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Abstract 
 

The point location problem is to determine the position of n distinct points on a line, up to translation 

and reflection by the fewest possible pairwise (adversarial) distance queries. In this paper we report 

on an experimental study of a number of deterministic point placement algorithms and an 

incremental randomized algorithm, with the goal of obtaining a greater insight into the practical 

utility of these algorithms, particularly of the randomized one.  

Keywords: Computational Geometry, Point-placement, Turnpike Problem, Experimental 

Algorithms.

 

1. INTRODUCTION 
The point placement problem: Let � = {��  , �� , … , �
 } be a set of n distinct points on a line L. The 
point location problem is to determine the locations of the points uniquely (up to translation and 
reflection) by making the fewest possible pairwise distance queries of an adversary. It is assumed 
that the distances returned by the adversary are exact and valid. The assumption of validity means 
that there exists a placement consistent with these distances. The queries are presented to the 
adversary as a graph, called a point placement graph (ppg) or query graph, whose edges connect 
pairs of points whose distances are being queried. Depending upon the adversary’s answers, the 
ppg is adaptively modified by inserting additional edges and querying these. This process is 
repeated over the successive rounds. A ppg G is said to be line rigid if (or simply rigid) if its vertices 
have a unique placement on L for a valid assignment of lengths to its edges. 
 
A non-adversarial version of the above problem is this: a query graph is presented with assigned 

edge lengths and all possible linear placements of its vertices are to be determined. In [1] this 

problem was solved in polynomial time for weakly triangulated graphs. However, Saxe [2] showed 

that the linear embedding problem for an arbitrary graph whose edge-lengths are positive integers 

is strongly NP-complete. 

An offline version of this problem is the construction of the coordinates of a set of n points, given 
exact distances between all pairs of points (see [3], [4]). Algorithms exist that not only determine the 
coordinates but also the minimum dimension in which the points can be embedded (see [6]). A more 
challenging version of this problem is when all the entries of the distance matrix are not known and 
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necessary and sufficient conditions are sought under which the unknown distance entries can be 
determined. This is the well-known and extensively studied distance matrix completion problem [5], 
[6], [7].  

Motivation: The point-placement problem appears in different guises in several diverse areas of 
research, to wit computational biology, learning theory, computational geometry, etc.  

In learning theory [8] this problem is one of learning a set of points on a line non-adaptively, when 
learning has to proceed based on a fixed set of given distances, or adaptively when learning 
proceeds in rounds, with the edges queried in one round depending on those queried in the 
previous rounds. 

The version of this problem studied in Computational Geometry is known as the turnpike problem. 
The description is as follows. On an expressway stretching from town A to town B there are several 
gas exits; the distances between all pairs of exits are known. The problem is to determine the 
geometric locations of these exits. This problem was first studied by Skiena et al. [9] who proposed 
a practical heuristic for the reconstruction. A polynomial time algorithm was given by Daurat et 
al. [10]. 

In computational biology, it appears in the guise of the restriction site mapping problem. Biologists 
discovered that certain restriction enzymes cleave a DNA sequence at specific sites known as 
restriction sites. For example, it was discovered by Smith and Wilcox [11] that the restriction 
enzyme Hind II cleaves DNA sequences at the restriction sites GTGCAC or GTTAAC. In lab 
experiments, by means of fluorescent in situ hybridization (FISH experiments) biologists are able to 
measure the lengths of such cleaved DNA strings. Given the distances (measured by the number of 
intervening nucleotides) between all pairs of restriction sites, the task is to determine the exact 
locations of the restriction sites. The point location problem also has close ties with the probe 
location problem in computational biology (see [12]).  

The turnpike problem and the restriction mapping problem are identical, except for the unit of 
distance involved; in both of these we seek to fit a set of points to a given set of inter-point distances. 
As is well-known, the solution may not be unique and the running time is polynomial in the number 
of points. While the point placement problem, prima facie, bears a resemblance to these two 
problems it is different in its formulation - we are allowed to make pairwise distance queries among 
a distinct set of labeled points. It turns out that it is possible to determine a unique placement of the 
points up to translation and reflection in time that is linear in the number of points. 

