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Abstract 
 

Compressive Sensing is a new way of sampling signals at a sub-Nyquist rate. For many signals, 
this revolutionary technology strongly relies on the sparsity of the signal and incoherency 
between sensing basis and representation basis. In this work, compressed sensing method is 
proposed to reduce the noise of the image signal. Noise reduction and image reconstruction are 
formulated in the theoretical framework of compressed sensing using Basis Pursuit de-noising 
(BPDN) and Compressive Sampling Matching Pursuit (CoSaMP) algorithm when random 
measurement matrix is utilized to acquire the data. Ultimately, it is demonstrated that the 
proposed methods can’t perfectly recover the image signal. Therefore, we have used a 
complementary approach for enhancing the performance of CS recovery with non-sparse signals. 
In this work, we have used a new designed CS recovery framework, called De-noising-based 
Approximate Message Passing (D-AMP). This method uses a de-noising algorithm to recover 
signals from compressive measurements. For de-noising purpose the Non-Local Means (NLM), 
Bayesian Least Squares Gaussian Scale Mixtures (BLS-GSM) and Block Matching 3D 
collaborative have been used. Also, in this work, we have evaluated the performance of our 
proposed image enhancement methods using the quality measure peak signal-to-noise ratio 
(PSNR). 
 
Keywords: Compressive Sensing, Basis Pursuit (BP), Compressive Sampling Matching Pursuit 
(CoSaMP), Approximate Message Passing (D-AMP), Non-local Means (NLM), Bayesian Least 
Squares Gaussian Scale Mixtures (BLS-GSM), Block Matching 3D collaborative filter (BM3D). 

 
 

1. INTRODUCTION 
Compressed Sensing as a new rapidly growing research field promises to effectively recover a 
sparse signal at the rate of below Nyquist rate. The Shannon/Nyquist sampling theorem states 
that sampling a signal at a rate at least twice the highest frequency exist in the signal is known as 
the Nyquist rate that leads to a perfect signal reconstruction. For many signals including audio or 
images the Nyquist rate is very high which may cause acquiring a very large number of samples. 
Besides being time consuming it is also necessary to place a high requirement on the equipment 
to sample the signal. Compressive Sampling (also referred to as Compressed Sensing or CS) is 
a newly introduced method that can reduce the number of measurements required. Compressive 
Sensing is a technique that is able to perfectly reconstruct particular classes of signals if the 
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original signal is sampled at a rate below the Nyquist rate. Generally, Compressive Sensing is 
based on sparse signals. In many applications the signal of interest is primarily sparse meaning 
that the signal has a sparse representation in some pre-determined basis in which most of the 
coefficients are zero. Unlike traditional measurement techniques, Compressive Sensing utilizes 
linear sampling operators which are a combination of sampling and compression that avoids 
excessive oversampling. 
 
Compressive Sensing (CS)-based Noise Reduction (CSNR) technique has an elegant 
mathematical background and theoretical advantages in decreasing the sampling rate [1, 2]. This 
technique has been achieved extremely success for MRI and image processing [3]. However, on 
the other hand, CSNR technique feasibility of being applied to other domains requires more 
investigation. 
 
In this research, Compressive Sensing (CS) will be applied to noisy image signals. Therefore, the 
goal of this particular work is to study and apply Compressive Sensing techniques for the 
enhancement of image signal. For this purpose, firstly we apply two CS based methods such as 
basis pursuit denoising (BPDN) and Compressive Sampling Matched Pursuit (CoSaMP) on an 
image signal which has contaminated by Additive White Gaussian Noise (AWGN). The results 
show that these methods are not able to reconstruct the image perfectly. Therefore, we have 
used another technique called Approximate Message Passing (AMP) to enhance the image 
signal. 
 
This paper has been organized as follows. Section 2 includes a general review of Compressive 
Sensing (CS) technique. Section 3 describes the procedure of solving CS problem using BPDN 
and CoSaMP. The experimental results of BPDN and CoSaMP are shown in section 4. Section 5 
presents Approximate Message Passing (AMP) approach. The comparison results between D-
AMP, CoSaMP, BPDN and also Wiener filtering are provided in section 6. Finally, section 7 
concludes the paper. 

