
Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 1

An OpenCL Method of Parallel Sorting Algorithms for GPU
Architecture

Krishnahari Thouti kthouti@gmail.com
Department of Computer Science Engg.
Visvesvaraya National Institute of Technology
Nagpur, 440010, Maharashtra, India

S. R. Sathe srsathe@cse.vnit.ac.in
Department of Computer Science Engg.
Visvesvaraya National Institute of Technology
Nagpur, 440010, Maharashtra, India

Abstract

In this paper, we present a comparative performance analysis of different parallel sorting
algorithms: Bitonic sort and Parallel Radix Sort. In order to study the interaction between the
algorithms and architecture, we implemented both the algorithms in OpenCL and compared its
performance with Quick Sort algorithm, the fastest algorithm. In our simulation, we have used
Intel Core2Duo CPU 2.67GHz and NVidia Quadro FX 3800 as graphical processing unit.

Keywords: GPU, GPGPU, Parallel Computing, Parallel Sorting Algorithms, OpenCL.

1. INTRODUCTION

The GPU (Graphics Processing Unit) [1] is a highly tuned, specialized machine, designed
specifically for parallel processing at high speed. In recent years, Graphic Processing Unit (GPU)
has been evolved as massive parallel processor for achieving high computing performance. The
architecture of GPU is suitable not only for graphics rendering algorithms but for also general
parallel algorithms in a wide variety of application domains.

Sorting is one of the fundamental problems of computer science, and parallel algorithms for

sorting have been studied since the beginning of parallel computing. Batcher’s 2(log)nΘ - depth

bitonic sorting network [2] was one of the first methods proposed. Since then many different
parallel sorting algorithms have been proposed [7, 9, 10]. The (log)nΘ - depth sorting circuit was

proposed in [4, 6].

Given, a diversity of parallel architectures and a number of parallel sorting algorithms, there is a
question of which is the best fit for a given problem instance. An extent to which an application
will benefit from these parallel systems, depend on the number of cores available and other
parameters. Thus, many researchers have become interested in harnessing the power of GPUs
for sorting algorithms. Recently, there has been increased interest in such research efforts [8, 11,
16]. However, more studies are needed to claim whether a certain algorithm can be
recommended for a particular parallel architecture.

In this paper, we present an experimental study of two different parallel sorting algorithms: Bitonic
sort and Parallel Radix sort.

This paper is organized as follows. Section - 2 provides previous work done. In Section - 3, we
present GPU architecture and OpenCL Programming model. Parallel Sorting algorithms are
explained in Section - 4. Test results and analysis are provided in Section - 5. Section - 6
concludes our work and makes future research plans.

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 2

2. RELATED WORK

In this section, we review previous work on parallel sorting algorithms. Study of parallel
algorithms using OpenCL is still in progress and there is not much work done in this topic.
However, an overview of parallel sorting algorithms is given in [5]. Here we review parallel
algorithms with respect to GPU architecture.

A parallel sorting algorithm is presented in [12] for general purpose internal sorting on MIMD
machines where performance of the algorithm on the Fujitsu AP1000 MIMD supercomputer is
discussed. A comparative performance evaluation of parallel sorting algorithms presented in [13].
They implement parallel algorithms with respect to the architecture of the machine. An on-chip
local memory version of radix sort for GPU’s has been implemented [21]. As expected, OpenCL
local memory is much faster than global memory. Bitonic sorting algorithm has been implemented
using stream processing units and Image Stream processors in [17, 15].

An O(n) radix sort is implemented in [21]. As reported in [21] radix sort is roughly twice as fast as
the CUDAPP[19] radix sort. Quick-sort algorithm for GPU’s using CUDA has been implemented
in [20] where their results suggest that given a large data set of elements, quick-sort still gives
better performance as compared to radix and Bitonic sort. A portable OpenCL implementation of
the radix sort algorithm is presented in [24] where authors test radix sort on several GPUs and
CPUs. An analysis of parallel and sequential bitonic, odd-even and rank-sort algorithms for
different CPU and GPU architectures are presented in [23] where they exploit task parallelism
using OpenCL.

