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Abstract 
 
Robotics, video games, environmental mapping and medical are some of the fields that use 3D 
data processing. In this paper we propose a novel optimization approach for the open source 
Point Cloud Library (PCL) that is frequently used for processing 3D data. Three main aspects of 
the PCL are discussed: point cloud creation from disparity of color image pairs; voxel grid 
downsample filtering to simplify point clouds; and passthrough filtering to adjust the size of the 
point cloud. Additionally, OpenGL shader based rendering is examined. An optimization 
technique based on CPU cycle measurement is proposed and applied in order to optimize those 
parts of the pre-processing chain where measured performance is slowest. Results show that 
with optimized modules the performance of the pre-processing chain has increased 69 fold. 

Keywords: Point Cloud, Point Cloud Library, Point Data Pre-processing. 

 
 
1. INTRODUCTION 
Point clouds are sparse spatial representations of 3D object shapes. Algorithms such as the ones 
in the frequently used RANSAC [1] method can then be applied to reconstruct the complete 
object shapes from the point clouds. 
 
A popular library for storing and manipulating point cloud data is the Point Cloud Library (PCL) 
[2].  The PCL is a large scale open source project that is focused on both 2D and 3D point clouds 
and includes some image processing functionality. Currently the Library has over 120 developers, 
from universities, commercial companies and research institutes. The PCL is released under the 
terms of the BSD license, which means that it is free for commercial and research use. It can be 
cross compiled for many different platforms including Windows, Linux, Mac OS, Android and iOS. 
This allows the library to also be used in embedded systems. The main algorithm groups in the 
PCL are for segmentation, registration, feature estimation, surface reconstruction, model fitting, 
visualization and filtering.  
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In the work presented in this paper stereo-photogrammetry is used as the main method of 3D 
data acquisition. This method is based on stereoscopy where two spatially separated images are 
obtained from different viewing positions [3]. The analysis of disparity (separation) between 
corresponding points in both images encodes the distance of object points which are then stored 
in a disparity map.  
 
This paper is organized as follows: section 2 presents related work in the field of 3D data 
acquisition and point cloud processing, followed in section 3 by a description of PCL modules and 
their optimization, while conclusion and future work are discussed in sections 1 and 1. 

 
2. RELATED WORK 
There are many uses for 3D data ranging from environmental perception for robots via 
autonomous car navigation, playing video games to medical uses such as wound measurement, 
facial reconstruction and more. A number of ways to capture 3D data have been proposed and 
implemented. Many existing technologies rely heavily on the use of structured or infrared lighting 
to extract the depth data [4]. The technique of structured lighting is widely used in computer vision 
for its many benefits [5] in terms of accuracy and ease of use. Over the last 15 years 3D laser 
scanners have been developed [6] as active remote sensing devices. Such scanners can quickly 
scan thousands or even millions of 3D cloud points in a scene. Time of flight cameras are also 
widely used in computer vision. The principle behind these cameras is similar to that of a sonar, 
but with light replacing sound. Such cameras were introduced into the wider public domain by the 
Microsoft Xbox One console [7] to replace its older structured lighting based Kinect sensor.  

 
Once 3D data has been acquired by the above systems some kind of processing needs to be 
applied to extract useful information as well as to remove noise, outliers or any unnecessary 
information. With the number of points that can be sampled point clouds can get extremely large 
and contain noise as well as outliers and errors. Thus the pre-processing stage is important [8] [9] 
as it deals with noise, error and outlier removal through the use of filters as well as smoothing the 
point cloud and reducing the point count while still keeping the relevant feature information. There 
are software tools available for such processing [10] [11] [12] but very few provide a complete 
library framework to incorporate into software projects.  3DReshaper [13] is such a library that 
provides point cloud processing capabilities. The PCL is the most commonly used library for point 
cloud processing, thus the PCL was used as the main development library in this research. 
 
