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Abstract 
 
Process optimization is a very important point in modern industry. There are many classical 
optimization methods, which can be applied when some mathematical conditions are verified. 
Real situations are not very simple so that classical methods may not succeed in optimizing; as in 
cases when the optimization has several contradictory objectives (Collette, 2002). 
 
The purpose of this work is to propose an optimization method for industrial processes with 
multiple inputs and multiple outputs (MIMO), for which the optimization objectives are generally 
contradictory and for which some objectives are not maximum or minimum but performance 
criteria. 
 
The first step of this method is modeling each process response by a quadratic model. After 
establishing the model, we use a simplified numerical optimization algorithm in order to determine 
values of the parameters allowing optimizing the different responses, for MIMO processes. 
 
This method will also allow finding optimum target values for multiple inputs single output 
processes. 
 
Keywords: Multi-Response, Optimization, Discrete, Numerical, Modeling. 

 
 

1. INTRODUCTION 
A multi-objective optimization problem for an industrial process implies simultaneously minimizing 
some criteria defined in the same space, such as minimizing costs while maximizing 
performance. These optimization criteria are contradictory and the solution is a balance between 
the two objectives, as shown in figure 1 (Pareto,1896). 
 
Pareto line (boundary) contains all balanced solutions. In figure 1, A and B are two points of 
Pareto line: A does not dominate B, B does not dominate A, but both of them dominate C. The 
purpose of multi-objective optimization is to find the Pareto line for a given problem (Gräbener, 
2008). The dominant solutions of an optimization problem are those represented by the points on 

the Pareto boundary. Therefore for n objective functions there are ��� boundaries to compute and 

the solutions are to be found in the domain limited by these ��� boundaries. 
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2. MULTI-OBJECTIVE OPTIMIZATION
Collette classified optimization methods in two categories, the 
the multi-objective problem in a mono
are generally stochastic iterative algorithms leading to a global optimum. A third method, using 
the desirability notion, was introduced by E.C Harrington (Harrington, 1965) and developed by G. 
Derringer (Derringer, 1980), in order to compensate for disadvantages of classic scalar methods.
 
2.1 Scalar Methods 
These methods propose an a priori resolution by simplifying multi

objective ones. The scalar methods are weighting method (Coello, 2000), the 
(compromise method)( Miettinen, 1999) and the goal method (Dean and
 
The weighting method computes a weighted sum of the objectives.
 
The problem becomes then: 
 

 �����	
� � ∑ ������∑ ������ � 1	���	�
 
The weights Wi values are chosen by the designer. By giving a greater value to a weight 
function fi will have a greater influence in the weighted sum. Generally it is interesting to solve 
some multi-objectives problems by considering some weights sets, but this type of sol
become expensive in computing time.
 
In the case of a two objectives problem the equation (1) becomes:
 

 ��	
� � 	 ��� �	
� �	���� ��
 

Since we want to obtain a minimum for 

the smallest ordinate and tangential to the set of Pareto optimal solutions.
 
The weighting method allows finding only the solutions existing on the convex Pareto boundary 

(Geoffrion, 1968). The ε-constraint method does not pre
one of the functions is considered the optimization objective. The remaining functions are 
considered constraints and the problem becomes:
 

 � min 	∈"# f%�	X���	
� ' 	 (�	�)*	� + 0
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FIGURE 1: Pareto Line (boundary). 

OBJECTIVE OPTIMIZATION 
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are generally stochastic iterative algorithms leading to a global optimum. A third method, using 

ntroduced by E.C Harrington (Harrington, 1965) and developed by G. 
Derringer (Derringer, 1980), in order to compensate for disadvantages of classic scalar methods.

These methods propose an a priori resolution by simplifying multi-objective problems in mono

objective ones. The scalar methods are weighting method (Coello, 2000), the ε-constraint method 
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��� - 0 . (1) 

chosen by the designer. By giving a greater value to a weight 
function fi will have a greater influence in the weighted sum. Generally it is interesting to solve 

objectives problems by considering some weights sets, but this type of sol
become expensive in computing time. 