This paper has several objectives. The point placement algorithms that we have designed rely 
critically on the correct and exhaustive enumeration of a large number of rigidity conditions (the 
algorithm based on the 6:6 jewel, for example). One of the goals of our implementations was to 
obtain certificates of their correctness. While theoretical comparisons of the query complexities are 
possible up to the O-notation, the experiments were designed to obtain exact numbers for very 
large inputs. More importantly, we wanted to verify our intuition about the relative time complexities 
of these algorithms. While the randomized algorithm is theoretically very attractive, we were 
interested in checking how it behaves in practice.  

Prior Work: Early research on this problem was reported in [12] [13]. In [8] it was shown that the 
jewel (see Fig. 1) and K

2,3
 are both rigid, as also how to build large rigid graphs of density 8/5 

(this is an asymptotic measure of the number of edges per vertex as the number of vertices go to 
infinity) out of the jewel. In a subsequent paper, Damaschke [14] proposed a randomized 2-round 
strategy that makes (1+o(1))n distance queries with high probability and also showed that this is not 
possible with 2-round deterministic strategies. The computational complexity of this algorithm is 
exponential, making it a completely impractical point placement algorithm (our implementation 
confirms this, too). Chin et al. [15] improved many of the results of [8]. Their principal contributions 
are a 3-round construction of rigid graphs of density 5/4 from 6-cycles and a lower bound of 17n/16 
for any 2-round algorithm. They also introduced the following concept of a layer graph, useful for 
finding conditions that make a ppg rigid. 
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Definition 1 We first choose two orthogonal directions x and y (actually, any 2 non-parallel 
directions will do). A graph G admits a layer graph drawing if the following 4 properties are satisfied:  

P1 Each edge e of G is parallel to one of the two orthogonal directions x and y.  

P2 The length of an edge e is the distance between the corresponding points on L.  

P3 Not all edges are along the same direction (thus a layer graph has a two-dimensional extent).  

P4 When the layer graph is folded onto a line, by a rotation either to the left or to the right about 
an edge of the layer graph lying on this line, no two vertices coincide.  

Chin et al. [15] proved the following result.  

Theorem 1 A ppg G is rigid iff it cannot be drawn as a layer graph.  

In [16] we proposed a 2-round algorithm that makes 4n/3+O(1) distance queries to construct rigid 
ppg on n points using a 6:6 jewel as the basic component. 

Overview of contents: In the next section we provide a tabular summary of the state-of-the-art of 
deterministic point placement algorithms and the only known incremental randomized algorithm. In 
section three, we review several 1-round algorithms. This is followed by a discussion of 2-rounds 
and 3-rounds algorithm in the next two sections respectively. In section six, we report on the 
experimental results obtained by careful implementations of several deterministic algorithms and 
the incremental randomized algorithm. This is followed by a detailed discussion of the results and 
we conclude in the next section.  

2.  STATE-OF-THE-ART FOR POINT PLACEMENT ALGORITHMS 
As mentioned in the introduction, the edge queries of a point placement algorithm can be spread 
over several rounds. Several algorithms are extant that work in one or more rounds. The current 
state of the art is summarized in Table 1.  

 

                                                    

                          

 

 

 

 

 

 

 

 

                                               
TABLE 1: The current state of the art. 

 
Definition 2 The density of a graph G with m edges and n vertices is defined to be m/n.  
Thus the number of edges in a query graph is its density times the number of vertices, n.  

