
Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 1

Point Placement Algorithms: An Experimental Study

Asish Mukhopadhyay asishm@uwindsor.ca
School of Computer Science
University of Windsor
Windsor, ON N9B 3P4
Canada

Pijus K. Sarker sarkerp@uwindsor.ca
ValidateIt Technologies Inc.
478 Queen Street East, Suite# 400, Toronto, ON M5A 1T7
Canada

Kishore Kumar V. Kannan varadhak@uwindsor.ca
IBM Canada Ltd.
8200 Warden Avenue
Markham ON L6G 1C7
Canada

Abstract

The point location problem is to determine the position of n distinct points on a line, up to translation

and reflection by the fewest possible pairwise (adversarial) distance queries. In this paper we report

on an experimental study of a number of deterministic point placement algorithms and an

incremental randomized algorithm, with the goal of obtaining a greater insight into the practical

utility of these algorithms, particularly of the randomized one.

Keywords: Computational Geometry, Point-placement, Turnpike Problem, Experimental

Algorithms.

1. INTRODUCTION
The point placement problem: Let � = {�� , �� , … , �
 } be a set of n distinct points on a line L. The
point location problem is to determine the locations of the points uniquely (up to translation and
reflection) by making the fewest possible pairwise distance queries of an adversary. It is assumed
that the distances returned by the adversary are exact and valid. The assumption of validity means
that there exists a placement consistent with these distances. The queries are presented to the
adversary as a graph, called a point placement graph (ppg) or query graph, whose edges connect
pairs of points whose distances are being queried. Depending upon the adversary’s answers, the
ppg is adaptively modified by inserting additional edges and querying these. This process is
repeated over the successive rounds. A ppg G is said to be line rigid if (or simply rigid) if its vertices
have a unique placement on L for a valid assignment of lengths to its edges.

A non-adversarial version of the above problem is this: a query graph is presented with assigned

edge lengths and all possible linear placements of its vertices are to be determined. In [1] this

problem was solved in polynomial time for weakly triangulated graphs. However, Saxe [2] showed

that the linear embedding problem for an arbitrary graph whose edge-lengths are positive integers

is strongly NP-complete.

An offline version of this problem is the construction of the coordinates of a set of n points, given
exact distances between all pairs of points (see [3], [4]). Algorithms exist that not only determine the
coordinates but also the minimum dimension in which the points can be embedded (see [6]). A more
challenging version of this problem is when all the entries of the distance matrix are not known and

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 2

necessary and sufficient conditions are sought under which the unknown distance entries can be
determined. This is the well-known and extensively studied distance matrix completion problem [5],
[6], [7].

Motivation: The point-placement problem appears in different guises in several diverse areas of
research, to wit computational biology, learning theory, computational geometry, etc.

In learning theory [8] this problem is one of learning a set of points on a line non-adaptively, when
learning has to proceed based on a fixed set of given distances, or adaptively when learning
proceeds in rounds, with the edges queried in one round depending on those queried in the
previous rounds.

The version of this problem studied in Computational Geometry is known as the turnpike problem.
The description is as follows. On an expressway stretching from town A to town B there are several
gas exits; the distances between all pairs of exits are known. The problem is to determine the
geometric locations of these exits. This problem was first studied by Skiena et al. [9] who proposed
a practical heuristic for the reconstruction. A polynomial time algorithm was given by Daurat et
al. [10].

In computational biology, it appears in the guise of the restriction site mapping problem. Biologists
discovered that certain restriction enzymes cleave a DNA sequence at specific sites known as
restriction sites. For example, it was discovered by Smith and Wilcox [11] that the restriction
enzyme Hind II cleaves DNA sequences at the restriction sites GTGCAC or GTTAAC. In lab
experiments, by means of fluorescent in situ hybridization (FISH experiments) biologists are able to
measure the lengths of such cleaved DNA strings. Given the distances (measured by the number of
intervening nucleotides) between all pairs of restriction sites, the task is to determine the exact
locations of the restriction sites. The point location problem also has close ties with the probe
location problem in computational biology (see [12]).