 
2. A REVIEW OF COMPRESSIVE SENSING TECHNIQUE 
The area of Compressed Sensing was introduced by two ground breaking papers, namely by 
Donoho [4] and by Cand`es et. al [5]. Compressed Sensing (CS), also known under the 
terminology of Compressive Sampling or sparse recovery is a rapidly growing and novel process 
of reconstructing a signal that promises sampling a sparse signal from a far fewer numbers of 
measurements than dimension of the signal. Compressive Sensing developed from questions 
and problems raised about the efficiency of the conventional signal processing pipeline for 
compression, coding and recovery of signals, including audio, video, image, etc. It can be 
forecasted that natural signals or images can be reconstructed from what was considered as a 
highly incomplete measurements or information. In other words, Compressed Sensing is based 
on the idea that one can sufficiently and efficiently capture all the information in a sparse signal 
by sensing only part of the signal using a sampling domain that is incoherent to the signal 
representation domain. For this purpose, CS relies on two principles such as sparsity and 
incoherency. 
 
2.1 Sparsity 
A signal                  is called sparse if most of its components are zero, and also a signal 

is referred as  -sparse meaning that exactly   samples have non-zero values. The support of the 
signal is defined as [6] 

                                                                             (1) 

Practically signals are often compressible which means that the sequence of coefficients decays 
quickly. It means a large percent of small coefficients can be thrown away without much 
perceptual loss. If a signal is not sparse it can be sparsely presented in an appropriate transform 
domain. It is mathematically shown as  

     
 
                                                                               (2) 
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where    is the coefficient sequence of    The above equation can also be expressed in the matrix 

form      , where   is a     column vector,   is a     matrix which is called basis matrix. In 
CS the best basis matrix is a matrix that leads to the best sparsest representation. Basis matrices 
that can be used in CS are Wavelet transforms, Curvelet transform, Discrete Cosine transform, 
Ridget transform and Fourier transforms [6]. Using sparse signals includes some advantages 
such as taking less time in calculations involving multiplying a vector by a matrix and also less 
storage space in a computer is required [7]. 
 
2.2 A mathematical introduction to Compressive Sensing  
Generally Compressive Sensing (CS) problem is defined as follow: 
 

                                                                            (3) 

where   is the signal vector with size     ,   is the measurement vector with size     and   is 

called the measurement matrix with size     with       . Measurement matrix is fixed and it 

does not depend on the signal  . This is a great because if we get a perfect result from a 
measurement matrix  , it assures us that we can apply this measurement matrix on any type of 

signals without worrying about the stability. Since       the equation (3) is said to be an 
underdetermined system meaning that the number of unknowns is more than the number of 
equations.  Therefore, it just can be solved based on a priory which states the signal   is sparse. 

As    has a sparse representation in another domain, the general form of Compressive Sensing 
problem becomes  

                                                                      (4) 

  is a      matrix called dictionary and   can be obtained through some CS techniques such as 
greedy methods or convex optimization approach which will be fully elaborated in the next 
sections. The number of measurements can easily be obtained by having compression ratio 
(sampling rate) as follow:  

   
 

 
                                                                            (5) 

where   is the size of the signal.  
 
To reconstruct signal   perfectly two matrix   and   must be orthogonal and their mutual 

coherence should also be less. Mutual-coherence is denoted as      and is defined as the 

maximal inner product between the matrixes   columns which are assumed to be normalized. 
     is defined mathematically as follow [8] 

                   
                                                        (6) 

The mutual coherence of such two orthogonal matrices satisfies   
  
        .                    

 
2.3   Restricted Isometry Property (RIP) 
For a perfect reconstruction, we need to choose a proper basis matrix. It is also necessary to 
select a good measurement matrix which can sample a signal properly without modifying the 
structure of the signal. For this purpose, Candes and Tao [9] proposed a condition for the 
sampling matrix ϕ which is called “Restricted Isometry Property “(RIP). This condition states that 
for all  -sparse vector  , a     matrix ϕ has the  -restricted isometry property if  

            
        

 

 
             

                                        (7) 

when    is less than 1, the inequality (7) implying all of the sub-matrices of   with   columns are 
well-conditioned and close to an isometry. Also, if      then the sampling matrix   has a large 

probability of reconstructing the  
 

 
  sparse signal  . To check whether a measurement matrix 

follows RIP or not is computationally difficult. But fortunately, there are many types of 
measurement matrices, such as random matrices which have well-restricted isometry behavior 
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and satisfy RIP condition with high probability. The mostly used measurement matrix is Gaussian 
measurement matrix which can reconstruct a signal with high probability if [10] 

         
 

 
                                                                       (8) 

  also can be obtained from the following inequality  

    
 

         
                                                                           (9) 

where   is a positive constant. 