The current application focus of the PCL library is in the field of robotics. For robots to sense, 
compute and interact with objects or whole scenes a way to perceive the world is needed, which 
is why the PCL is used as a part of the Robot Operating System (ROS). Using the PCL as a part 
of ROS, robots can compute a 3D environment in order to understand it, detect objects and 
interact with them. Due to space and power restrictions such systems rarely use desktop-like 
computing devices and are therefore in most cases implemented on relatively small embedded 
systems. In these systems the universal nature of the PCL (many operating systems, many 3D 
data formats, etc.) results in slow performance. The following section III proposes a range of 
optimizations in order to improve performance. 

 
3. POINT CLOUD PROCESSING OPTIMISATIONS 
Four key algorithm areas were selected for optimization: point cloud creation (section 3.1), 
rendering (section 3.2), voxel grid down-sampling (section 3.3), pass through filtering (section 
3.4) and the pre-processing chain (section 3.5). For the stereo test data the New Tsukuba Stereo 
Dataset [14] was used. This is a collection of synthetic stereo image pairs created using computer 
graphics. Additionally, the OpenCV (Open Source Computer Vision Library) was used for image 
loading. The project code was run on a desktop Intel i7 machine. The first set of tests used the 
Microsoft Visual Studio 2013 code analyzer for inspecting code and its performance statistics. 
The purpose of the tests was to identify which parts of the code are using the most of the CPU 
calls and then to optimize those.  
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3.1. Point Cloud Creation Speed Improvements 
When using a stereo camera setup depth values are represented as a disparity map which in 
most cases is a greyscale image where the brightness of pixels represents depth values. A 
second output is a color image that stores information of the actual color value of the point. From 
the disparity and color images a point cloud can be produced. The PCL provides the 
OrganisedConversion<>::convert() method which uses the disparity map, color image and the 
focal length of the camera to produce a point cloud. 
 
Point cloud generation is in 3 stages: first the input images are loaded into memory using 
OpenCV which converts them to vectors that can be passed as parameters to the second stage, 
PCL point cloud creation. The point cloud is then rendered on screen in the third stage. Using 
Microsoft Visual Studio 2013 code profiler CPU cycles were measured per line of code. In order 
to average-out operating system specific random overheads all following test were performed 
three times. Results are shown in FIGURE 1. 

 

FIGURE 1: Test figures for CPU usage of different stages. Test 1 – 3 show pre-optimised PCL code, 
while tests 4 and 5 show optimised conversion. 

 

• For the first test OpenCV was used to read the Tsukuba dataset as a sequence of images, 
loaded one at a time. OpenCV, PCL point cloud generation and rendering algorithms were 
used ‘as is’ without changes and as provided from public repositories. The results are 
shown in the first bar in FIGURE 1. PCL point cloud generation required 36% of CPU 
cycles, rendering 45%. This resulted in a processing speed of 2 frames per second (fps).  

• In the second test rendering was disabled to identify CPU load more accurately when 
OpenCV loaded images one at a time. 

• This is contrasted by the third test where OpenCV loaded images not as individual stills 
but as a video sequence. Encoding the still images into a video sequence was achieved 
using the OpenCV Intel IYUV. This had a dramatic effect as OpenCV CPU cycles reduced 
from 27% to only 3%, leaving the remaining almost 97% to the PCL conversion. 

• In order to improve PCL performance numerous optimizations were made. In particular, 
these were a) bit-shifting pointer incrementation of color values to allow faster access and 
modification of values, b) vector clear and resize checks to avoid clearing and resizing a 
new vector when it is the same size as the previous one c) vector access optimizations 
through the use of data pointers which allowed the optimization of vector pushback 
overhead and d) several minor optimizations. The source code and documentation of 
these changes are available in the PCL developer’s forum [15]. The 4

th
 bar in FIGURE 1 

shows that as a result the CPU cycles needed for PCL conversion reduced by 66% to less 
than the cycles needed for image loading by OpenCV. 