In the case of a two objectives problem the equation (1) becomes: 

�	
� (2) 

Since we want to obtain a minimum for F(X), we look for a line of directory coefficient 

the smallest ordinate and tangential to the set of Pareto optimal solutions. 

The weighting method allows finding only the solutions existing on the convex Pareto boundary 

constraint method does not present this disadvantage. In this method, 
one of the functions is considered the optimization objective. The remaining functions are 
considered constraints and the problem becomes: 

0. (3) 
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As in the weighting method, it is possible to solve successively some mono-objective optimization 

problems with constraints, using each time different εi sets. 
 
In the goal method, the problem becomes a mono-objective one as follows: 
 

 � min 	∈"# α��	
� � 	α. �� '	0�	�)*	� � 1,… ,�. (4) 

 
In this equation, z is a point of "m and d a vector of "m 

 

where m is the number of optimization criteria. In this method, a priori values are to be chosen for 
the point z and for the direction d. For a same point z, it is then necessary to solve more mono-
objective optimization problems with different directions d. The computation is repeated 
subsequently for more values of z, increasing thus the computation time.  
 
2.2 Evolutionary Methods 
These methods are used for complex optimization and search problems. The metaheuristics are 
generally stochastic iterative algorithms leading to a global optimum (Holland, 1992), such as the 
simulated annealing, genetic algorithms, the tabu search or the ant colony optimization. 
 
The main advantage of such methods is their capability to avoid local optimums (maximum or 
minimum), by allowing a momentary degradation of the situation, in contrast to classical methods 
(Collette, 2002). 
 
2.3 The Desirability Function 
The idea of desirability is based on a weighting of the objective functions as in scalar methods but 
by using a product and by transforming all responses in a unique dimensionless desirability scale 
(individual desirability). The desirability functions (di) values are between 0 and 1. 
 
The desirability function method allows rewriting an optimization problem as a mono-objective 
problem by proposing a unique composed criterion from some simple criteria; using classical 
methods then solves the mono-objective optimization problem. 
 
The individual desirability functions are defined as follows: 
 

 

34
5
46 789:89	;9#

μ9:89	;9#<
= 	if		Y%	?%@ 	' 	Y% 	< 	μ%

7 89:89	;BC
μ9:89	;#BC<

D 	if			μ% ' 	Y% 	< 	 Y%	?EF
0	if	Y% < Y%	?%@	or	Y% > Y%	?EF

.                   (5) 

 

Where Yi min is the lower limit for Yi value (di = 0), Yi max is the upper limit for Yi value (di = 0), µi 
is the target optimal value for Yi (di = 1) and p and q are importance factors for the desirability 
function. 
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The set of individual desirability functions is used to compute a global desirability 
2008), by: 

 

 
Since D is a geometric mean, it is equal to zero if one of the individual desirability functions is 
zero, rejecting thus a function in which one of the objectives is not at all attained, even if the other 
objectives are attained. 
 
The maximal value for D is obtained when the combination of different responses is globally 
optimal. 

 
3. LIMITATIONS OF USUAL METHODS
The scalar methods do not leave a choice to the user. They propose a unique solution, even if 
there are several possibilities. Moreover, 
obtain, whatever the coefficients (when the Pareto boundary is not convex). Finally, there are 
some non-additive quantities (Collette, 2002).
 
The metaheuristic approaches address some of these problems. However, co
efficient evolutionary algorithm is very difficult, since evolutionary processes are algorithm and 
parameter choice sensitive, and problem representation sensitive. Best such methods are based 
on sound knowledge and experience of the problem,
comprehension of evolutionary mechanisms (Zhang, 2005). 
 
Moreover, these methods may be less performing when applied to strongly constrained problems. 
Furthermore, they do not allow having some information on the Pareto boun
is impossible to evaluate the quality of the solutions (Terki, 2009).
 