 
3. COMPRESSIVE SENSING PROBLEM 
There are so many algorithms to solve the CS problem but the ideal algorithm is the one that 
follows the following four concepts [9]. 
 
Stability: The algorithm should be able to reconstruct the signal that is contaminated by noise 
approximately accurately. 
 
Fast: The algorithm should be fast in obtaining the results. 
 
Uniform guarantees: If we could acquire linear measurements through a specific method, it is also 
possible to apply these linear measurements to all sparse signals. 
 
Efficiency: The algorithm gives perfect results by requiring as few measurements as possible. 
 
In order to solve the CS problem     , the best solution will be the sparsest vector that has the 

most zero coefficients. To do this, firstly, we consider the         minimization that counts the 
number of non-zero entries. In this case, the reconstruction problem (4) becomes: 
 

           , subject to                                                             (10) 

Unfortunately, this problem is NP-hard meaning that it is computationally intractable to solve. 
Another solution is treating the CS problem as         minimization. This is also called the 
Euclidean length of a vector which is defined as  

              
  

                                                              (11) 

Therefore, we have: 

         
   , subject to                                                       (12) 

 This problem is solved by Regularization approach [8] and has a unique solution which is      

   , where    is pseudo inverse of matrix   and is defined by the formula               [9]. 
However, this solution is not sparse; therefore it can’t be the desired solution. 
 

Ultimately, we use the         minimization which is defined as            
 
    , hence the CS 

problem is changed to 

         , subject to                                                   (13) 

This problem can be solved by a convex optimization approach called basis pursuit [11]. 
Obviously, this problem has many solutions. Among these solutions the one which has the 

number of non-zeros fewer than  
         

 
, is necessarily the sparsest one possible. Also, any 

other solution must be denser [8], where spark (A) is defined as the size of the smallest set of 
linearly dependent vectors of   . For any matrix       , the following relationship holds: 

            
 

    
                                                        (14) 
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As mentioned previously in this paper, we aim to solve the CS problem by using basis pursuit 
(BP) algorithm and one of the greedy algorithms called Compressive Sampling Matching Pursuit 
(CoSaMP). 
 
3.1 Basis Pursuit (BP) Algorithm 
Chen et. al [11] proposed Basis Pursuit algorithm (BP) which recovers the signal by few number 
of measurements. Basis Pursuit algorithm is a major approach for solving the underdetermined 
linear equations by minimizing the    norm of coefficients.  In most cases the    norm can exactly 
recover   sparse signals and also approximate the compressible signal with high probability 

using only                 i.i.d Gaussian measurements. Equation (13) is equivalent to the 
linear programming [9], 

      
  
   , subject to                                                        (15) 

where   is a positive real number of size    . The signal   can be obtained from the solution of 
   of (15) via             . Equation (15) can be solved with other methods such as interior-
point methods, projected gradient methods, and iterative thresholding [9]. 
 
3.1.1 Pursuit Denoising (BPDN) Algorithm 
In compressive sensing, in the presence of additive noise, the CS problem turns to: 

                                                                             (16) 

where   is an Additive White Gaussian Noise (AWGN) and mathematically is defined as   
         AWGN is a random signal with zero mean and variance   . In order to solve this 
problem a constraint is added to aforementioned basis pursuit algorithm to design a new 
algorithm. This new algorithm is called Basis Pursuit De-Noising (BPDN) algorithm. Therefore, we 
have  

         , subject to                                                               (17) 

where   is the noise level (power of noise) [12]. So, for any  -sparse signal   and corrupted 

measurements        with         , the solution    to (17) satisfies [7]. 
 