3. GPU ARCHITECTURE and OPENCL FRAMEWORK

NVidia GPUs comprises of array of multi-processor units called Streaming Multiprocessors
(SMs), also called as Compute Units (CU) and each one consists of multiple Scalar Processor
(SP) cores, also known as Processing Elements (PE). The NVidia Quadro FX 3800 has 24 SMs
with 8 PEs in each SM as shown in Figure 1. There is on-chip local store called shared memory,
through which the PEs communicate with SM and different SMs communicate through off-chip
memory called global memory.

P
E

 1

P
E

 1

P
E

 1

P
E

 2

P
E

 2

P
E

 2

P
E

 8

P
E

 8

P
E

 8

LOCAL MEMORY LOCAL MEMORY LOCAL MEMORY

GLOBAL MEMORY

H
O

S
T

FIGURE 1: GPU Architecture

The GPU is programmable using vendor provided API’s such as NVIDIA’s CUDA [18], OpenCL
specification by Khronos group [22]. While CUDA targets GPU specifically, OpenCL targets
heterogeneous system which includes GPUs and/or CPUs. OpenCL programming model involves
a host program on the host (CPU) side that launches Single Instruction Multiple Threads (SIMT)
based programs called kernels consisting of groups of threads called as warps on the target
device. Although management of warps is hardware dependent, programmer can organize
problem domain into several work-items, consisting of one or more work-groups. This is

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 3

explained as ND-Range in GPU architecture. For more information on managing and optimizing
ND-Range refer to OpenCL Specifications [22]. In summary, we say, following steps are needed
to initialize an OpenCL Application.

• Setting Up OpenCL Environment – Declare OpenCL context, choose device type and
create the context and a command queue.

• Declare Buffers & Move Data across CPU & GPU – Declare buffers on the device and
enqueue input data to the device.

• Runtime Kernel Compilation – Compile the program from the kernel array, build the
program, and define the kernel.

• Run the Program – Set kernel arguments and the work-group size and then enqueue
kernel onto the command queue to execute on the device.

• Get Results to Host – After the program has run, read back result array from device
buffer to host memory.

See [25, 26, 27, 22] for more details on this topic.

4. PARALLEL SORTING ALGORITHMS

In this section we give brief descriptions of two parallel sorting algorithms selected for
implementation.

4.1 Bitonic Sort
Batcher’s Bitonic sort [2] is a parallel sorting algorithm which merges two bitonic sequences.
Bitonic sorting was originally defined in terms of sorting networks. Sorting networks are
comparison networks that always sort their inputs. A sorting network [14, 3] is a special kind of
sorting algorithm, where the sequence of comparisons is data independent. This makes sorting
networks suitable for implementation in hardware or in parallel processor arrays.

A bitonic sequence is a sequence of values a = {a0, a1…, ap-1} with the property that either (1)
there exist an index k, where 0<k<p-1 such that a0 ≤ a1 ≤…≤ ak ≥ … ≥ap-1 or a0 ≥ a1 ≥…≥ ak ≤ …
≤ap-1 or (2) there exist a cyclic shift of indices so that (1) is satisfied. For example, (4, 8, 12, 15,
11, 6, 3, 2) is a bitonic sequence.

Let s = {a1, a2… ap} be bitonic sequence such that a0 ≤ a1 ≤ … ≤ ap/2-1 and

ap/2 ≤ ap/2+1 ≤ … ≤ ap-1.

The bitonic sequence s can be sorted with bitonic split operation which halves the sequence into
two bitonic sequences s1 and s2 such that all values of s1 are smaller than or equal to all the
values of s2. That is, bitonic split operation performs:

S1 = {min (a0, ap/2), …, min (ap/2-1, ap-1)}
S2 = {max (a0, ap/2), …, max (ap/2-1, ap-1)}

For example, the bitonic sequence mentioned above s = (4, 8, 12, 15, 11, 6, 3, 2) will be divided
to two bitonic sequences s1 = (4, 6, 3, 2) and s2 = (11, 8, 12, 15). Thus, given a bitonic sequence,
we can use bitonic splits recursively to obtain short bitonic sequences until we obtain sequences
of size one, at which point the input bitonic sequence is sorted. This procedure of sorting a bitonic
sequence using bitonic splits is called bitonic merge (BM).