In the case of the global desirability function, identical weights are generally used if all responses 
have the same importance. However, the optimum depends on th
response. The greatest difficulty is the choice of weights allocated to the individual desirability 
functions and of the model for the mono
 
For example, when considerin
desirability functions, even if the individual desirability functions have values only of 
…, 90%, there are still 9!/(9-7)! 
 
The choice of the mono-objective optimization model is complex due to the great number of 
possible choices and to the limitations of the different methods.
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FIGURE 2: Desirability Function. 

The set of individual desirability functions is used to compute a global desirability D
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is a geometric mean, it is equal to zero if one of the individual desirability functions is 
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is obtained when the combination of different responses is globally 

LIMITATIONS OF USUAL METHODS 
The scalar methods do not leave a choice to the user. They propose a unique solution, even if 
there are several possibilities. Moreover, sometimes-non-dominated solutions are impossible to 
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quantities (Collette, 2002). 

The metaheuristic approaches address some of these problems. However, co
efficient evolutionary algorithm is very difficult, since evolutionary processes are algorithm and 
parameter choice sensitive, and problem representation sensitive. Best such methods are based 
on sound knowledge and experience of the problem, on much creativity and on good 
comprehension of evolutionary mechanisms (Zhang, 2005).  

Moreover, these methods may be less performing when applied to strongly constrained problems. 
Furthermore, they do not allow having some information on the Pareto boundary, and therefore it 
is impossible to evaluate the quality of the solutions (Terki, 2009). 

In the case of the global desirability function, identical weights are generally used if all responses 
have the same importance. However, the optimum depends on the weights allocated to each 
response. The greatest difficulty is the choice of weights allocated to the individual desirability 
functions and of the model for the mono-objective optimization of the global desirability function.

For example, when considering a process with three criteria, corresponding to three different 
desirability functions, even if the individual desirability functions have values only of 

 = 504 different possible global desirability functions.

objective optimization model is complex due to the great number of 
possible choices and to the limitations of the different methods. 
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The metaheuristic approaches address some of these problems. However, constructing an 
efficient evolutionary algorithm is very difficult, since evolutionary processes are algorithm and 
parameter choice sensitive, and problem representation sensitive. Best such methods are based 

on much creativity and on good 

Moreover, these methods may be less performing when applied to strongly constrained problems. 
dary, and therefore it 

In the case of the global desirability function, identical weights are generally used if all responses 
e weights allocated to each 

response. The greatest difficulty is the choice of weights allocated to the individual desirability 
objective optimization of the global desirability function. 
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different possible global desirability functions. 
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Other limitations come from the inner nature of the problem: optimization means maximizing or 
minimizing an objective, while in industrial processes, it is necessary to obtain precise values for 
performance criteria, within established acceptance limits.
 
In order to treat the optimization problem globally, it is necessary to solve a multi equations multi
variables system. Since analytical resolution is very difficult, we propose a numerical approach, 
described in next section. 

 
4. NUMERICAL APPROACH
An industrial process optimization by the means of this approach has some advantages:
 

• The possible interval is given by acceptable limits;
 

• The continuous variables may be considered as being discontinuous, since measure 
instruments give discontinuous values, according to their limits;
 

• The number of variables affecting the response cannot exceed some limit in indu
processes; 
 

• The targets of the processes are generally defined within limits.
 

• These properties allow us to propose a method with the following steps:
 

• In order to have discrete variables, the digitalization step is defined according to the 
acceptable limits of measure instruments.
 

• All responses satisfying the constraints (validity domain) are computed.
 

• The intersection of different validity domains of each objective function gives the global 
validity domain, for all objective functions, but the 
optimal solution.  
 

FIGURE 3: Validity 

 
It is also possible to diminish the limits if the number of solutions is too big, or to increase them if 
there are not enough solutions. 
 
This method has the advantage, when minimizing, to be closer to the optimum than the analytical 
methods, which generally use approximations.
 