                                                                                          (18) 

where    depends only on RIP constant δ. 
BP presents many advantages over other algorithms in Compressed Sensing. Once a 
measurement matrix satisfies the restricted isometry property, Basis Pursuit reconstructs all 
sparse signals. BP is also stable which is necessary for practice. Its ability to handle noise and 
non-exactness of sparse signals makes the algorithm applicable to real world’s problem.  
 
3.2 CoSaMP Algorithm 
Needell and Tropp proposed a new algorithm in 2009 based on Orthogonal Matching Pursuit 
(OMP) which is called Compressive Sampling Matching Pursuit (CoSaMP) [13]. The main goal of 
CoSaMP as in the case of OMP is identifying the  -largest components in signal   . CoSaMP 

introduces a signal called the proxy of signal   which is defined as  

                                                                                            (19) 

where    is the conjugate transpose of matrix ϕ. 

It has been proven that according to the restricted isometry property, by giving a sampling matrix 
   with the restricted isometry constant     , the         of the   largest entries of vector   is 

close to the         of the  -largest signal  . That’s why the vector   in (19) is considered as 

the proxy of signal  . 
 
In CoSaMP at each iteration the algorithm first selects the largest    components of the signal 

proxy   and then adds the index of these components to the support set. Next by using the least 
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squares method, we can get signal estimation  . Therefore, the sparse signal   can be obtained 

by keeping only the largest   components of the estimation   to make it sparse, this is called 
pruning. In the presence of additive noise, CoSaMP produces a   -sparse signal approximation    
that satisfies [13]. 

               
       

  
                                                          (20) 

where    is the best  -sparse approximation of  ,   is a     sampling matrix with restricted 
isometry constant      . Also,   refers to positive constants. Experimental results illustrate that 
the performance of signal recovery by CoSaMP reduces easily if we add noise in samples. To the 
best of our knowledge, no iteration bound exists for CoSaMP because it is independent of signal 
structure [14]. 

 
4. EXPERIMENTAL RESULTS 
In this research, we have applied Basis Pursuit and CoSaMP on two different test images such as 
“Lena” and “Brain MRI”. For the experimental results in this paper I have used “Lena” because it 
has a sparse representation in Discrete Cosine Transform (DCT). In this research, the 
reconstruction error is defined as [12]: 

                     
       

      
                                              (21) 

where    is the reconstructed image and   is the original image.    
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Read Image 

Read image with size     

Adding Noise to image 

Adding White Gaussian noise which is a zero mean signal with variance sigma.  

Compressed measurements 

     , initializing a value for compression ratio (CR) so that  m=CR*N 

Defining measurement matrix 

Measurement matrix is a Gaussian random matrix with zero mean and variance      

Creating compressive measurements 

Converting image to vector 

    , (  is the vector of image signal) 

Choosing the proper representation basis ѱ 

Discrete Cosine Transform (DCT) for “Lena” 

Reconstruction algorithm 

           

In order to find sparse coefficients vector (s) we use one of the following algorithms: 

CoSaMP : using CoSaMP.m 

BP or BPDN: using spgl1 toolbox 

Convert vector  S to image 

Reconstructed image=    

Plotting results 

TABLE 1: The procedure of implementing compressive sensing in MATLAB. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Table 1 illustrates the procedure that is used for implementing compressive sensing for image 
reconstruction. As it can be noticed this procedure has been used in MATLAB for image 
reconstruction using either BP or CoSaMP. In this process, an image with size        is 
loaded and then an additive white Gaussian noise (AWGN) with a predetermined variance 
(sigma) is added to the image to make a noisy image. It should be noted that the value of 
compression ratio (CR) must be already defined. Because the number of measurements ( ) can 

be easily determined if the value of CR and   are known. In order to apply the Compressive 
Sensing a measurement matrix and a proper basis matrix are required. For this purpose, we have 
used the Gaussian random matrix and Discrete Cosine Transform (DCT) as the measurement 
matrix and basis matrix respectively. Then, the algorithms BPDN and CoSaMP are conducted on 
the noisy image separately to obtain the de-noised image. The following images illustrate the 
results of applying CoSaMP and BPDN on “Lena” of size         which has been contaminated 
by AWGN with variance 10. 
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Compression 
Ratio 

0.2 0.3 0.4 0.5 

Reconstruction 
error 

0.0494 0.0370 0.0299 0.0233 

PSNR_noisy 
(dB) 

28.1367 28.1263 28.1278 28.0916 

PSNR_de-noised 
(dB) 

20.4468 22.2018 23.3559 24.3219 

 

TABLE 2: Numerical results of applying BPDN on noisy “Lena” at different compression 

ratios. 