Algorithm Rounds Query Complexity Time 
Complexity 

  Upper Bound Lower Bound  

3-cycle 1 2n−3 4n/3 O(n) 

K
2,3

 1 5n/3−c 4n/3 O(n) 

4:4 jewel 1 8n/5−c 4n/3 O(n) 

4-cycle 2 3n/2 9n/8 O(n) 

5-cycle 2 4n/3+O( n) 9n/8 O(n) 

 5:5 jewel 2 10n/7+O(1) 9n/8 O(n) 

 6:6 jewel 2 4n/3+O(1) 9n/8 O(n) 

 3-path 2 9n/7 9n/8 O(n) 

randomized 2 n+O(n/logn) unavailable 
O(n

2
/logn) 
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Comment: The 9n/8 lower bound on 2-round algorithms was proved [17], improving the lower 
bound of 30n/29 by Damaschke [8] and the subsequent improvement to 17n/16 by [15] and the 
further improvement to 12n/11 by [16]. As for the lower bound on 1-round algorithms, the following 
result was proved in [8]. 

Theorem 2 [8] The density of any line rigid graph is at least 4/3, the only exceptions being the jewel, 

K
2,3

,K
3

 and K
−
4

 (shown in Fig 1).  

  

FIGURE 1: Graphs quoted in Theorem 1. 

The density, multiplied by the number of vertices n, gives the lower bound of 4n/3.  

3.  1-ROUND ALGORITHMS 
1-round algorithms are based on gluing together multiple copies of a simple line rigid graph. We 
have performed experiments with the graphs K

2,3
, the 4:4 jewel or simply the jewel graph and K

3
, the 3-cycle graph.  

The simplest of all, the 3-cycle 1-round algorithm, has the query graph shown in Fig. 2. It is obtained 
by gluing together multiple copies of a line rigid triangle.  

  

  

FIGURE 2: Query graph using triangles. 

The query complexity of this algorithm is 2n−3, as this is the number of edges in the graph.  
 
Using K

2,3
 as the basic line rigid graph, we attach multiple copies of this graph from a common 

strut (edge). This requires querying 5 edges for each 3 newly-added points. Thus if n=3k+2, for 
some k≥1, then the number of edges queried is 5k+1 or 5n/3−10/3. When n=3k or 3k+1, we make 
triangles with the strut and each of the remaining points. In all cases, the number of edges queried 
is at most 5n/3−c, where c is at most 4. 

Using the jewel (leftmost graph in Fig. 1) as the basic line rigid graph, we attach multiple copies of 
this graph from a common strut. This requires querying 6 edges for each 5 newly-added points. 
Thus if n=5k+2, for some k≥1, then the number of edges queried is 8k+1 or 8n/5−11/5. When 
n=5k+d where d=0,1,3,4, we make triangles (or perhaps a K

2,3
 if there are enough points) with 

the strut and each of the remaining points. In all cases, the number of edges queried is at most 
8n/5−c, where c is a small constant. 
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4.  2-ROUND ALGORITHMS 
We have experimented with three different types of graphs as basic building blocks: the 4-cycle, 
5-cycle, 3-path; in addition, we have also implemented a randomized algorithm due to [16]. 
  
The 4-cycle 2-round algorithm is typical of the other 2-round algorithms listed in Table 1 and thus 
merits an extended description.  
 
4-cycle Algorithm 
If G=(V,E) is a query graph, an assignment l of lengths to the edges of G is said to be valid if there is 
a placement of the nodes V on a line such that the distances between adjacent nodes are consistent 
with l. We express this by the notation (G,l). By definition (G,l) is said to be line rigid if there is a 
unique placement up to translation and reflection, while G is said to be line rigid if (G,l) is line rigid for 
every valid l. A 3-cycle (or triangle) graph is line rigid, which is why the 3-cycle algorithm needs only 
one round to fix the placement of all the points. A 4-cycle (or quadrilateral) is not line rigid, as there 
exists an assignment of lengths that makes it a parallelogram whose vertices have two different 
placements as in Fig. 3. This has two implications: the first is that we have to find suitable rigidity 
conditions by making sure that no drawing layer graph drawing is possible; the second is that the 
queries will have to be spread over several rounds.  
 

 

FIGURE 3: Two different placements of a rectangle p1p2p3p4. 

For this algorithm, the query graph presented to the adversary in the first round has the structure 
shown in Fig. 4. 
 

 

FIGURE 4: Query graph for first round in a 2-round algorithm using quadrilaterals. 

