLL

link libraries) has been created. This project allows the programmer to
integrate VB with different windows applications. Also, this project controls the features and
the operations of other applications by creating new menus and toolbars into the applicat
environment. For database management purposes, VB is the engine of Microsoft Access for
building the database and this gives the programmer the opportunity for controlling the

Application programming interface (API) is a tool to write a code in a programming language
within another application. As a result, a direct integration between different applications can

. SolidWorks is one of the applications which support API with different
ing languages such as C++, Visual Basic, and Visual Studio. SolidWorks API

automates the design and the assembly operations by creating codes in a specific
and it has been applied for different design methods. API is used

to develop a web service material database with SolidWorks for simplifying the selecting of
15]. Bo, Qin, and Fang developed a standard parts library

using Visual Basic code with SolidWorks API functions [16]. This system is based on creating
Visual Basic forms for improving the design efficiency. Peng, Jing, and Xiaoyan applied Visual

second development for simulating “3D module of architectural
. They generated add-in VB project into Solidworks for automating the assembly

process. SolidWorks API was employed in designing a model of “centrifugal fan impeller
. This method is based on the geometric features to create the second development with

SolidWorks and VB 6. Moreover, API with the user interface implementing knowledge based
s (KBE) application can help in customising the CAD system for certain tasks

. Reuse software was developed by applying SolidWorks API by Tian and Liu
system was built by using VB for secondary development of the CAD system for a standard
part. Zhen and Yingyi introduced an assembly method based on SolidWorks
illustrated the steps of the assembly automation procedure by using Visual C++. They als
explained how the information of the parts was stored in the database. The secondary
development of SolidWorks was used by Yang for developing an intelligent system for
assembly based on the parametric design [22]. Delphi programming language, SolidWorks

database were the techniques for creating this system.

Moreover, VB is considered as then engine for building the macros in all Microsoft software
. Therefore, VB has become an important tool for building different programs for many

re different types of projects can be generated in VB. For simple
programming purposes, Standard EXE is used more common by the programmers. For more
advanced programming functions, ActiveX projects are used. In this research, ActiveX DLL

link libraries) has been created. This project allows the programmer to
integrate VB with different windows applications. Also, this project controls the features and
the operations of other applications by creating new menus and toolbars into the applications’
environment. For database management purposes, VB is the engine of Microsoft Access for
building the database and this gives the programmer the opportunity for controlling the

Application programming interface (API) is a tool to write a code in a programming language
within another application. As a result, a direct integration between different applications can

. SolidWorks is one of the applications which support API with different
ing languages such as C++, Visual Basic, and Visual Studio. SolidWorks API

automates the design and the assembly operations by creating codes in a specific
and it has been applied for different design methods. API is used

ase with SolidWorks for simplifying the selecting of
a standard parts library by

. This system is based on creating
Visual Basic forms for improving the design efficiency. Peng, Jing, and Xiaoyan applied Visual

3D module of architectural
in VB project into Solidworks for automating the assembly

centrifugal fan impeller”
create the second development with

SolidWorks and VB 6. Moreover, API with the user interface implementing knowledge based
customising the CAD system for certain tasks

ks API by Tian and Liu [20]. The
system was built by using VB for secondary development of the CAD system for a standard
part. Zhen and Yingyi introduced an assembly method based on SolidWorks [21]. They
illustrated the steps of the assembly automation procedure by using Visual C++. They also
explained how the information of the parts was stored in the database. The secondary
development of SolidWorks was used by Yang for developing an intelligent system for

. Delphi programming language, SolidWorks

Uday H. Farhan, Simona O’Brien & Majid T. Rad

International Journal of Engineering (IJE), Volume (6) : Issue (6) : 2012 294

3. CREATING THE ASSEMBLY KNOWLEDGE BASE
Based on the assembly methodology in the previous work [11], the assembly knowledge base
was developed in IF-then rule structure to meet the requirements of the side clamping layout
for the selected fixture elements in this study. Examples for these rules are:

Rule 1

If the locating method is V-blocks, then define the surfaces that are used to assemble them to
the baseplate.

Rule 2

If the locating surface of the V-block is defined, then identify the location of the V-block on the
baseplate. This depends on the sizes of the V-block and baseplate. The location can be
defined by calculating the distance of the holes on the baseplate for the correct location.