FIGURE 1: The results of de-noising “Lena” by BPDN algorithm using different 

compression ratios. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 illustrates the results of applying BPDN on noisy “Lena”. In this figure, the original image 
was contaminated by AWGN with variance 10 at different compression ratios. As it is shown the 
best result has been obtained at        . The numerical results of applying BPDN on noisy 
“Lena” at different compression ratios have been shown in Table 2. This table illustrates the 
reconstruction error and reconstruction PSNR after applying BPDN algorithm on noisy “Lena” at 
different compression ratios. As it is shown the best result appears at        . The result shows 
that as compression ratio increases the reconstruction error decreases but the PSNR of de-

noised increases. 
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Number of 
iterations 

2 4 6 8 10 20 

PSNR_ 
Noisy (dB) 

28.079 28.079 28.079 28.079 28.079 28.079 

PSNR_de-
noised (dB) 

22.93 22.677 22.533 22.757 22.539 22.382 

Reconstruction 
error 

0.0370 0.0324 0.0325 0.0317 0.0326 0.0329 

 

TABLE 3: Numerical results of applying CoSaMP on noisy “Lena” using different iterations. 

 

FIGURE 2: The results of de-noising “Lena” by the CoSaMP algorithm using different iterations 

and        . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 2 shows the results of applying CoSaMP on noisy “Lena” using different iterations. The 
compression ratio of applying CoSaMP has been set to     . It can be seen from Figure 2 that the 
result obtained at iteration 10 has better quality compare to other iterations. Also, Table 3 shows 
the numerical results of applying CoSaMP on noisy “Lena” using different iterations. According to 
the numerical results, the higher de-noised PSNR has been obtained at iteration 10. It should 
also be noted that at iterations higher than 10 the quality of the image will be decayed, so the 
best performance will be occurred at iteration 10. The results also show that the reconstruction 
error is quite low at iteration 10.  
 

Figure 3 demonstrates the results of de-noising “Lena” by applying CoSaMP at iteration 10 using 

different compression ratio. It is clear from Figure 3 that the best result is achieved at 

compression ratio 0.5. It should also be noted that the CoSaMP can’t perform well at 
compression ratio less than 0.3. The numerical results of applying CoSaMP on noisy “Lena” using 
different compression ratios at iteration 10 has been shown in Table 4. It is clear from the result 
that as compression ratio increases the PSNR of de-noised increases as well but the 
reconstruction error decreases. Therefore, according to the numerical results of Table 4 it is clear 
that the algorithm performs better at compression ratio 0.5 comparatively. In Figure 4 and Figure 
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Compression 
Ratio 

0.2 0.3 0.4 0.5 

PSNR-noisy 
(dB) 

- 28.15 27.99 28.18 

PSNR-de-
noised (dB) 

- 18.57 21.32 22.66 

Reconstruction 
error 

- 0.0553 0.0370 0.0325 

 

TABLE 4: Numerical results of applying CoSaMP on noisy “Lena” using 
different compression ratios and at iteration 10. 

FIGURE 4: illustrates the comparison result of elapsed 

running time of applying BPDN and CoSaMP on noisy 

“Lena”. 

FIGURE 5: illustrates the comparison result of 

performance analysis of applying BPDN and CoSaMP on 

noisy “Lena”. 