Making use of the following simple but useful observation, 
  
Observation 1  At most two points can be at the same distance from a given point p on a line L, in 
the second round we query edges connecting pairs of leaves, one from the group of size k and the 
other from the group of size k+2, making quadrilaterals that are not parallelograms (the rigidity 
condition |p

1
p

i
|≠|p

2
p
j
| ensures that the quadrilateral p

1
p
i
p
j
p

2
 is not a parallelogram).  

 

5-cycle Algorithm 
In the 5-cycle algorithm [15], the query graph submitted to the adversary in the first round is shown 
in Fig. 5.  



Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan 

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016               6 

                                       

 

FIGURE 5: Query graph for the 5-cycle algorithm. 

Each five cycle is completed by selecting edges to ensure that the following rigidity conditions are 
satisfied. For more details on this algorithm see [17].  
 

1. |p
i
q
i
|≠|rs

j
|  

2. |p
i
q
i
|≠|s

j
t
jk

|  

3. |p
i
q
i
|≠||rs

j
|±|s

j
t
jk

||  

4. |s
j
t
jk

|≠|q
i
r|  

5. |s
j
t
jk

|≠||p
i
q
i
|±|q

i
r||  

 
3-path Algorithm 
In the 3-path algorithm [17], the query graph submitted to the adversary in the first round is shown in 
Fig. 6.  

  
  

FIGURE 6: Query graph for the 3-path algorithm. 

In the second round, the algorithm select edges suitably to satisfy the following rigidity conditions.  
 

1. |p
1
p

2
|∉ {|r

1
s|, |r

2
s|, ||r

1
s|±|r

2
s||}, 

2. |p
2
p

3
|∉ {|r

2
s|, |r

3
s|, ||r

2
s|±|r

3
s||}, 
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3. |p
3
p

1
|∉ {|r

3
s|, |r

1
s|, ||r

3
s|±|r

1
s||}, 

4. |p
1
q

1
|∉ {|r

1
s|, |r

2
s|, ||r

1
s|±|r

2
s||, ||p

1
p
2

|±|r
1

s||, ||p
1
p
2

|±|r
2

s||, ||p
1
p
3

|±|r
1

s||, ||p
1
p
3

|±|r
3

s||, 

||p
1
p
2

|±|r
1

s|±|r
2

s||, ||p
1
p
3

|±|r
1

s|±|r
3

s||}, 

5. |p
2
q

2
|∉ {|r

1
s|, |r

2
s|, |p

1
q

1
|, ||r

1
s|±|r

2
s||, ||p

1
p
2

|±|r
1

s||, ||p
1
p
2

|±|r
2

s||, ||p
2
p
3

|±|r
2

s||, 

||p
2
p
3

|±|r
3

s||, ||p
1
q
1

|±|r
1

s||, ||p
1
q
1

|±|r
2

s||, ||p
1
p
2

|±|r
1

s|±|r
2

s||, ||p
2
p
3

|±|r
2

s|±|r
3

s||, 

||p
1
q
1

|±|r
1

s|±|r
2

s||, ||p
1
q
1

|±|p
1
p

2
|±|r

1
s||, ||p

1
q
1

|±|p
1
p

2
|±|r

2
s||, ||p

1
q
1

|±|p
1
p

2
|±|r

1
s|±|r

2
s||

}, 
6. |p

3
q

3
|∉ {|r

1
s|, |r

2
s|, |r

3
s|, |p

1
q

1
|, |p

2
q

2
|, ||r

2
s|±|r

3
s||, ||r

3
s|±|r

1
s||, ||p

1
p
3

|±|r
3

s||, 

||p
2
p
3

|±|r
3

s||, ||p
1
q
1

|±|r
1

s||, ||p
1
q
1

|±|r
3

s||, ||p
2
q
2

|±|r
2

s||, ||p
2
q
2

|±|r
3

s||, ||p
1
p
3

|±|r
1

s|±|r
3

s||

, ||p
2
p
3

|±|r
2

s|±|r
3

s||, ||p
1
q
1

|±|r
1

s|±|r
3

s||, ||p
2
q
2

|±|r
2

s|±|r
3

s||, ||p
1
q
1

|±|p
1
p

3
|±|r

3
s||, 

||p
2
q
2

|±|p
2
p

3
|±|r

3
s||, ||p

1
q
1

|±|p
1
p

3
|±|r

1
s|±|r

2
s||, ||p

2
q
2

|±|p
2
p

3
|±|r

2
s|±|r

3
s||}.  