The turnpike problem and the restriction mapping problem are identical, except for the unit of
distance involved; in both of these we seek to fit a set of points to a given set of inter-point distances.
As is well-known, the solution may not be unique and the running time is polynomial in the number
of points. While the point placement problem, prima facie, bears a resemblance to these two
problems it is different in its formulation - we are allowed to make pairwise distance queries among
a distinct set of labeled points. It turns out that it is possible to determine a unique placement of the
points up to translation and reflection in time that is linear in the number of points.

This paper has several objectives. The point placement algorithms that we have designed rely
critically on the correct and exhaustive enumeration of a large number of rigidity conditions (the
algorithm based on the 6:6 jewel, for example). One of the goals of our implementations was to
obtain certificates of their correctness. While theoretical comparisons of the query complexities are
possible up to the O-notation, the experiments were designed to obtain exact numbers for very
large inputs. More importantly, we wanted to verify our intuition about the relative time complexities
of these algorithms. While the randomized algorithm is theoretically very attractive, we were
interested in checking how it behaves in practice.

Prior Work: Early research on this problem was reported in [12] [13]. In [8] it was shown that the
jewel (see Fig. 1) and K

2,3
 are both rigid, as also how to build large rigid graphs of density 8/5

(this is an asymptotic measure of the number of edges per vertex as the number of vertices go to
infinity) out of the jewel. In a subsequent paper, Damaschke [14] proposed a randomized 2-round
strategy that makes (1+o(1))n distance queries with high probability and also showed that this is not
possible with 2-round deterministic strategies. The computational complexity of this algorithm is
exponential, making it a completely impractical point placement algorithm (our implementation
confirms this, too). Chin et al. [15] improved many of the results of [8]. Their principal contributions
are a 3-round construction of rigid graphs of density 5/4 from 6-cycles and a lower bound of 17n/16
for any 2-round algorithm. They also introduced the following concept of a layer graph, useful for
finding conditions that make a ppg rigid.

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 3

Definition 1 We first choose two orthogonal directions x and y (actually, any 2 non-parallel
directions will do). A graph G admits a layer graph drawing if the following 4 properties are satisfied:

P1 Each edge e of G is parallel to one of the two orthogonal directions x and y.

P2 The length of an edge e is the distance between the corresponding points on L.

P3 Not all edges are along the same direction (thus a layer graph has a two-dimensional extent).

P4 When the layer graph is folded onto a line, by a rotation either to the left or to the right about
an edge of the layer graph lying on this line, no two vertices coincide.

Chin et al. [15] proved the following result.

Theorem 1 A ppg G is rigid iff it cannot be drawn as a layer graph.

In [16] we proposed a 2-round algorithm that makes 4n/3+O(1) distance queries to construct rigid
ppg on n points using a 6:6 jewel as the basic component.

Overview of contents: In the next section we provide a tabular summary of the state-of-the-art of
deterministic point placement algorithms and the only known incremental randomized algorithm. In
section three, we review several 1-round algorithms. This is followed by a discussion of 2-rounds
and 3-rounds algorithm in the next two sections respectively. In section six, we report on the
experimental results obtained by careful implementations of several deterministic algorithms and
the incremental randomized algorithm. This is followed by a detailed discussion of the results and
we conclude in the next section.

2. STATE-OF-THE-ART FOR POINT PLACEMENT ALGORITHMS
As mentioned in the introduction, the edge queries of a point placement algorithm can be spread
over several rounds. Several algorithms are extant that work in one or more rounds. The current
state of the art is summarized in Table 1.

TABLE 1: The current state of the art.

Definition 2 The density of a graph G with m edges and n vertices is defined to be m/n.
Thus the number of edges in a query graph is its density times the number of vertices, n.