5, the elapsed running time and performance analysis of BPDN and CoSaMP algorithms on the 
noisy “Lena” have been compared. The result of Figure 4 and Figure 5 illustrate that as the 
performance analysis of the algorithms is relevant to the value of compression ratio, it is clear that 
each approach performs better at higher compression ratios but comparatively the BPDN 
approach is less time-consuming and also more efficient that the CoSaMP algorithm in the case 
of image de-noising. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the experimental results it was noted that the Basis Pursuit and Compressive Sampling 
Matching Pursuit are not able to count the number of non-zero elements and their locations 
accurately, therefore, these approaches may be failed in exact signal reconstruction. However, 
there is a new approach called Greedy Matching Pursuit (GMP) [15], which is able to determine 
the exact sparsity level. In this work, we have used a complimentary approach that is called 
Approximate Message Passing (AMP) to enhance the noisy image.  

 
5. APPROXIMATE MESSAGE PASSING (AMP) APPROACH 
In this section, we intend to present how to employ a generic denoiser in a CS reconstruction 
algorithm. For this purpose, we need to use a de-noising-based approximate message passing 
(D-AMP) algorithm which is capable of high-performance reconstruction. We will show that for an 
appropriate choice of denoiser, D-AMP offers the best CS recovery performance for natural 
images. There are many image de-noising techniques, but in this research, we consider Non-
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Local Means (NLM) [16], Bayesian Least Squares Gaussian Scale Mixtures (BLS-GSM) and 
Block Match 3D (BM3D) [17] as a denoiser in D-AMP approach. In this section, we will review the 
Iterative thresholding (IT) algorithm and de-noising-based approximate message passing (D-
AMP). We also show the results of implementing D-AMP by using aforementioned denoisers. 
Finally, the comparison results between this method and CoSaMP, BPDN will be presented. 
 
5.1 A Review of Iterative Thresholding and AMP Algorithms 
Thresholding is a simple technique for image reconstruction. When the signal is represented in 
terms of a suitable basis (for instance a wavelet basis or DCT), then small coefficients are set to 
zero and larger coefficients above some threshold are possibly shrunk. Thus, thresholding (or 
shrinkage) usually produces signals that are sparse. So, it works particular well if the original 
clean signal can be well-approximated by a sparse one. The soft and hard thresholding operators 
have been widely described in [18].  
 
Given the noisy observation signal as         where    and   are sparse signal and 
measurement vector respectively, and     are considered as measurement matrix and additive 

noise respectively. For recovering     Iterative thresholding acts as follow: 

         
        

                                                                                      (22) 

where    is the estimation of    and    is an estimation of residual signal       at iteration  . 
    s a shrinkage or thresholding non-linearity that expresses the soft or hard iterative 

thresholding. So, when                       , the algorithm is known as iterative soft-
thresholding (IST). AMP is generally like IT. It just extends IST by adding an extra term to the 
residual known as Onsager correction term as follow: 

          
        

         
 

 
        

                                         (23) 

where   is the compression ratio,    
  that represents the derivative of      is the Onsager 

correction term.    denotes the average of a vector. Figure 6 compares the quantile-quantile (Q-

Q) plot of effective noise which defines as             for IST and AMP. As it is shown in 
Figure 6, the Q-Q plot of effective noise in AMP is a straight line which means the noise is 
approximately Gaussian. Therefore, modeling a Gaussian distribution for noise in all iteration 
brings some advantages [19] such as the accurate analysis of algorithm, the optimal tuning of the 
parameters and also leads to the linear convergence of    . The most important advantage of this 
feature is that we can add all denoisers which have been developed for additive Gaussian noise 
to the AMP. Therefore, this leads to more accurate recovery compared to the usual techniques 
utilized in CS recovery. As it is mentioned the innovation of the AMP method is that the effective 
noise has a Gaussian distribution in each iteration. That's because of the Onsager correction 
term. In order to depict this effect an amount of noise in some iteration per standard deviation of 
the normal distribution is plotted as Q-Q plot. If the input data, follow a normal distribution then 
the Q-Q plot will be a straight line as it is clear in Figure 6. Inspired by this philosophy we used a 
new designed CS recovery framework, called de-noising-based approximate message passing D-
AMP that utilizes a de-noising algorithm to recover signals from compressive measurements. 
Compared to existing CS algorithms D-AMP has several advantages as [19]: (1) it can be applied 
to various signal classes. (2) It performs better than existing algorithms and is extremely robust 
for measuring noise. The D-AMP algorithm is defined as follow [20]: 
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FIGURE 6: Comparing the distribution of effective noise for IST and AMP [20]. 