 
on each 3-path component shown in Fig. 7. For more details on this algorithm, see [17].  

 

  

FIGURE 7: A 3-path component. 

Randomized Algorithm 
Damaschke [14] proposed an incremental randomized algorithm (for an introduction to randomized 
algorithms see [18]) that expands a set L of points whose positions have been fixed. The set L is 
initialized by picking an arbitrary point p

0
 from S and setting it as the origin of the line on which the 

points lie. Relative to p
0

 a random path P=p
0
p
1

p
2
... is incrementally constructed by choosing a 

point p
i
 at random from the set S−L, and measuring the distance d(p

i
,p

i+1
) for each i=0,1,2,... 

Simultaneously, the algorithm maintains all possible signed sums  
±d(p

0
p
1
)±d(p

1
p

2
)±⋯±d(p

i
,p

i+1
)⋯, until for some p

k+1
 the signed sums are no longer all distinct.  

 
If a signed sum that repeats is the actual distance of p

k+1
 from  p

0
, then the placement of p

k
 

relative to p
k+1

 becomes ambiguous. We stop at this point, query the distance d(p
0

,p
k
) and use 

the signed sum equal to this distance to fix the placements on L of all the points on the path from p
1

 

to p
k
 (in Damaschke’s description the position of p

k
 is fixed relative to two points in L and the 

signed sum corresponding to this position is chosen to fix the placements of the other points on the 
path constructed thus far).  

 
Resetting p

k
 as the new p

0
 and p

k+1
 as the new  p

1
, the algorithm repeats until L=S.  

 
Damaschke [14] proved the following result.  
 
Theorem 3 [14] The above randomized algorithm for the point location problem has, for any 
instance, performance ratio 1 + O(1/ log n) with high probability.  
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Performance ratio is defined as the number of distance queries divided by the number of points. It is 
straightforward to turn this into a 2-round algorithm. Fix the placement of 2 points p

0
 and p

1
 and 

choose a random path P=p
1
p
2

…p
n

 on all the remaining points to be placed and submit this query 

graph to the adversary. As before, we compute signed sums, stopping when two signed sums are 
equal when we have reached the point p

k+1
 on P. We resolve the ambiguity in the placement of 

p
k+1

 by adding edges from p
k+1

 to p
0

 and p
1

, whose lengths we will query in the second round. 

Continue as in the incremental algorithm from p
k+1

 on.  

5.  3-ROUND ALGORITHM 
The 3-round algorithm we have implemented is due to Chin et al. [15] and uses the 6-cycle graph as 
the basic building block. The query graph submitted to the adversary in the first round is shown in 
Fig. 8. 
 

 
FIGURE 8: Query graph for the 6-cycle algorithm. 

Each six cycle is completed over two additional rounds by selecting edges to ensure that the 
following rigidity conditions are satisfied. For more details on this algorithm see 
[DBLP\s\do5(c)onf\s\do5(w)abi\s\do5(C)hinLSY07].  
 