The bitonic sorting network for sorting N numbers consists of log(N) bitonic sorting stages, where
i
th
 stage is composed of N/2

i
 alternating increasing and decreasing bitonic merges of size 2

i
. In

OpenCL implementation, we set kernel arguments for each of the stages and call the kernel sub-
routine bitonic sort. Algorithm 1, 2, and 3 shows bitonic sorting algorithm on GPU device using
OpenCL. The algorithm executes on every core in GPU kernel in parallel.

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 4

__kernel void bitonic_sort(__global *data, int dir)
{
 divide data into in1 and in2
 sort(in1, ASC)
 sort(in2, DES)
 swap(in1, in2, dir)
 sort(in1, dir)
 sort(in2, dir)
 result = (in1, in2)
}

Algorithm 1: Bitonic Sort Kernel for SIMD Architecture

for each level i = 1, …, log(n)
{
 for each pass of level j = 1 to i +1
 run_kernel ();
}

Algorithm 2: Generalized Bitonic Sort

Algorithm 1 is bitonic sort kernel for SIMD architecture where input data is multiple of 8 data
sequence. Algorithm 2 is generalized bitonic sort and its corresponding kernel is shown in
algorithm 3.

__kernel sort(__global *data, int stage i, int pass_of_stage j,
int dir)
{
 /* using values of i, j, dir – get left_Id & right_Id */
 left_child = data [left_Id]
 right_child = data [right_Id]
 compare(left_child, right_child)

 /* copy left & right child values to data with respect to dir
*/
 data [left_child] = max(left_child, right_child)
 data [right_child] = min(left-child, right_child)
}

Algorithm 3: Generalized Bitonic Sort Kernel Using OpenCL

Initially, the host (CPU) device distributes unsorted vector in form of work_groups to GPU cores
using the global_size and local_size OpenCL Parameters. Alternate work_items in work_group
perform sorting in ascending and descending order. Next, merging stage is performed and result
is obtained. For more information, on this parameters please refer OpenCL Specifications [22].

4.2 Parallel Radix Sort
Like the bitonic sort, the radix sort [14] uses a divide-and-conquer strategy; it splits the dataset
into subsets and sorts the elements in the subsets. But instead of sorting bitonic sequences, the
radix sort is a multiple pass distribution sort algorithm that distributes each item to a bucket
according to least significant digit of the elements. After each pass, items are collected from the
buckets, keeping the items in order, then redistributed according to the next most significant digit.

Suppose, the input elements are 34, 12, 42, 32, 44, 41, 34, 11, 32, 63.

After First Pass: {[41, 11], [12, 42, 32, 32], [63], [34, 44, 34]}

After Second Pass: {[11, 12], [32, 32, 34, 34], [41, 42, 44], [63]}

When we collect them they are in order: {11, 12, 32, 32, 34, 34, 41, 42, 44, 63}

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 5

In OpenCL, the first step of each pass is to compute histogram to identify the least significant
digit. Let ‘p’ be the number of number of processing elements available on GPU device. Each

processing element is responsible for /n p   input elements. In next step, each processing

element counts the number of its elements and then computes the prefix sums of these counts.
Next, the prefix sums of all processing elements are combined by computing the prefix sums of
the processing element-wise prefix sums. Finally, each processing element places its elements in
the output array. More details are given in the pseudo-code below.

b ← no. of bits
A← Input Data
cmp ← 1
cnt0 ← contains zero’s count
cnt1 ← contains one’s count
One, Zero ← Bucket Arrays
Mask ← Temporary Array

for (i = 0 to 2

b
 – 1)

{
 for (j = 0 to A.size)
 {
 if (A [j] && cmp)
 cnt1 ++
 One [cnt1] ← a[j]
 else
 cnt0 ++
 Mask [cnt0] ← j
 }
 for(j = cnt0 to A.size)
 Mask [j] ← A.size – cnt0 + j

 A ← shuffle(A, one, Mask)
 cmp ← left_shift(cmp)
}
result ← A

Pseudo-code: Parallel Radix Sort Kernel

The code performs bitwise AND with cmp. If AND result is non-zero, code places the element in
One array and increments one’s counter. If the result is zero, the code set appropriate value in
Mask array and increment zero’s counter. Once every element is analyzed, the Mask array is
further updated to identify each element in One;s array. The shuffle function re-arranges the
Mask array data and then process continues.