• The two improvements documented in tests 3 and 4 were finally tested in the same way 
as in the first test of this series, i.e. with rendering switched on again. With image loading 
replaced by video loading and conversion optimized the total cycle usage of these two 

2fps            n/a             n/a              n/a            5fps 
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components now consume less than 10% of processor cycles while rendering now takes 
72%. Importantly, the overall frame rate increased to 5 frames per second. 

3.2. Rendering Speed Improvements 
Since rendering was now the new bottleneck, steps were taken to improve its performance.   
 
By default, rendering for the PCL is done by The Visualization Toolkit (VTK) which is an open 
source library for 3D computer graphics and image processing. This was replaced with a shader 
(i.e. graphics processor) based OpenGL rendering implementation for desktop PCs.   
 
The basic data structure inside the PCL is the point cloud. This is an assembly of sub-fields. The 
main ones are ‘width’, ‘height’ and ‘points’. ‘Points’ is a vector that stores points of PointT type 
which in turn can be PointXYZ, PointRGB, PointRGBA (and some other basic types). Under the 
existing PCL data structure non-colored point clouds of type PointXYZ could be rendered with our 
new OpenGL implementation but not colored ones. To enable this several changes were made to 
the PCL: 
 

• A fourth float value was added to the point cloud type union. This was easy to do since the 
union already had memory allocated for four float values but only x, y and z floats were 
declared. The forth parameter added now stores the color value to be passed to the 
OpenGL shaders. 

• To store the color values the three constituent independent integer values were bit-shifted 
into a single float which was then stored as the fourth value of the above union. This was 
done to avoid integer calculations having to be performed in the shaders while at the 
same time having minimal impact on the PCL. 

• However, OpenGL shaders do not support bit shifting. The color values were therefore 
extracted in the shader by manipulating the known structure (8 bits for each of the 
channel). In the vertex shader the floor() method was used to extract each color channel 
separately as the return value is an integer.  

The result of the above manipulations are shown in FIGURE 2. The two bars labelled ‘VTK’ are 
unchanged re-runs of the first and fifth group tests from the previous section (see FIGURE 1). 
When in the first test VTK is replaced by OpenGL the frame rate increases by a modest 50% to 3 
fps. When, however, this is done in the optimized system produced in the previous section the 
speed improvement is considerable: 38 fps. In this final system where all three components are 
optimized, OpenGL rendering uses only 8.5% of the processor cycles while before VTK used up 
72%. 
 

 

FIGURE 2: 1st and 5th re-tests (using the standard VTK renderer) compared to new OpenGL renderer. 
The first 2 bars represent performance of the non-optimised PCL code and the 3rd and 4th bar the optimised 

PCL/OpenCV code. 

2fps            3fps                              5fps           38fps 
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3.3. Voxel Grid Downsample Filter Improvements 
After the point cloud has been produced further processing is usually required, e.g. for data 
reduction and filtering operations. A relatively low resolution point cloud of 640 x 480 (e.g. 
produced by the Kinect) results in 307,200 points. While for some operations (e.g. thresholding) 
point processing follows an O(n) notation a more complex algorithm (e.g. k nearest neighbor 
filtering) becomes O(nk). This can place a heavy workload on the processor.  
 
One of the methods frequently used to lower the amount of points in a point cloud and 
unnecessary complexity while retaining detail and information is voxel grid down sampling. The 
down sampling is performed using an octree to sub-divide the point cloud into multiple cube 
shaped regions (voxels). After processing, all points in the voxel are reduced to a single one. This 
results in a point cloud that is smaller in size and complexity but is still precise enough to work 
with and has a smaller cost in terms of CPU performance. The PCL has a dedicated method for 
this called voxelGrid.filter(). For testing the leaf size values of the filter were 0.03f, 0.03f, 0.03f 
(3x3x3cm). Three groups of tests were performed as shown in FIGURE 3. 