1. |op|∉{|qr|,|rs|,|st|,||qr|±|rs||,||rs|±|st||,||qr|±|st||,||qr|±|rs|±|st||}  
2. |pq|∉{|rs|,|st|,|rs|±|st||}  
3. |qr|∉{||st|||op|±|s

j
t
jk

||}  

4. |rs|≠||op|±|pq||  
5. |st|∉{||op|±|pq||,||pq|±|qr||,||op|±|qr||,||op|±|pq|±|qr||}  
6. ||op|±|pq||≠||rs|±|st||  

6.  EXPERIMENTAL RESULTS 
We implemented seven deterministic algorithms (three 1-round, three 2-rounds, one 3-rounds) and 
the 2-round version of the incremental randomized algorithm, discussed in the previous section. 
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The control parameters used for comparing their performances are: query complexity and time 
complexity. The results of the experiments for the deterministic algorithms are shown in the graphs 
below. In our experiments, we simulated an adversary by creating a linear layout a
placements of the points by the algorithms against this. This also solved the problem of ensuring a 
valid assignment of lengths to the queried edges. We will have more to say about this in the next 
section.  

   

Predictably enough, the above chart of Fig.
to query complexity is consistent with the upper bounds for these algorit
of these algorithms were run on points sets of different sizes, up to 50000 points.

 

Clearly, 3-cycle is consistently the fastest; but despite its complex structure the 3
does well as compared to the 4
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complexity. The results of the experiments for the deterministic algorithms are shown in the graphs 
below. In our experiments, we simulated an adversary by creating a linear layout and checking the 
placements of the points by the algorithms against this. This also solved the problem of ensuring a 
valid assignment of lengths to the queried edges. We will have more to say about this in the next 

   FIGURE 9: Query Complexity Graphs. 

Predictably enough, the above chart of Fig. 9 shows that the behavior of the algorithms with respect 
to query complexity is consistent with the upper bounds for these algorithms shown in Table 1. Each 
of these algorithms were run on points sets of different sizes, up to 50000 points. 

 FIGURE 10: Time Complexity Graphs. 

cycle is consistently the fastest; but despite its complex structure the 3-
does well as compared to the 4-cycle and the 5-cycle algorithms. We have not included the 

             9 

ters used for comparing their performances are: query complexity and time 
complexity. The results of the experiments for the deterministic algorithms are shown in the graphs 
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placements of the points by the algorithms against this. This also solved the problem of ensuring a 
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shows that the behavior of the algorithms with respect 
hms shown in Table 1. Each 

-path algorithm 
cycle algorithms. We have not included the 



Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan 

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016               10 

performance of the randomized algorithm in the above graphs as it is incredibly slow and we ran it 
for point sets of size up to 16,000. Table 2 below shows its performance details.  

 Number of points Number of Distance 
Queries 

Running time 
(hrs:mins:secs) 

 2000 2382 0:10:41 

 4000 4712 0:57:32 

 6000 7048 2:25:38 

 8000 9348 5:27:53 

 10000 11668 8:38:34 

 12000 13999 13:25:24 

 14000 16282 18:34:58 

 16000 18625 23:19:40 

TABLE 2: Performance of the 2-rounds randomized algorithm. 

7.  DISCUSSION 
The behavior of the deterministic algorithms with respect to time complexity is opposite to their 
behavior with respect to query complexity. The growth-rate of the running time versus the size of the 
input point-set is also near-linear. Both results are as expected. It is also seen (Fig. 10) that 
increasing the number of rounds has a noticeable impact on the running time for large input size.  

As reported, in none of the deterministic algorithms it was explicitly stated how to obtain an actual 
layout from the rigid graph constructed on the input point set. In our implementations we devised a 
signed-sum technique to generate a layout.  

The assumption that an assignment of lengths is valid is a strong one and, as mentioned earlier, we 
circumvented this problem by creating a layout and reporting queried lengths based on this. The 
correctness of the placements of the points by an algorithm is verified by checking that it generates 
a layout identical to the one used to report queried lengths. It needs be pointed out that we have 
relied on exact integer arithmetic to test the rigidity conditions in the 2-rounds deterministic 
algorithms. Floating-point arithmetic can be handled provided exact arithmetic packages are used. 
Point location in an inexact model is an interesting topic for further research.  

An algorithmic approach to the solution of this problem is based on constructing the Cayley-Menger 
matrix out of the squared distances of a query graph.  