Algorithm Rounds Query Complexity Time
Complexity

 Upper Bound Lower Bound

3-cycle 1 2n−3 4n/3 O(n)

K
2,3

 1 5n/3−c 4n/3 O(n)

4:4 jewel 1 8n/5−c 4n/3 O(n)

4-cycle 2 3n/2 9n/8 O(n)

5-cycle 2 4n/3+O(n) 9n/8 O(n)

 5:5 jewel 2 10n/7+O(1) 9n/8 O(n)

 6:6 jewel 2 4n/3+O(1) 9n/8 O(n)

 3-path 2 9n/7 9n/8 O(n)

randomized 2 n+O(n/logn) unavailable
O(n

2
/logn)

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 4

Comment: The 9n/8 lower bound on 2-round algorithms was proved [17], improving the lower
bound of 30n/29 by Damaschke [8] and the subsequent improvement to 17n/16 by [15] and the
further improvement to 12n/11 by [16]. As for the lower bound on 1-round algorithms, the following
result was proved in [8].

Theorem 2 [8] The density of any line rigid graph is at least 4/3, the only exceptions being the jewel,

K
2,3

,K
3

 and K
−
4

 (shown in Fig 1).

FIGURE 1: Graphs quoted in Theorem 1.

The density, multiplied by the number of vertices n, gives the lower bound of 4n/3.

3. 1-ROUND ALGORITHMS
1-round algorithms are based on gluing together multiple copies of a simple line rigid graph. We
have performed experiments with the graphs K

2,3
, the 4:4 jewel or simply the jewel graph and K

3
, the 3-cycle graph.

The simplest of all, the 3-cycle 1-round algorithm, has the query graph shown in Fig. 2. It is obtained
by gluing together multiple copies of a line rigid triangle.

FIGURE 2: Query graph using triangles.

The query complexity of this algorithm is 2n−3, as this is the number of edges in the graph.

Using K

2,3
 as the basic line rigid graph, we attach multiple copies of this graph from a common

strut (edge). This requires querying 5 edges for each 3 newly-added points. Thus if n=3k+2, for
some k≥1, then the number of edges queried is 5k+1 or 5n/3−10/3. When n=3k or 3k+1, we make
triangles with the strut and each of the remaining points. In all cases, the number of edges queried
is at most 5n/3−c, where c is at most 4.

Using the jewel (leftmost graph in Fig. 1) as the basic line rigid graph, we attach multiple copies of
this graph from a common strut. This requires querying 6 edges for each 5 newly-added points.
Thus if n=5k+2, for some k≥1, then the number of edges queried is 8k+1 or 8n/5−11/5. When
n=5k+d where d=0,1,3,4, we make triangles (or perhaps a K

2,3
 if there are enough points) with

the strut and each of the remaining points. In all cases, the number of edges queried is at most
8n/5−c, where c is a small constant.

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 5

4. 2-ROUND ALGORITHMS
We have experimented with three different types of graphs as basic building blocks: the 4-cycle,
5-cycle, 3-path; in addition, we have also implemented a randomized algorithm due to [16].

The 4-cycle 2-round algorithm is typical of the other 2-round algorithms listed in Table 1 and thus
merits an extended description.

4-cycle Algorithm
If G=(V,E) is a query graph, an assignment l of lengths to the edges of G is said to be valid if there is
a placement of the nodes V on a line such that the distances between adjacent nodes are consistent
with l. We express this by the notation (G,l). By definition (G,l) is said to be line rigid if there is a
unique placement up to translation and reflection, while G is said to be line rigid if (G,l) is line rigid for
every valid l. A 3-cycle (or triangle) graph is line rigid, which is why the 3-cycle algorithm needs only
one round to fix the placement of all the points. A 4-cycle (or quadrilateral) is not line rigid, as there
exists an assignment of lengths that makes it a parallelogram whose vertices have two different
placements as in Fig. 3. This has two implications: the first is that we have to find suitable rigidity
conditions by making sure that no drawing layer graph drawing is possible; the second is that the
queries will have to be spread over several rounds.

FIGURE 3: Two different placements of a rectangle p1p2p3p4.