According to the findings from the above rules, the mating features for assembling the V-block
and the baseplate in the SolidWorks environment were defined:

Rule 3

If the surface is defined and the location is calculated, then use coincident mate to locate the
V-block to the baseplate.

Rule 4

If the surface is defined and the location is calculated, then use concentric mate to assemble
the V-block with the baseplate.

4. CREATING SOLIDWORKS ADD-IN AND USER INTERFACES
In this paper, add-in code was created in order to build menus in the SolidWorks environment
for automating the inserting and assembly processes. The menus were built by using VB 6
integrating with SolidWorks API (Application Programming Interface). An ActiveX DLL project
was developed in VB including SolidWorks libraries as references. In this case, two libraries
were referenced; these are SldWorks Type Library and SolidWorks Exposed Type library.
Adding these libraries to the ActiveX DLL project allows control SolidWorks commands and
functions. The developed add-in code in this study is:

Dim bRet As Boolean 'boolean return
Dim lRet As Long 'long return
Dim axMenuID As String
Dim lngToolbarDocTypes As Long
Set axSldWorks = ThisSW
axCookie = Cookie
bRet = axSldWorks.SetAddinCallbackInfo(App.hInstance, Me, axCookie)
axMenuID = "Modular Fixture System"
 lRet = axSldWorks.AddMenu(swDocASSEMBLY, axMenuID, 5)
axMenu1 = "Assembly@Side Clamping@" & axMenuID
 axMenu2 = "Back stop@Side Clamping@" & axMenuID
 axMenu3 = "Pivoting Clamp@Side Clamping@" & axMenuID
 axMenu4 = "Riser block@Side Clamping@" & axMenuID
 axMenu5 = "Workpiece@Side Clamping@" & axMenuID
 axMenu6 = "V-block@Side Clamping@" & axMenuID
 axMenu7 = "Baseplate@Side Clamping@" & axMenuID
 axMenu8 = "Top Clamping@" & axMenuID

After writing the add-in code and adding the proper VB modules and forms to the ActiveX DLL
project, the .dll file is created and copied to the SolidWorks directory. Then, this .dll file is
opened in the SolidWorks environment to apply the function to the developed menus.

Uday H. Farhan, Simona O’Brien & Majid T. Rad

International Journal of Engineering (IJE), Volume (6) : Issue (6) : 2012 295

4.1 Assembly simulation by macros
For automating the fixture elements assembly process in SolidWorks, macros were created
for simulation purposes. However, these macros can be applied only for the master
SolidWorks document that they have been created in. The solution for this problem was to
make global macros by modifying the recorded macros. This was completed by changing VB
methods and classes of the recorded macros and adding the swConst modules and
swAssembly or swPart class modules. This makes the macros available for any SolidWorks
documents. However, these global macros are still not in the format for the developed ActiveX
DLLl project. The most important function for the add-in project is how to make the created
menus calling the global macros which perform SolidWorks design and assembly. This was
achieved by importing the global macros into the ActiveX DLL project as modules with .bas
format and then writing a subroutine code for each macro and finally calling this subroutine by
the specific menu’s icon.

4.2 Implementation of the assembly simulation
The assembly simulation started by developing the macros for each fixture element and for
the assembly steps. The macros for adding the fixture elements were created first. For more
flexibility, a main menu called Modular Fixture System was built. Then, two sub menus were
developed called Side Clamping and Top Clamping. The user can select which type of
clamping system should be applied. Both sub menus is extended to other menus for the
whole related fixture elements for this specific kind of fixturing (Figure 4). For the Side
Clamping, the following elements were used:

• Baseplate;

• V-Block;

• Pivoting Clamp;

• Backstop;

• Riser block;

• Other accessories.

For each of these elements, a menu should be created. Then, by selecting the specific menu,
a window is opened for more detail. For example, when clicking on the baseplate menu, a
window of this element is opened to help the user select the proper baseplate (Figure 5). The
window contains command buttons for the possible and available baseplates that could be
used within the system. Each command button was highlighted by an icon of the specified
baseplate and ID number was used for choosing the correct baseplate. The interface provides
the flexibility for defining the location of the baseplate in X, Y, and Z directions in the
SolidWorks environment. Then, the user marks the check box for the selected baseplate and
then clicks on the command button.