 

FIGURE 3: Test figures for CPU usage of voxel grid. Test 1 shows the stock code, test 2 shows results 
with Quicksort algorithm implemented and test 3 shows overall optimised voxel grid performance. 

• In the first group of tests voxel filtering was added to the optimized processing chain 
developed in the previous two sections A and B. Voxel grid computation proved to be very 
CPU intensive with overall CPU cycle usage of 98%. This also resulted in a poor frame 
rate of under 0.1 fps (8.6 seconds per frame). Analysis of the filter code revealed that 30% 
of the processing was spent on sorting the points using a standard C++ library vector sort 
method. 

• The second group of tests was therefore performed with the sort method replaced by a 
Quicksort algorithm [16]. This algorithm takes on average O(n log n) steps to sort n points, 
but in the worst case scenario when  a chosen pivot value is the smallest or largest of the 
points to sort the algorithm has to make O(n

2
) comparisons. To avoid this possible issue a 

mean value is computed before the sorting to avoid using very small or very large values 
as the pivot. Compared to the standard C++ sort with 30% of processor cycles used, 
Quicksort was significantly more efficient, using only 0.9%. This unfortunately improved 
the overall filter method by only 5.2% as the computation shifted to different parts of the 
algorithm, mostly to vector access overheads. 

• For the third test group vector access was therefore optimized by replacing vector 
pushback calls with pointer accesses and improving the centroid finding which together 
took up 65% of the processing. These changes reduced the voxel filter computation time 
by 26% to an overall contribution of that in total using only 72% of CPU cycles.  

The combined changes to the sorting and vector processes increased the frame rate 91-fold to an 
average frame rate of about 10 fps. 

0.1fps                    0.1fps                     10fps 
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3.4. Pass Through Filter Improvements 
Another PCL provided post-processing method is passthrough.filter() which is as a means to 
allow the removal of points from the cloud which are not within a specified range. This allows the 
point cloud to be adjusted in any coordinate direction similar to a frustum cut-off. The 
passthrough.filter() method accepts parameters for upper and lower limits and a direction along 
the x, y or z axis. For the Tsukuba dataset the depth range values of 3 and 12 were used for 
testing in the z coordinate direction. Two groups of tests were performed with results shown in 
FIGURE 4. 
 

 

FIGURE 4: Test figures for CPU usage of pass through filter. The first and second test showing the stock 
code performance and second improved code performance respectively. 

• In the first test the pass through filter was appended to the optimized processing chain 
outlined previously in sections A and B.  The filter was very CPU intensive using 93.6% of 
cycles bringing down the frame rate to 3 fps. Analysis of the code showed that (as before 
with voxel filtering) vector accesses were inefficient.  

• After vector access optimization along the lines outlined before with voxel filtering and 
improving the non-finite entries check (54%) as well and field value memory copy calls 
(24%) the pass through filter now only consumes 41% of CPU cycles with the frame rate 
rising to 18 fps. 
 

3.5. Combined Pre-processing Chain 
The PCL modules analyzed above when combined create the main pre-processing chain of the 
point cloud manipulation. The order in which these algorithms are applied makes a substantial 
performance difference.  
 
Running the voxel filter first proved to be the slower combination as the down sampling had to be 
performed on the whole point cloud, in this case 307,200 points. Looking at FIGURE 5 it can be 
seen that voxel grid computation is the most CPU intensive task taking up 92% of all processing. 
Pass through filtering only took up 2% of CPU cycles and organized PCL conversion 4%. An 
optimized version saw a more balanced use of the processing with voxel grid processing lowered 
to 68% and pass through filtering at 12%. Organized conversion rose to 10% and OpenCV’s 
contribution increased to 7% from 0.2% previously. 

3fps                                        18fps 
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FIGURE 5: CPU usage shown for pre-processing applying voxel grid filter computations before pass 
through filtering. 