For this algorithm, the query graph presented to the adversary in the first round has the structure
shown in Fig. 4.

FIGURE 4: Query graph for first round in a 2-round algorithm using quadrilaterals.

Making use of the following simple but useful observation,

Observation 1 At most two points can be at the same distance from a given point p on a line L, in
the second round we query edges connecting pairs of leaves, one from the group of size k and the
other from the group of size k+2, making quadrilaterals that are not parallelograms (the rigidity
condition |p

1
p

i
|≠|p

2
p
j
| ensures that the quadrilateral p

1
p
i
p
j
p

2
 is not a parallelogram).

5-cycle Algorithm
In the 5-cycle algorithm [15], the query graph submitted to the adversary in the first round is shown
in Fig. 5.

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 6

FIGURE 5: Query graph for the 5-cycle algorithm.

Each five cycle is completed by selecting edges to ensure that the following rigidity conditions are
satisfied. For more details on this algorithm see [17].

1. |p
i
q
i
|≠|rs

j
|

2. |p
i
q
i
|≠|s

j
t
jk

|

3. |p
i
q
i
|≠||rs

j
|±|s

j
t
jk

||

4. |s
j
t
jk

|≠|q
i
r|

5. |s
j
t
jk

|≠||p
i
q
i
|±|q

i
r||

3-path Algorithm
In the 3-path algorithm [17], the query graph submitted to the adversary in the first round is shown in
Fig. 6.

FIGURE 6: Query graph for the 3-path algorithm.

In the second round, the algorithm select edges suitably to satisfy the following rigidity conditions.

1. |p
1
p

2
|∉ {|r

1
s|, |r

2
s|, ||r

1
s|±|r

2
s||},

2. |p
2
p

3
|∉ {|r

2
s|, |r

3
s|, ||r

2
s|±|r

3
s||},

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 7

3. |p
3
p

1
|∉ {|r

3
s|, |r

1
s|, ||r

3
s|±|r

1
s||},

4. |p
1
q

1
|∉ {|r

1
s|, |r

2
s|, ||r

1
s|±|r

2
s||, ||p

1
p
2

|±|r
1

s||, ||p
1
p
2

|±|r
2

s||, ||p
1
p
3

|±|r
1

s||, ||p
1
p
3

|±|r
3

s||,

||p
1
p
2

|±|r
1

s|±|r
2

s||, ||p
1
p
3

|±|r
1

s|±|r
3

s||},

5. |p
2
q

2
|∉ {|r

1
s|, |r

2
s|, |p

1
q

1
|, ||r

1
s|±|r

2
s||, ||p

1
p
2

|±|r
1

s||, ||p
1
p
2

|±|r
2

s||, ||p
2
p
3

|±|r
2

s||,

||p
2
p
3

|±|r
3

s||, ||p
1
q
1

|±|r
1

s||, ||p
1
q
1

|±|r
2

s||, ||p
1
p
2

|±|r
1

s|±|r
2

s||, ||p
2
p
3

|±|r
2

s|±|r
3

s||,

||p
1
q
1

|±|r
1

s|±|r
2

s||, ||p
1
q
1

|±|p
1
p

2
|±|r

1
s||, ||p

1
q
1

|±|p
1
p

2
|±|r

2
s||, ||p

1
q
1

|±|p
1
p

2
|±|r

1
s|±|r

2
s||

},
6. |p

3
q

3
|∉ {|r

1
s|, |r

2
s|, |r

3
s|, |p

1
q

1
|, |p

2
q

2
|, ||r

2
s|±|r

3
s||, ||r

3
s|±|r

1
s||, ||p

1
p
3

|±|r
3

s||,

||p
2
p
3

|±|r
3

s||, ||p
1
q
1

|±|r
1

s||, ||p
1
q
1

|±|r
3

s||, ||p
2
q
2

|±|r
2

s||, ||p
2
q
2

|±|r
3

s||, ||p
1
p
3

|±|r
1

s|±|r
3

s||

, ||p
2
p
3

|±|r
2

s|±|r
3

s||, ||p
1
q
1

|±|r
1

s|±|r
3

s||, ||p
2
q
2

|±|r
2

s|±|r
3

s||, ||p
1
q
1

|±|p
1
p

3
|±|r

3
s||,

||p
2
q
2

|±|p
2
p

3
|±|r

3
s||, ||p

1
q
1

|±|p
1
p

3
|±|r

1
s|±|r

2
s||, ||p

2
q
2

|±|p
2
p

3
|±|r

2
s|±|r

3
s||}.