Moreover, the use of complex mathematical formulations is not always well accepted in industry; 
it is thus interesting to have a simple optimization strategy, based on numerical calculation.
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The proposed algorithm has also the advantage of proposing more possible solutions, depending 
on the conditions on the variables. Generally, when constraints are very restrictive, the number of 
proposed solutions diminishes. The solutions can be different, depending on the expressed need 
on input or response variables. The user can choose to have a solution as close as possible to 
the target, whatever the conditions on the input variables, or to favor the conditions on the input 
variables over the precision of the solution. 
 
In order to diminish the number of proposed solutions, it is possible to set additional constraints, 
according to the objectives and initial constraints. 
 
It is interesting to define the interval of acceptable values and the optimization algorithm to obtain 
several solutions, in order to have an appropriate choice. 
 
For example, suppose the two solutions as follows: 
 

a) X1 = 3, X2 = 10 and X3 = 100, responses Y1 = 80% and Y2 = 4 
 

b) X1 = 1, X2 = 5 and X3 = 60, responses Y1 = 79% and Y2 = 3.9 
 

If the objective is to have a unique optimum, the proposed solution will be a. 
 
If the optimization objective is to propose different solutions, both solutions have approaching 
values for responses but different values of input variables. The choice depends on input 
variables values and constraints. 

 
5. APPLICATION EXAMPLE 
An optimization method is generally based on a mathematical model allowing expressing the 
objective function versus the influential parameters. The factorial and Taguchi experiments and 
the quadratic models allow modeling processes depending on several controllable factors and 
having objectives of product quality or costs (Montgomery, 2001), (Dean, 2000), (Fowlkes,1995). 
Our example process is modeled by quadratic functions. 
 
The problem considered in the application example concerns a welding machine for chips bags 
and the objective is to optimize the welding process by finding the manufacturing conditions 
which give the best visual quality of the weld and weld strength close to 85 (Oueslati, 2001). 
 
Depending on the behavior of the response versus input factors and depending on the 
optimization objectives, it is possible to obtain several vectors Xi satisfying these conditions or to 
find out that there is no such a vector. 
 
The experiment is designed with three factors: the temperature (X1), the pressure (X2) and the 
tightening duration (X3) and with two responses: the weld strength (Y1) and the visual weld quality 
(Y2). 
 
The values for each input variable are given in the following table: 
 

Level Temperature (°C) Pressure (Kg/dm
3
) Tightening duration (Seconds) 

-1 120 50 0.2 

1 180 150 2 

 
The objective is to find out the values for X1, X2 and X3 in the domain where Y1 is close to 85 (with 

an acceptable limit of ± 5) and where Y2 is bigger than 4. 
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Experiment:  
 

 
Temperature Pressure Duration Resistance Quality 

1 -1 0 0 65.32 3.87 

2 1 0 0 81.55 2.32 

3 0 -1 0 91.45 3.14 

4 0 1 0 93.29 4.36 

5 0 0 -1 70.53 3.54 

6 0 0 1 80.92 2.46 

7 1 1 1 41.83 2.07 

8 -1 1 1 89.97 3.01 

9 1 -1 1 44.53 1.11 

10 -1 -1 1 89.85 2.04 

11 1 1 -1 91.53 2.77 

12 -1 1 -1 11.25 4.48 

13 1 -1 -1 92.94 2.04 

14 -1 -1 -1 13.2 3.35 

15 0 0 0 86.89 3.81 

16 0 0 0 91.03 3.63 

17 0 0 0 93.11 3.46 

18 0 0 0 89.41 3.74 

19 0 0 0 88.71 3.62 

 
Response modeling:  
Each response is defined by a quadratic model: 
 
Yi = a0 + a1X1 + a2X2 + a3X3 + a12X1X2 + a13 X1X3 + a23X2X3 + a11X12 + a22X22 + a33X32 
 

 
a0 a1 a2 a3 a12 a13 a23 a11 a22 a33 

Y2 3.66 -0.64 0.50 -0.55 0.00 0.14 0.01 -0.49 0.00 -0.58 

Y1 90.47 8.28 0.00 6.77 0.00 -31.68 0.00 -16.72 0.00 0.00 

 
Classical optimization:  
By using a scalar method, the solution is: 
 
X1 = 143.94, X2 = 115 1.38 and X3 = 0.98; responses Y1 = 85 and Y2 = 4.0 
 
One can see that the proposed solution is not optimal and that there is no other choice; for 
example, we could lower the constraints on input variables. 
 