FIGURE 4: The developed main and extended menus.

Uday H. Farhan, Simona O’Brien &

FIGURE 5: Four kinds are included in t

In order to activate the command
created to perform the inserting

Dim swApp As Object
Dim Part As Object
Dim boolstatus As Boolean
Dim longstatus As Long, longwarnings As Long
Sub main()
Set swApp =Application.SldWorks
Set Part = swApp.ActiveDoc
boolstatus = Part.AddComponent("C:
End Sub

This macro adds the baseplate MF40
named swApp. The macro should be now tra
swConst module and swAssembly or swPart class module.
definitions for the SolidWorks API functions including the properties and methods.
swAssembly and swPart class modules define
specific macro will be applied to

The next step is adding the macro to the ActiveX DLL project and converting it to the .bas
format which makes the macro available for any SolidW
The swConst module and swAssembly class module are
availability for any assembly SolidWorks document. The previous process was followed for
adding the rest of the macros for

After completing selection and adding the elements to
elements need to be assembled. A menu called Assembly was created and added to the list
of the extended menus as shown in
opened (Figure 6). This interface contains command buttons for executing the assembly
simulation for the fixture elements.

Brien & Majid T. Rad

Four kinds are included in the baseplate selection interface.

n order to activate the command buttons in the baseplate selection interface, a macro
inserting process of this element:

Dim longstatus As Long, longwarnings As Long

boolstatus = Part.AddComponent("C:\Users\Desktop\baseplate -MF40-0804)

macro adds the baseplate MF40-0804 to the active SolidWorks application document
macro should be now transferred to the global form by

swConst module and swAssembly or swPart class module. The swConst module contains the
definitions for the SolidWorks API functions including the properties and methods.
swAssembly and swPart class modules define which type of SolidWorks documents that the

to.

The next step is adding the macro to the ActiveX DLL project and converting it to the .bas
format which makes the macro available for any SolidWorks assembly or part documents
The swConst module and swAssembly class module are also added to this project
availability for any assembly SolidWorks document. The previous process was followed for

for the elements to the project.

and adding the elements to the SolidWorks environment, these
elements need to be assembled. A menu called Assembly was created and added to the list
of the extended menus as shown in Figure 3. By clicking this menu, an assembly interf

). This interface contains command buttons for executing the assembly
simulation for the fixture elements.

buttons in the baseplate selection interface, a macro was

0804 to the active SolidWorks application document
nsferred to the global form by attaching

contains the
definitions for the SolidWorks API functions including the properties and methods. The

of SolidWorks documents that the

The next step is adding the macro to the ActiveX DLL project and converting it to the .bas
orks assembly or part documents.

added to this project to improve
availability for any assembly SolidWorks document. The previous process was followed for

SolidWorks environment, these
elements need to be assembled. A menu called Assembly was created and added to the list

. By clicking this menu, an assembly interface is
). This interface contains command buttons for executing the assembly

Uday H. Farhan, Simona O’Brien &

FIGURE 6: The user interface of fixture elements Assembly process.

The simulation of the assembly process
example. These two elements were added to SolidWorks and then a macro for assembling
them was recorded. A tangent mate feature was used between the sime
workpiece and the two V shape faces of the V
assembly is:

Dim swApp As Object
Dim Part As Object
Dim boolstatus As Boolean
Dim longstatus As Long, longwarnings As Long
Sub main()
Set swApp = _
Application.SldWorks
Set Part = swApp.ActiveDoc
boolstatus = Part.Extension.SelectByID2("", "FACE", 0.1467759532569, 0.2282465512145,
0.2052684525268, True, 1, Nothing, 0)
boolstatus = Part.Extension.SelectByID2("", "FACE", 0.04935040746813, 0.056649592531
0.08677583155765, True, 1, Nothing, 0
Dim swApp As Object
Dim Part As Object
Dim boolstatus As Boolean
Dim longstatus As Long, longwarnings As Long
Sub main()
Set swApp = _
Application.SldWorks
Set Part = swApp.ActiveDoc
boolstatus = Part.Extension.Sel
0.2052684525268, True, 1, Nothing, 0)
boolstatus = Part.Extension.SelectByID2("", "FACE", 0.04935040746813, 0.05664959253187,
0.08677583155765, True, 1, Nothing, 0)
Dim myMate As Object
0.08290013687201, 0.1404353580714, True, 1, Nothing, 0)
Set myMate = Part.AddMate3(4, 1, False, 0.08962381358722, 0, 0, 0.001, 0.001, 0.5235987755983,
0.5235987755983, 0.5235987755983, False, longstatus)
Part.ClearSelection2 True
Part.EditRebuild3
boolstatus = Part.Extension.SelectByID2("", "FACE", 0.08743441472234, 0.1639087578332,
0.1920150657936, True, 1, Nothing, 0)
boolstatus = Part.Extension.SelectByID2("", "FACE", 0.146900136872,
Set myMate = Part.AddMate3(4, 1, False, 0.09399852070358, 0, 0, 0.001, 0.001
0.5235987755983, 0.5235987755983, False, longstatus)
Part.ClearSelection2 True
Part.EditRebuild3
End Sub

Brien & Majid T. Rad

user interface of fixture elements Assembly process.

he simulation of the assembly process begins by taking the V-block and the workpiece as an
example. These two elements were added to SolidWorks and then a macro for assembling
them was recorded. A tangent mate feature was used between the sime-cylindrical
workpiece and the two V shape faces of the V-block as shown in Figure 7. The code of

Dim longstatus As Long, longwarnings As Long

boolstatus = Part.Extension.SelectByID2("", "FACE", 0.1467759532569, 0.2282465512145,
0.2052684525268, True, 1, Nothing, 0)
boolstatus = Part.Extension.SelectByID2("", "FACE", 0.04935040746813, 0.05664959253187,
0.08677583155765, True, 1, Nothing, 0

Dim longstatus As Long, longwarnings As Long

boolstatus = Part.Extension.SelectByID2("", "FACE", 0.1467759532569, 0.2282465512145,
0.2052684525268, True, 1, Nothing, 0)
boolstatus = Part.Extension.SelectByID2("", "FACE", 0.04935040746813, 0.05664959253187,
0.08677583155765, True, 1, Nothing, 0)

1, 0.1404353580714, True, 1, Nothing, 0)
Set myMate = Part.AddMate3(4, 1, False, 0.08962381358722, 0, 0, 0.001, 0.001, 0.5235987755983,
0.5235987755983, 0.5235987755983, False, longstatus)

Part.Extension.SelectByID2("", "FACE", 0.08743441472234, 0.1639087578332,
0.1920150657936, True, 1, Nothing, 0)
boolstatus = Part.Extension.SelectByID2("", "FACE", 0.146900136872,
Set myMate = Part.AddMate3(4, 1, False, 0.09399852070358, 0, 0, 0.001, 0.001, 0.5235987755983,
0.5235987755983, 0.5235987755983, False, longstatus)

block and the workpiece as an
example. These two elements were added to SolidWorks and then a macro for assembling

cylindrical face of the
. The code of

boolstatus = Part.Extension.SelectByID2("", "FACE", 0.1467759532569, 0.2282465512145,

87,

ectByID2("", "FACE", 0.1467759532569, 0.2282465512145,

boolstatus = Part.Extension.SelectByID2("", "FACE", 0.04935040746813, 0.05664959253187,

Set myMate = Part.AddMate3(4, 1, False, 0.08962381358722, 0, 0, 0.001, 0.001, 0.5235987755983,

Part.Extension.SelectByID2("", "FACE", 0.08743441472234, 0.1639087578332,

, 0.5235987755983,

Uday H. Farhan, Simona O’Brien &

The same procedure was followed for transferring this code to the global form and then to the
.bas form. The assembly simulation wa
the command buttons in the user interfaces, two approaches were followed. The first
approach is calling the macro for each e

Public Sub cmdBaseplate_Click ()
Baseplate.main
End Sub

FIGURE 7: The example of the chosen V

This subroutine calls the macro Baseplate by clicking the command button
element to the SolidWorks environment. The second approach is writing a code in order to
compile the command button:

Public Sub cmdBaseplate_Click ()
Dim swApp As Object
Dim Part As Object
Dim boolstatus As Boolean
Dim longstatus As Long, longwarnings As Long
Sub main()
Set swApp = Application.SldWorks
Set Part = swApp.ActiveDoc
boolstatus=Part.AddComponent("C:
0.2903048910654, -0.02491659965801)
End Sub

Both approaches are correct and
attach the macros in .bas format to the master directory of the ActiveX DLL project. The
developed menus in the SolidWorks environment are shown in

Brien & Majid T. Rad

The same procedure was followed for transferring this code to the global form and then to the
.bas form. The assembly simulation was divided into several steps in this study. For compiling
the command buttons in the user interfaces, two approaches were followed. The first
approach is calling the macro for each element by using the subroutine:

The example of the chosen V-block and the workpiece.

This subroutine calls the macro Baseplate by clicking the command button to add
SolidWorks environment. The second approach is writing a code in order to

Dim longstatus As Long, longwarnings As Long

Part.AddComponent("C:\Users\Desktop\Baseplate.SLDPRT",0.1690002083701,
0.02491659965801)

Both approaches are correct and compatible. To compile these approaches, it is important to
attach the macros in .bas format to the master directory of the ActiveX DLL project. The

SolidWorks environment are shown in Figure 8.

The same procedure was followed for transferring this code to the global form and then to the
For compiling

the command buttons in the user interfaces, two approaches were followed. The first

to add this
SolidWorks environment. The second approach is writing a code in order to

0.1690002083701,

pproaches, it is important to
attach the macros in .bas format to the master directory of the ActiveX DLL project. The

Uday H. Farhan, Simona O’Brien &

FIGURE 8: The main menu and the

5. RESULTS AND DISCUSSION
Simulation by macros was employed for developing the user interface for the related fixture
elements. Figure 9 shows the selection of the side clamps and the back stops. The interface
of V-blocks selection showed in
Other user interfaces were developed to
interfaces were developed in a different approach
considered for some elements
assembly process for the fixture elements

FIGURE 9: The selection window for the side clamps and the back stops.

Brien & Majid T. Rad

The main menu and the extended menus developed for the system.

S AND DISCUSSION
Simulation by macros was employed for developing the user interface for the related fixture

shows the selection of the side clamps and the back stops. The interface
blocks selection showed in Figure 10 while Figure 11 illustrates the riser blocks interface.

ther user interfaces were developed to enhance the system’s flexibility. These
a different approach because there are more details should be

elements such as the necessary accessories for completing the
assembly process for the fixture elements (Figure 12).

The selection window for the side clamps and the back stops.

Simulation by macros was employed for developing the user interface for the related fixture
shows the selection of the side clamps and the back stops. The interface

illustrates the riser blocks interface.
These user

because there are more details should be
necessary accessories for completing the

Uday H. Farhan, Simona O’Brien &

FIGURE 10: The selection window for the V

FIGURE 11: The selection window for the riser blocks

FIGURE 12: The selection window for the accessories to complete the

Brien & Majid T. Rad

The selection window for the V-blocks in the system.

The selection window for the riser blocks in the system.

The selection window for the accessories to complete the fixturing system.

system.

Uday H. Farhan, Simona O’Brien &

The assembly process begins after adding the components in the SolidWorks
shown in Figure 13. Then, macros were developed for assembling two parts appropriately as
explained previously for the workpiece and the V
were used in order to assemble:

• The workpiece with the V

• The V-block with the baseplate;

• The riser block with the baseplate (two macros);

• The pivoting clamp with the riser block;

• The pivoting clamp with the workpiece;

• The back stop with the riser block;

• The backstop with the workpiece.

FIGURE 13: Modular fixture elements added in SolidWorks environment from the menus.

Therefore, eight steps were used for completing the assembly simulation. The process was
divided into this way because errors could occur if the whole pr
related to the problems in SolidWorks when applying the functions of rotating and reviewing
on the components. The positions and the directions of the elements were predefined in the
VB codes.By completing the eight assembly ste

FIGURE 14: The complete layout of modular fixture elements generated after assembly.