on each 3-path component shown in Fig. 7. For more details on this algorithm, see [17].

FIGURE 7: A 3-path component.

Randomized Algorithm
Damaschke [14] proposed an incremental randomized algorithm (for an introduction to randomized
algorithms see [18]) that expands a set L of points whose positions have been fixed. The set L is
initialized by picking an arbitrary point p

0
 from S and setting it as the origin of the line on which the

points lie. Relative to p
0

 a random path P=p
0
p
1

p
2
... is incrementally constructed by choosing a

point p
i
 at random from the set S−L, and measuring the distance d(p

i
,p

i+1
) for each i=0,1,2,...

Simultaneously, the algorithm maintains all possible signed sums
±d(p

0
p
1
)±d(p

1
p

2
)±⋯±d(p

i
,p

i+1
)⋯, until for some p

k+1
 the signed sums are no longer all distinct.

If a signed sum that repeats is the actual distance of p

k+1
 from p

0
, then the placement of p

k

relative to p
k+1

 becomes ambiguous. We stop at this point, query the distance d(p
0

,p
k
) and use

the signed sum equal to this distance to fix the placements on L of all the points on the path from p
1

to p
k
 (in Damaschke’s description the position of p

k
 is fixed relative to two points in L and the

signed sum corresponding to this position is chosen to fix the placements of the other points on the
path constructed thus far).

Resetting p

k
 as the new p

0
 and p

k+1
 as the new p

1
, the algorithm repeats until L=S.

Damaschke [14] proved the following result.

Theorem 3 [14] The above randomized algorithm for the point location problem has, for any
instance, performance ratio 1 + O(1/ log n) with high probability.

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 8

Performance ratio is defined as the number of distance queries divided by the number of points. It is
straightforward to turn this into a 2-round algorithm. Fix the placement of 2 points p

0
 and p

1
 and

choose a random path P=p
1
p
2

…p
n

 on all the remaining points to be placed and submit this query

graph to the adversary. As before, we compute signed sums, stopping when two signed sums are
equal when we have reached the point p

k+1
 on P. We resolve the ambiguity in the placement of

p
k+1

 by adding edges from p
k+1

 to p
0

 and p
1

, whose lengths we will query in the second round.

Continue as in the incremental algorithm from p
k+1

 on.

5. 3-ROUND ALGORITHM
The 3-round algorithm we have implemented is due to Chin et al. [15] and uses the 6-cycle graph as
the basic building block. The query graph submitted to the adversary in the first round is shown in
Fig. 8.

FIGURE 8: Query graph for the 6-cycle algorithm.

Each six cycle is completed over two additional rounds by selecting edges to ensure that the
following rigidity conditions are satisfied. For more details on this algorithm see
[DBLP\s\do5(c)onf\s\do5(w)abi\s\do5(C)hinLSY07].

1. |op|∉{|qr|,|rs|,|st|,||qr|±|rs||,||rs|±|st||,||qr|±|st||,||qr|±|rs|±|st||}
2. |pq|∉{|rs|,|st|,|rs|±|st||}
3. |qr|∉{||st|||op|±|s

j
t
jk

||}

4. |rs|≠||op|±|pq||
5. |st|∉{||op|±|pq||,||pq|±|qr||,||op|±|qr||,||op|±|pq|±|qr||}
6. ||op|±|pq||≠||rs|±|st||

6. EXPERIMENTAL RESULTS
We implemented seven deterministic algorithms (three 1-round, three 2-rounds, one 3-rounds) and
the 2-round version of the incremental randomized algorithm, discussed in the previous section.