      
       

 

 
                                                                        (24) 

where    is the estimation of     and    is an estimation of the residual at iteration  . According to 
[20],            can be written as     

  where    can be considered as i.i.d Gaussian noise.    is 

an estimation of the standard deviation of noise. The term 
      

     
                

 
  is the Onsager 

correction, and       
  defines the divergence of the denoiser. D-AMP applies an existing de-

noising algorithm on vectors that are obtained from compressive measurements.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. COMPARISON RESULTS 

Figure 7 demonstrates the results of applying D-AMP and CS based algorithms on noisy “Lena” 
at compression ratio 0.4. As it is cleared from Figure 7, D-AMP based approaches show an 
outstanding performance even at low Compression Ratios compared to other methods. Table 5 
also shows the comparison results of D-AMP method with CoSaMP and BPDN in different 
Compression Ratios. It is observed from Table 5 that as compression ratio increase the PSNR of 
de-noised image increases too for all five methods. The numerical results of Table 5 also show 
that BM3D has a better performance and leads to a perfect image reconstruction compared to 
other D-AMP algorithms. 
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Lena                             

PSNR- noisy (dB) 28.12 28.12 28.12 28.12 

PSNR- denoised-BM3D (dB) 27.13 28.93 29.54 29.80 

PSNR- de-noised BLS-GSM (dB) 26.40 28.02 28.74 29.05 

PSNR_de-noised BPDN (dB) 20.44 22.20 23.35 24.2319 

PSNR-denoised CoSaMP (dB) - 19.2 22.18 23.8 

PSNR- de-noised NLM (dB) 23.88 27.06 28.45 28.50 

 

TABLE 5: The comparison results of D-AMP method with CoSaMP and BPDN in different Compression 

Ratios. 

 

FIGURE 7: Comparison results of D-AMP method, CoSaMP and BPDN algorithms for noisy “Lena “at 

Compression Ratio 0.4. 

 Wiener 
Filtering 

AMP-NLM AMP-BLS-GSM AMP-BM3D 

PSNR-noisy (dB) 28.12 28.12 28.12 28.12 

PSNR-denoised (dB) 24.54 28.50 29.05 29.80 

TABLE 6: The comparison results of D-AMP method at CR=0.5 with wiener filtering on noisy “Lena”. 

Table 6 also shows the comparison results of applying Wiener filtering and D-AMP-based 
approach on noisy “Lena” which was contaminated by AWGN with standard deviation 10. It is 
clear from Table 6 that the PSNR of de-noised image using D-AMP approaches are higher 
compared to Wiener filtering [21]. Therefore, the proposed AMP-based approaches perform far 
more efficient comparatively [22]. 

 
7. CONCLUSION 
Compressive Sensing (CS) is a novel nonlinear sampling method that compared to Shannon-
Nyquist theorem accelerates the acquisition rate without decreasing reconstructed signal quality 
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and improves the image quality without increasing the quantity of required data. Compressive 
Sampling technique can find a solution for an underdetermined linear algebra equation based on 
the assumption that the desired solution is sparse. 
 
In this work compressed sensing was applied to clean image signal using BP and CoSaMP 
algorithms separately. It can be concluded from experimental results of clean and noisy image 
signals the reconstruction based on both algorithms is roughly equivalent. Moreover, we have 
investigated a novel noise reduction technique that can be referred to as Compressive Sensing 
(CS)-based Noise Reduction (CSNR) technique. It is cleared from the results that these methods 
do not perform well for image de-noising and the recovered image doesn't seem perfect. 
Therefore, we used the other de-noisers such as BM3D, NLM, and BLS-GSM along with 
Compressive Sampling method by using a newly designed framework named D-AMP algorithm 
for image enhancement. Through computer simulations, we have demonstrated that the 
proposed method is quite effective in image enhancement at compression factor     or even less. 
Also, compared to the traditional CSNR techniques the proposed method is faster and utilizes 
less memory space. We also showed that D-AMP also outperforms Wiener filtering in image de-
noising. For further study we will use the Wiener filter in D-AMP approach for image de-noising 
like other de-noisers that is used in D-AMP approach. 
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