Brien & Majid T. Rad

The assembly process begins after adding the components in the SolidWorks environment as
shown in Figure 13. Then, macros were developed for assembling two parts appropriately as
explained previously for the workpiece and the V-block. The created macros for the system
were used in order to assemble:

The workpiece with the V-block;

block with the baseplate;

The riser block with the baseplate (two macros);

The pivoting clamp with the riser block;

The pivoting clamp with the workpiece;

The back stop with the riser block;

The backstop with the workpiece.

Modular fixture elements added in SolidWorks environment from the menus.

Therefore, eight steps were used for completing the assembly simulation. The process was
divided into this way because errors could occur if the whole process was one step. This is
related to the problems in SolidWorks when applying the functions of rotating and reviewing
on the components. The positions and the directions of the elements were predefined in the
VB codes.By completing the eight assembly steps, the final MFs layout is shown in Figure 14.

The complete layout of modular fixture elements generated after assembly.

environment as
shown in Figure 13. Then, macros were developed for assembling two parts appropriately as

block. The created macros for the system

Modular fixture elements added in SolidWorks environment from the menus.

Therefore, eight steps were used for completing the assembly simulation. The process was
ocess was one step. This is

related to the problems in SolidWorks when applying the functions of rotating and reviewing
on the components. The positions and the directions of the elements were predefined in the

ps, the final MFs layout is shown in Figure 14.

The complete layout of modular fixture elements generated after assembly.

Uday H. Farhan, Simona O’Brien & Majid T. Rad

International Journal of Engineering (IJE), Volume (6) : Issue (6) : 2012 302

Interference detection was running after finishing the assembly to ensure that there is no
collision between the fixture components. This process was completed by SolidWorks and if
interference is found, the options of mating features such as choosing the correct edges or
faces should be modified to achieve the efficient assembly functions.

A layout of MFs was generated for side clamping in this paper. The layout is for a semicircular
workpiece and it simulates the assembly process for the fixture elements that should be
completed for this kind of workpieces for machining by CNC. This simulation provides the
opportunity to overcome the errors that could happen during this process and, therefore, the
appropriate MFs layout can be achieved.

Use of SolidWorks in this work provided MFs assembly with a strong support compared to
previous studies. This is because the modelling environment and the 3D assembly mating
features which make SolidWorks as a powerful CAD software for providing user graphic
interface to assemble MFs.

As programming languages such as C++ and AutoLISP were integrated with CAD software to
automate MFs assembly, VB 6 was employed in this paper due to its capabilities for building
the macros in all Microsoft software and, therefore, accesses the functions of SolidWorks API
for developing the graphical user interfaces and new menus. Moreover, VB 6 is considered as
a flexible programming language that can be integrated with different applications. Therefore,
the secondary development approach presented in this paper enhances and simplifies the
automation process of MFs.

6. CONCLUSION
SolidWorks API was employed for automating the assembly process for MFs elements. The
simulation of this process was completed by using macros functions in SolidWorks. For this
purpose, an ActiveX DLL project was created in VB 6 and a plug-in file in .dll format was
generated for developing new menus into SolidWorks environment. From these menus, user
interfaces were expanded to be opened by clicking each of these menus allowing the user for
selecting and inserting the right elements. The approach of applying SolidWorks API was
explained in details for a semi-circular workpiece and can be applied for similar cases. The
system was tested by using Interference detection tool included in SolidWorks to be sure that
no collision between MFs elements. The developed approach results in saving time and cost
for designing and assembling MFs elements.

The future work of this research can be directed towards extending the knowledge base for
the assembly process including other fixturing methods and fixture elements to meet the
requirements for building several MFs configurations. In addition, a comprehensive
automated process can be achieved by extending the VB codes and macros. This leads to
defining and modifying the positions and the directions of the fixture elements. Therefore, the
errors can be overcome in order to make the process more efficient and in one step rather
than many steps.

Uday H. Farhan, Simona O’Brien & Majid T. Rad

International Journal of Engineering (IJE), Volume (6) : Issue (6) : 2012 303

7. REFERENCES

1. U.H. Farhan and M.T. Rad. "Design of modular fixtures using a 3D-modelling approach".
In: In:19th International Congress on Modelling and Simulation, 2011, pp.405-411.