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Ka

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016

The control parameters used for comparing their performances are: query complexity and time
complexity. The results of the experiments for the deterministic algorithms are shown in the graphs
below. In our experiments, we simulated an adversary by creating a linear layout a
placements of the points by the algorithms against this. This also solved the problem of ensuring a
valid assignment of lengths to the queried edges. We will have more to say about this in the next
section.

Predictably enough, the above chart of Fig.
to query complexity is consistent with the upper bounds for these algorit
of these algorithms were run on points sets of different sizes, up to 50000 points.

Clearly, 3-cycle is consistently the fastest; but despite its complex structure the 3
does well as compared to the 4

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016

ters used for comparing their performances are: query complexity and time
complexity. The results of the experiments for the deterministic algorithms are shown in the graphs
below. In our experiments, we simulated an adversary by creating a linear layout and checking the
placements of the points by the algorithms against this. This also solved the problem of ensuring a
valid assignment of lengths to the queried edges. We will have more to say about this in the next

 FIGURE 9: Query Complexity Graphs.

Predictably enough, the above chart of Fig. 9 shows that the behavior of the algorithms with respect
to query complexity is consistent with the upper bounds for these algorithms shown in Table 1. Each
of these algorithms were run on points sets of different sizes, up to 50000 points.

 FIGURE 10: Time Complexity Graphs.

cycle is consistently the fastest; but despite its complex structure the 3-
does well as compared to the 4-cycle and the 5-cycle algorithms. We have not included the

 9

ters used for comparing their performances are: query complexity and time
complexity. The results of the experiments for the deterministic algorithms are shown in the graphs

nd checking the
placements of the points by the algorithms against this. This also solved the problem of ensuring a
valid assignment of lengths to the queried edges. We will have more to say about this in the next

shows that the behavior of the algorithms with respect
hms shown in Table 1. Each

-path algorithm
cycle algorithms. We have not included the

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 10

performance of the randomized algorithm in the above graphs as it is incredibly slow and we ran it
for point sets of size up to 16,000. Table 2 below shows its performance details.

 Number of points Number of Distance
Queries

Running time
(hrs:mins:secs)

 2000 2382 0:10:41

 4000 4712 0:57:32

 6000 7048 2:25:38

 8000 9348 5:27:53

 10000 11668 8:38:34

 12000 13999 13:25:24

 14000 16282 18:34:58

 16000 18625 23:19:40

TABLE 2: Performance of the 2-rounds randomized algorithm.

7. DISCUSSION
The behavior of the deterministic algorithms with respect to time complexity is opposite to their
behavior with respect to query complexity. The growth-rate of the running time versus the size of the
input point-set is also near-linear. Both results are as expected. It is also seen (Fig. 10) that
increasing the number of rounds has a noticeable impact on the running time for large input size.

As reported, in none of the deterministic algorithms it was explicitly stated how to obtain an actual
layout from the rigid graph constructed on the input point set. In our implementations we devised a
signed-sum technique to generate a layout.

The assumption that an assignment of lengths is valid is a strong one and, as mentioned earlier, we
circumvented this problem by creating a layout and reporting queried lengths based on this. The
correctness of the placements of the points by an algorithm is verified by checking that it generates
a layout identical to the one used to report queried lengths. It needs be pointed out that we have
relied on exact integer arithmetic to test the rigidity conditions in the 2-rounds deterministic
algorithms. Floating-point arithmetic can be handled provided exact arithmetic packages are used.
Point location in an inexact model is an interesting topic for further research.

An algorithmic approach to the solution of this problem is based on constructing the Cayley-Menger
matrix out of the squared distances of a query graph.