For a query graph with n vertices, the pre-distance matrix D=[D
ij
] is a symmetric matrix such that 

D
ij
=d

2
ij

, where d
ij
 is the distance between the vertices (points) i and j of the query graph. The 

Cayley-Menger matrix, C=[C
ij
]  is a symmetric (n+1)×(n+1) matrix such C

0i
=C

i0
=1 for 0<i≤n, 

C
00

=0 and C
ij
=D

ij
 for 1≤i,j≤n, [19].  

The vertices of the query graph has a valid linear placement provided the rank of the matrix B is at 
most 3 (this is a special case of the result that there exists a d-dimensional embedding of the query 
graph if the rank of B is at most d+2; our claim follows by setting d=1, see [20]) .  

It’s interesting to check this out for the query graph in Fig.  11 on 3 points.  
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FIGURE 11: A query graph on 3 vertices. 

 

The Cayley-Menger matrix B for the above query graph is: 
 

 B= 









 

0 1 1 1

1 0 1x2

1 1 0 4

1x24 0

 

 

,where x=d
13

, the unknown distance between the points p
1

 and p
3

.  

 
By the above result, the 4×4 minor, det(B) = 0. This leads to the equation  
 

 x
4
−10x

2
+9=0 

 
which has two solutions x=3 and x=1, corresponding to the two possible placements (embeddings) 
of the points p

1
,p

2
 and p

3
. Assuming p

2
 is placed to the right of p

1
, in one of these placements 

p
3

 is to the right of both p
1

 and p
2

; in the other, to the left of them both.  

 
7.1  Deterministic versus Randomized 
Table 2 lends credence to the claim by Damaschke [14] that the number of distance queries of the 
incremental randomized algorithm is bounded above by O(n(1+1/logn)) in the worst case. 
Unfortunately, it is too slow to be run with very large inputs.  
 
We suspect that the number of times signed sums become equal is intimately connected with the 
distribution of the points that we generate by pretending to be the adversary. To test this we 
generated the layout by picking a point at random in a fixed size interval, and picking the next 
random point in the same fixed-size interval whose left end point is the last point selected. In our 
experiments we varied this fixed interval from 5 units to 500000 units and reported the number of 
times we got equal signed sums for points sets of sizes varying from 20 to 1000. Interestingly 
enough, as can be seen from Table 3 below that the numbers decrease as the interval-size 
increases.  

 
 Range 

 # of points 1-5 1-10 1-20 1-50 1-100 1−10
3

1−10
4

1−5*10
4

 1−10
5

1−5*10
5

 

 20 7 7 6 5 4 3 3 2 2 1 

 50 16 13 11 10 9 7 6 6 5 4 

 100 25 23 20 19 15 11 9 8 8 7 

 200 45 39 35 33 29 22 18 17 16  

 400 78 70 61 56 49 41 39 34   

 1000 167 149 140 123 111 94 82 76   

  
TABLE 3: Performance of incremental randomized algorithm for nearly uniform distributions. 
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The incremental randomized algorithm is often held up as an example of simplicity in comparison to 
deterministic algorithms, like the 3-path one, for example. The above experiments paint a 
completely different picture. From a practical point of view, it is completely ineffective as it is 
essentially a brute-force algorithm. The deterministic algorithms, on the other hand, score high on 
both parameters - low query complexity and low time complexity.  

8.  CONCLUSIONS 
In this paper we have reported the first-ever attempt to make an experimental study of algorithms for 

the point placement problem. The results substantiate the correctness of the intricate theoretical 

analysis, reported in [16], [17], [22] and [23]. 

All algorithms have been implemented in C on a computer with the following configuration: Intel(R) 
Xeon(R) CPU, X7460 @ 2.66GHz OS: Ubuntu 12.04.5, Architecture: i686. 
Further work can be done on several fronts. Particularly worthwhile is to conduct further 
experiments into the behavior of the randomized algorithm, specifically the influence of floating 
point arithmetic on keeping signed sums unequal. On the theoretical side, it might be interesting to 
come up with a completely different randomized algorithm - one that does not depend on 
maintaining an exponential number of signed sums.        
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