The computation of histogram is shown in algorithm 4. After this step, histogram is scanned and
prefix sum is calculated using the algorithm 5. After this step, re-ordering of histogram takes place
and finally result is obtained by transposing the re-ordered histogram. Other implementation
details are not mentioned here; only the method is presented in this paper. For more information
refer [27].

5. EXPERIMENTAL RESULTS
In this section, we discus machine specifications on which experiments were carried out and
present our experimental results. In all cases, the elements to be sorted were randomly
generated 10 bit integers. All experiments were repeated 30 times and the results were reported
are averaged over 30 runs.

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 6

Let n = no. of elements
wi = no. of work_items
wg = no. of work_groups

/* wi & wg can be computed using clDeviceInfo()
 : see [22] */
for (i = wi to wi + wg)
{
 Extract the group of bits of pass i,and
 Store the result in hist []
}

Algorithm 4: Compute Histogram

for each processing element, PE i
{
 sum[i] = list [(n/p) * i]
 for (j = 1 to n/p)
 sum[i] = sum[i] + list[(n/p) * i + j]

 result = ∑(sum)
}

Algorithm 5: Parallel Prefix Sum

5.1 Machine Descriptions
The GPU device used for testing simulation is NVidia Quadro FX 3800 which has 192 processing
cores and 1 GB device global memory. For comparison purpose, we have implemented and
tested the results of quick-sort algorithm on 2.66GHz Intel Core2DUO CPU E7300 with 1GB
RAM. The cache specifications are 32KB data cache, 32KBinstruction cache and 3MB shared L2
cache.

5.2 Comparison of the Algorithms
Figure 2 shows the comparison of above mentioned algorithms for different size of input
sequence. For comparison purpose, we have taken the sequential version of Quick sort and have
compared with OpenCL version of Parallel Bitonic Sort and Parallel Radix Sort. As expected, in
all cases, radix sort is fastest, followed by Bitonic sort, and then quick sort. GPU is a large
computation unit and thus we measured the GPU runtime called as GPU PROFILE time only,
excluding the time for GPU memory allocation, data and memory transfer between CPU and
GPU. However, if we take into account, all the parameters concerning GPU application, as
explained in Section – 3, we find that quick sort is still the fastest.

0 2 4 6 8 10 12 14 16 18

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ti
m

e
(m

s)

No. of Elements in M units (1M = 2^20)

 Quick Sort
 Bitonic Sort
 Radix Sort

FIGURE 2: Comparison of Sorting Algorithms

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 7

6. CONCLUSION AND FUTURE SCOPE
We have presented an analysis of parallel bitonic and radix sort algorithms for GPUs using
OpenCL and their comparison with the serial implementation of quicksort on CPU Dual-core
machine. We have shown their GPU performance and compared with CPU implementation of
quick sort. Our finding reports that radix sort is still the fastest, followed by Bitonic sort, and then
quick sort. In future work, along with these sorting algorithms, we are planning to investigate
some other parallel sorting algorithms including quick sort and use different GPU architecture
from different vendors for our analysis.

REFERENCES
[1] General Purpose Computations Using Graphics Hardware, http://www.gpgpu.org/

[2] K. E. Batcher. “Sorting networks and their applications”. in AFIPS Spring Joint Computer

Conference, Arlington, VA, Apr. 1968, pages 307–314.

[3] D.E. Knuth. The Art of Computer Programming. Vol. 3: Sorting and Searching (second

edition). Menlo Park: Addison-Wesley, 1981.