For a query graph with n vertices, the pre-distance matrix D=[D
ij
] is a symmetric matrix such that

D
ij
=d

2
ij

, where d
ij
 is the distance between the vertices (points) i and j of the query graph. The

Cayley-Menger matrix, C=[C
ij
] is a symmetric (n+1)×(n+1) matrix such C

0i
=C

i0
=1 for 0<i≤n,

C
00

=0 and C
ij
=D

ij
 for 1≤i,j≤n, [19].

The vertices of the query graph has a valid linear placement provided the rank of the matrix B is at
most 3 (this is a special case of the result that there exists a d-dimensional embedding of the query
graph if the rank of B is at most d+2; our claim follows by setting d=1, see [20]) .

It’s interesting to check this out for the query graph in Fig. 11 on 3 points.

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 11

FIGURE 11: A query graph on 3 vertices.

The Cayley-Menger matrix B for the above query graph is:

 B=









0 1 1 1

1 0 1x2

1 1 0 4

1x24 0

,where x=d
13

, the unknown distance between the points p
1

 and p
3

.

By the above result, the 4×4 minor, det(B) = 0. This leads to the equation

 x
4
−10x

2
+9=0

which has two solutions x=3 and x=1, corresponding to the two possible placements (embeddings)
of the points p

1
,p

2
 and p

3
. Assuming p

2
 is placed to the right of p

1
, in one of these placements

p
3

 is to the right of both p
1

 and p
2

; in the other, to the left of them both.

7.1 Deterministic versus Randomized
Table 2 lends credence to the claim by Damaschke [14] that the number of distance queries of the
incremental randomized algorithm is bounded above by O(n(1+1/logn)) in the worst case.
Unfortunately, it is too slow to be run with very large inputs.

We suspect that the number of times signed sums become equal is intimately connected with the
distribution of the points that we generate by pretending to be the adversary. To test this we
generated the layout by picking a point at random in a fixed size interval, and picking the next
random point in the same fixed-size interval whose left end point is the last point selected. In our
experiments we varied this fixed interval from 5 units to 500000 units and reported the number of
times we got equal signed sums for points sets of sizes varying from 20 to 1000. Interestingly
enough, as can be seen from Table 3 below that the numbers decrease as the interval-size
increases.

 Range

 # of points 1-5 1-10 1-20 1-50 1-100 1−10
3

1−10
4

1−5*10
4

 1−10
5

1−5*10
5

 20 7 7 6 5 4 3 3 2 2 1

 50 16 13 11 10 9 7 6 6 5 4

 100 25 23 20 19 15 11 9 8 8 7

 200 45 39 35 33 29 22 18 17 16

 400 78 70 61 56 49 41 39 34

 1000 167 149 140 123 111 94 82 76

TABLE 3: Performance of incremental randomized algorithm for nearly uniform distributions.

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 12

The incremental randomized algorithm is often held up as an example of simplicity in comparison to
deterministic algorithms, like the 3-path one, for example. The above experiments paint a
completely different picture. From a practical point of view, it is completely ineffective as it is
essentially a brute-force algorithm. The deterministic algorithms, on the other hand, score high on
both parameters - low query complexity and low time complexity.

8. CONCLUSIONS
In this paper we have reported the first-ever attempt to make an experimental study of algorithms for

the point placement problem. The results substantiate the correctness of the intricate theoretical

analysis, reported in [16], [17], [22] and [23].

All algorithms have been implemented in C on a computer with the following configuration: Intel(R)
Xeon(R) CPU, X7460 @ 2.66GHz OS: Ubuntu 12.04.5, Architecture: i686.
Further work can be done on several fronts. Particularly worthwhile is to conduct further
experiments into the behavior of the randomized algorithm, specifically the influence of floating
point arithmetic on keeping signed sums unequal. On the theoretical side, it might be interesting to
come up with a completely different randomized algorithm - one that does not depend on
maintaining an exponential number of signed sums.

9. REFERENCES

[1] A. Mukhopadhyay, S. Rao, S. Pardeshi and S. Gundlapalli. "Linear Layouts of weakly
triangulated graphs". Workshop on Algorithms and Computation, Chennai, 2014.