If the objective were to find a maximum for both functions, the classical optimization solution 
would be: 
 
X1 = 137.40, X2 = 161 and X3 = 0.43; responses Y1 = 86.32 and Y2 = 2.6 
 
This solution is not optimal; the input variables values are not within the limits, there is no 
correspondence between response values and input values according to the model and, finally, 
the Pareto boundary is not computed. 
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Optimization using desirability function: 
As is generally done, we used equal weights for individual desirability functions. The optimum of 
the global desirability function is graphically found. The solution obtained is: 
 
X1 = 143.1, X2 = 150 and X3 = 0.95; responses Y1 = 84 and Y2 = 4.36 
 
The graphic research for the optimum is possible even for the three variable function, because 
after the statistical analysis of effects, one of the parameters is found as being non influent. 
However, this method cannot be used for more complex functions. 
 
Numerical optimization: 
Each response is submitted to some constraints. In order to diminish the number of possible 
solutions, there were diminished the acceptable limits on the responses: 
 

 Objective Lower Limit Upper Limit 

Y1 85 84 86 

Y2 >4 4  

 
We begin by some fifteen iterative computations on the three variables. When the validity domain 
is found, it is possible to have another iterative computation on this domain, in order to be closer 
to the constraints on the input and output variables. 
 
After the first iterative computation, four possible solutions were found: 
 

 X1 X2 X3 Y1 X4 

Solution 1 138  150  1.15 85.5   4.3 

Solution 2 142.5  150  1.01 85.9  4.3 

Solution 3 147  150  0.61  84  4.3 

Solution 4 147  150  0.74  85.5  4.3 

 
In order to make a choice, the costs generated by the conditions may be used as additional 
criteria. 
 
For instance, the difference between the tightening duration obtained from solutions 1 and 3 is of 
0.54s, i.e. a time about 50% shorter than if one chooses the third solution, but one must mention 
that this last solution is 6% costlier in energy consumption. 
 
One can also see that different solutions are obtained when changing the digitalization step. 
 
In order to have a smaller number of possible solutions, the limits on the responses can still be 
diminished, for example to 0.5 for Y1 and a minimum of 4.38 for Y2. In this case, the proposed 
solution is: X1 = 143.4, X2 = 150, X3 = 0.88; Y1 = 84.5 and Y2 = 4.38. 

 
6. CONCLUDING REMARKS AND FUTURE WORK 
The proposed method allows optimizing in several steps a multiple input/multiple output process, 
i.e.: 
 

• modeling each response by a quadratic function or a Taguchi model; 
 

• finding the variables values satisfying the objectives by an iterative numerical calculation 
of the responses; 
 

• obtaining the global validity domain by the intersection of all domains previously found; 
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• making choices of acceptable solutions in this global domain (depending on costs or on 
another criterion) and finally; 
 

• proposing an optimal solution, by imposing if necessary an additional constraint on the 
objectives. 
 

The first interest of this optimization method is the possibility to make an optimization on more 
variables and more responses and getting closer to optimum values, instead of using an 
analytical model. Moreover, this method allows finding several different solutions. Finally, it is 
based on numerical calculation, being thus simpler than the analytical methods. 
 
The numerical search of optimal solution assumes that the quadratic model of the responses is 
valid. 
 
Future work will concern the verification of the model’s validity and some more applications of the 
method on industrial cases. 
 
Another interest will be the comparison of performance between quadratic or Taguchi models and 
algorithms such as artificial neural networks or genetic algorithms. 
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