2. E.G. Hoffman. "Jig and fixture design". New York: Delmar Learning Drafting Series, 2004.

3. G. Peng, X. He, H. Yu, et al. "Precise manipulation approach to facilitate interactive
modular fixture assembly design in a virtual environment". assembly automation, 28, 2008.

4. F. Mervyn, A.S. Kumar and A.Y.C. Nee. "Fixture design information support for integrated
design and manufacturing". international journal of production research, 44, 2006.

5. N. Bugtai and R.I.M. Young. "Information models in an integrated fixture decision support
tool". Journal of Materials Processing Technology, 76, 29-35, 1998.

6. M. Ryll, T.N. Papastathis and S. Ratchev. "Towards an intelligent fixturing system with
rapid reconfiguration and part positioning". Journal of Materials Processing Technology, 201,
198-203, 2008.

7. J.R. Dai, A.Y.C. Nee, J.Y.H. Fuh, et al. "An approach to automating modular fixture design
and assembly". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture, 211, 509-521, 1997.

8. B.S. Babu, P.M. Valli, A.V.V. Kumar, et al. "Automatic modular fixture generation in
computer aided process planning systems". Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, 1147-1152, 2005.

9. X. Kong, Yangyi, J. Zhou, et al. "Research and development of the software on computer-
aided fixtures designing". In: 10th International Conference onComputer-Aided Industrial
Design & Conceptual Design CAID & CD, 2009, pp.1233-1236.

10. T.C. Chang, R.A. Wysk and H.P. Wang. "Computer aided manufacturing". New Jersey:
Pearson Education Inc, 2006.

11. M.C. Kerman and R.L. Brown. "Computer programming fundamentals with applications
in visual basic 6.0". Reading, Mass: Addison-Wesley, 2000.

12. H.M. Deitel, P.J. Deitel and T.R. Nieto. "Visual Basic 6 how to program". Upper Saddle
River, N.J: Prentice Hall, 1999.

13. "KIPP WORKHOLDING SYSTEMS". Internet:
http://www.kipp.com/App/WebObjects/XSeMIPSKIPP.woa/cms/page/locale.enGB/pid.1097.1
105.1227/Workholding-systems.html.

14. S.P. Prince, R.G. Ryan and T. Mincer. "Common API : Using Visual Basic to
Communicate between Engineering Design and Analytical Software Tools". In: ASEE Annual
Conferenc 2005,

15. M.C. Doo, J.K. Hyung, C.L. Jae, et al. "Web-Based Material Database for Material
Selection and its Application Programming Interface (API) for CAD". Key Engineering
Materials, 345-346, 1593-1596, 2007.

Uday H. Farhan, Simona O’Brien & Majid T. Rad

International Journal of Engineering (IJE), Volume (6) : Issue (6) : 2012 304

16. S. Bo, Q. Guangtai and F. Yadong. "Research of standard parts library construction for
SolidWorks by Visual Basic". In: Electronic and Mechanical Engineering and Information
Technology (EMEIT) International Conference, 2011, pp.2651-2654.

17. Y. Peng, J. Xie and X. Wang. "Research and Realization on Architectural 3D Model of
Architectural Process Simulation System". In: Second International Workshop on computer
science and engineering, 2009, pp.543-547.

18. X. Ning and Q. Jiang. "A digital design method of geometric model for centrifugal fan
impeller based on SolidWorks and VB". In: Electronic and Mechanical Engineering and
Information Technology (EMEIT), 2011 International Conference on, 2011, pp.4023-4026.

19. S. Danjou, N. Lupa and P. Koehler. "Approach for Automated Product Modeling Using
Knowledge-Based Design Features". Computer-Aided Design and Applications, 5, 622-629,
2008.

20. J. Tian, S. Liu and H. Fu. "CAD System Design on Standard Part Based on Software
Reuse". In: Fourth International Symposium on Knowledge Acquisition and Modeling (KAM),
2011, pp.229-232.

21. M. Zhen and J. Yingyi. "Automatic assembly for combined mold components based on
SolidWorks". In: International Conference onElectronics, Communications and Control
(ICECC), 2011, pp.166-169.

22. Y. Yang. "The parametric design and intelligent assembly system based on the
secondary development of solidworks". In: 2nd International Conference on Computer
Engineering and Technology (ICCET), 2010, pp.602-605.