[4] M. Ajtai, J. Komlos, Szemeredi. “Sorting in parallel steps”. Combinatorica 3. 983, pp. 1 -19.

[5] S. G. Akl. “Parallel Sorting Algorithms”, Academic Press, 1985.

[6] J. H. Reif, L. G. Valiant. “A Logarithmic Time Sort for Linear Size Networks”. Journals of the

ACM, 34(1): 60 – 76, 1987.

[7] G.E. Blelloch,” Vector Models for Data-Parallel Computing”. The MIT Press, 1990.

[8] G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plaxton, S.J. Smith, M. Zagha. “A

Comparison of Sorting Algorithms for the Connection Machine CM-2”. in Annual ACM
Symp. Paral. Algo: Arc. 1991, Pages 3 -16.

[9] F. T. Leighton, “Introduction to Parallel Algorithms and Architectures: Arrays, Trees and

Hypercubes”. Morgan Kaufmann, 1992.

[10] J.H. Reif. ”Synthesis of Parallel Algorithms”. Morgan Kaufmann, San Mateo, CA, 1993.

[11] H. Li, K.C. Sevcik. “Parallel Sorting by Over-partitioning”. in Annual ACM Symp. Paral.

Algor.Arch. 1994, pages 46 – 56.

[12] A. Tridgell, R. P. Brent. “A general-purpose parallel sorting algorithm” in International J. of

High Speed Computing 7 (1995), pp. 285-301.

[13] N. Amato, R. Iyer, S. Sundaresan, Y. Wu. “A Comparison of Parallel Sorting Algorithms on

Different Architectures” Texas A & M University, College Station, TX, 1998.

[14] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to Algorithms. 2nd edition,

The MIT Press. 2001.

[15] T. J. Purcell, C. Donner, M. Cammarano, H. Jensen, P. Hanrahan “Photon mapping on

programmable graphics hardware”, in Annual ACM SIGGRAPH / Eurographics conference
on Graphics Hardware, 2003, pp. 41 – 50.

[16] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, T. J. Purcell.

“A Survey of General-Purpose Computation on Graphics Hardware.” in Eurographics 2005,
State of the Art Reports, August 2005, pp. 21-51.

Krishnahari Thouti & S.R.Sathe

International Journal of Experimental Algorithms (IJEA), Volume (3): Issue (1) : 2012 8

[17] A. Greb, G. Zachmann. “GPU-AbiSort: Optimal Parallel Sorting on Stream Architectures” in

IPDPS'06 Proceedings of the 20th international conference on Parallel and distributed
processing. 2006.

[18] NVidia CUDA GPGPU Framework. http://www.nvidia.com/

[19] S. Sengupta, M. Harris, Y. Zhang, J. D. Owens. “Scan primitives for GPU computing,” in

Graphics Hardware 2007, Aug. 2007, pp. 97–106.

[20] D. Cedermann, P. Tsigas. “A practical quicksort algorithm for graphic processors”, Tech.

Rep, Chalmers University of Technology and Goteberg University, 2008.

[21] N. Satish, M. Harris, M. Garland. “Designing efficient sorting algorithms for manycore

GPUs”. In Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed
Processing. May 23-29, 2009, pp.1-10.

[22] OpenCL Specification, http://www.khronos.org/opencl/

[23] F. Gul, O. Usman Khan, B. Montrucchio, P. Giaccone. “Analysis of Fast Parallel Sorting

Algorithms for GPU Architectures”. in Proceeding FIT '11 Proceedings of the 2011 Frontiers
of Information Technology Pages 173-178.

[24] P. Helluy. “A portable implementation of the radix sort algorithm in OpenCL”.

http://code.google.com/p/ocl-radix-sort/ May 2011

[25] B. Gaster, L. Howes, D.R. Kaeli, P. Mistry, D. Schaa. Heterogeneous Computing with

OpenCL. Morgan Kaufmann. 2011.

[26] AMD Accelerated Parallel Processing OpenCL Programming Guide, Advanced Micro

Devices, Inc. 2012. http://developer.amd.com/appsdk

[27] M. Scarpino. OpenCL in Action. Manning Publications, 2011.