[2] J. Saxe. "Embeddability of weighted graphs in k-space is strongly NP-hard". 17th Allerton
Conference on Communication, Control and Computing, 1979.

[3] G. Young and A. Householder. "Disussion of a set of points in terms of their mutula distances".
Pychometrika, vol. 3, no. 1, pp. 19-22, 1938.

[4] L. Blumenthal. Thory and applications of distance geometry, 2nd edition. New York: Chelsea,
1970.

[5] A. Y. Alfakih, A. Khandani and H. Wolkowicz. "Solving euclidean matrix distance completion
problems using semi-definite programming". Comput. Optim. Applications, vol. 12, no. 1-3, pp.
13-30, 1999.

[6] M. Laurent. "Matrix completion problems". Encyclopedia of Optimization, Second Edition,
2009, pp. 1967-1975.

[7] M. Bakonyi and C. Johnson. "The euclidean matrix distance completion problem". SIAM J.
Matrix Anal. Appl., vol. 16, no. 2, pp. 646-654, 1995.

[8] P. Damaschke. "Point placement on the line by distance data". Discrete Applied Mathematics,
vol. 127, no. 1, p. 53–62, 2003.

[9] S. Skiena, W. Smith and P. Lemke. "Reconstructing sets from interpoint distances". In Sixth
Annual ACM Symposium on Computational Geometry, New York, 1990.

[10] A. Daurat, Y. Gérard and M. Nivat. "The chords’ problem". Theor. Comput. Sci., vol. 282, no. 2,
p. 319–336, 2002.

Asish Mukhopadhyay, Pijus K. Sarker & Kishore Kumar V. Kannan

International Journal of Experimental Algorithms (IJEA), Volume (6) : Issue (1) : 2016 13

[11] H. Smith and K. Wilcox. "A restriction enzyme from hemophilus influenzae. i. purification and
general properties". Journal of Molecular Biology, vol. 51, p. 379–391, 1970.

[12] J. Redstone and W. W. L. Ruzzo. "Algorithms for a simple point placement problem". In
CIAC'00:Proceedings of the 4th Italian Conference on Algorithms and Complexity, London, UK,
2000.

[13] B. Mumey. "Probe location in the presence of errors: a problem from DNA mapping". Discrete
Applied Mathematics, vol. 104, no. 1-3, pp. 187-201, 2000.

[14] P. Damaschke. "Randomized vs. deterministic distance query strategies for point location on
the line". Discrete Applied Mathematics, vol. 154, no. 3, pp. 478-484, 2006.

[15] F. Chin, H. Leung, W.-K. Sung and S.-M. Yiu. "The point placement problem on a line -
improved bounds for pairwise distance queries". In Proceedings of the Workshop on
Algorithms in Bioinformatics, 2007.

[16] M. Alam and A. A. Mukhopadhyay. "More on generalized jewels and the point placement
problem". J. Graph Algorithms Appl., vol. 18, no. 1, pp. 133-173, 2014.

[17] M. Alam and A. Mukhopadhyay. "Three paths to point placement". In Proceedings of the
Conference on Algorithms and Discrete Applied Mathematics, 2015.

[18] R. Motawani and P. Raghavan. Randomized Algorithms. New York, NY: Cambridge University
Press, 1995.

[19] G. Crippen and T. Havel. Distance Geometry and Molecular Conformation. John Wiley and
Sons, 1988.

[20] I. Emiris and I. Psarros. "Counting Euclidean Embeddings of line rigid graphs". 2014.

[21] A. Mukhopadhyay, P. Sarker and K. Kannan. "Randomized versus deterministic point
placement algorithms: An experimental study". In ICCSA, Banff, 2015.

[22] M. Alam and A. A. Mukhopadhyay. "A new algorithm and improved lower bound for point
placement on a line in two rounds". In Proceedings of the 22nd Canadian Conference on
Computational Geometry, 2010.

[23] M. Alam and A. Mukhopadhyay. "Improved upper and lower bounds for the point placement
problem". 2012.