When the pass through filter was applied first the performance changed by a great margin. As 
shown in FIGURE 6 it can be seen that the voxel grid process is still the most CPU intensive part 
but has improved over the previous order. It was found to only use 65% of processing steps 
instead of 92%. This led to CPU cycles being distributed more evenly between the pass through 
filter (13%) and organized PCL conversion (20%). The optimized version of the modules exhibits 
the most even distribution of processing with voxel grid contribution lowered to 21% and pass 
through filtering taking up 33% of CPU cycles. Organized conversion used up 24% and OpenCV 
18% respectively. 

 

FIGURE 6: CPU usage shown for pre-processing applying pass through filtering before voxel grid 
computations. 

The order of code execution has led to a significant change in performance (see FIGURE 7). 
When the voxel grid was processed before the pass through filter the stock code was not able to 
render more than 0.1 fps, i.e. it took around 9.1 seconds to render a single frame. This order 
when used with the optimized code has shown a significant improvement as the frame rate 
increased to 3fps, i.e. it only took 98 milliseconds on average to render a single frame, making it 
on average up to 93 times faster. Similar results were seen in the reverse arrangement. The 
stock code with pass through filtering being applied first was able to render 0.4 fps (2.5 seconds 
per frame) which is a four times better performance. The biggest change was seen in the overall 
optimised code frame rate which on average was 25 fps making it close to real time performance 

0.1fps                                     9fps 

0.4fps                                       25fps 



Marius Miknis, Ross Davies, Peter Plassmann & Andrew Ware 

 
 

International Journal of Image Processing (IJIP), Volume (10) : Issue (2) : 2016 70 

as it only took 37 miliseconds to render a frame. Overall this is a 69 times better performance 
compared to the original unaltered stock code. 

 

FIGURE 7: Frame rates shown of stock and optimised modules in different execution orders. 

To further support and test the findings additional testing was performed on a wide range of 
devices which included embedded systems such as Raspberry Pi 1 and 2, tablets, laptops and 
powerful rendering machines. In total eighteen different machines were used to perform a 
comparative evaluation between the stock and optimised code, of which some ran a Linux 
operating system to give a full spectrum of hardware and software combinations. These results 
show that optimised code was able to increase the performance for every single machine tested. 
The embedded systems saw the smallest increase due to their lack of power on the ARM based 
processor, but still saw four times better performance with optimise code compared to stock. As 
the power of machines increased so did the optimised code performance while stock stayed 
almost level.  

 

FIGURE 8: Comparative evaluation test results between stock and optimised code on eighteen different 
machines sorted from least powerful(left) to most powerful(right). 
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4. CONCLUSIONS 
Since the PCL is a general purpose and multi-platform library many of its internal aspects are 
generalized, not all parts are optimized and performance can suffer on time sensitive processing. 
As shown in section 3 optimized PCL modules provide significant performance gains over the 
stock modules. When neglecting the minimal cost of performance testing measurement 
overheads speed increased 2.4 times for the organized PCL conversion, 91 times for voxel grid 
filtering and 7.8 times for pass through filtering. As seen in section 3.5 this allows for the use of 
multiple PCL modules together while still maintaining near real-time frame rates giving an 
average of 69 times improved performance for the pre-processing of the point clouds. It is 
important to note that the optimized code is still generalized, not specific to a particular platform 
and backwards compatible with existing stock code. The optimized modules in this paper have 
not been changed since libraries release 2011 showing the need for the update and 
improvement. The point cloud pre-processing optimizations are important for various point cloud 
tasks such as registration, object recognition and segmentation. Part of these improvements are 
already being implemented to the library project by the community. 

 
5. FUTURE WORK 
Future plans focus on working with PCL developer community, and to contribute optimized 
algorithms to the official PCL code repository. Another part of research has already been started 
to allow the PCL to be used with embedded devices to perform real time point cloud processing. 
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