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Abstract 

 
Amid the variations of the cancer disease, brain tumors account for the majority deaths among 
young people. To diagnose and treat this deadly disease effectively, analysis of hundreds of 
medical images such as Magnetic Resonance Imaging (MRI) scans is usually performed. 
However, the analyses of these scans are still mainly performed manually, making the procedure 
not only very tedious and time-consuming for doctors, but also error prone and non-repeatable. 
Attempts have been made to automate this procedure by performing image processing 
techniques such as thresholding, region-growing, unsupervised learning (e.g. k-means, fuzzy c-
means clustering), and supervised learning (e.g. support vector machines). Some require human 
interaction. The techniques may be applied on one or more MRI sequence scans. Unfortunately, 
these automated attempts still result in a high level of error, and more computationally complex 
algorithms do not guarantee an increase in accuracy. This paper presents a novel, fully automatic 
brain tumor segmentation and volume estimation method using simple techniques on T1-
contrasted and T2 MRIs. This new approach implemented five main steps: preprocessing using 
anisotropic diffusion, segmentation of tumor regions using k-means clustering, region 
combination using logical and Morphological operations, error checking using temporal 
smoothing, and volumetric measurement. When compared with five state-of-the-art algorithms, 
the proposed algorithm outperformed those in past works. Advances were seen by its noise 
reduction, increase in accuracy and closeness to actual tumor volume. 
 
Keywords: Brain Tumor, Magnetic Resonance Imaging (MRI), Segmentation, Volume 
Estimation. 

 
 
1. INTRODUCTION 

A tumor is a mass of tissue formed by the uncontrolled growth of abnormal cells. A brain tumor 
can directly destroy healthy brain cells or do so indirectly by crowding other parts of the brain and 
causing inflammation, swelling and pressure within the skull [1]. In medical image analysis, 
segmentation of brain tumors from the background of magnetic resonance images (MRI) is 
crucial for effective diagnosis, treatment and monitoring of the disease [2]. However, 
segmentation is still done manually producing results that vary from expert to expert [3]. It is a 
difficult task as tumors vary greatly in size, shape and location. Additionally, tumors may appear 
to overlap with healthy brain tissue having similar intensity levels, which makes it even more 
difficult to distinguish the two.  This process is time-consuming, non-repeatable, and prone to 
human errors causing inaccurate diagnosis that may lead to the death of patients. Thus, there is 
a demand for more accurate, time-efficient, computer aided methods to delineate tumor 
boundaries [4, 5].  
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Cancer is among the leading causes of death worldwide, with 14.1 million new cases and 8.2 
million deaths recorded in 2012. The World Health Organization [6] reports that new cancer cases 
are expected to rise to about 70% over the next two decades. Tumors are mainly classified as 
either malignant or benign. Malignant tumors are cancerous; they are life-threatening and can 
spread to other parts of the body. Benign tumors do not contain cancer cells; they are not harmful 
and do not spread to other body parts [3].  Tumors may also be described based on their place of 
origination. A primary brain tumor originates in the brain, whereas a metastatic brain tumor 
originates in another part of the body and spreads to the brain [7]. 
 
Medical imaging modalities used for diagnosis of tumors include MRI and Computerized 
Tomography (CT).  MRI provides greater contrast between soft tissues [8], making it more 
effective for tumor detection and segmentation. Segmentation is defined as the partitioning of an 
image into finite, non-overlapping regions such that the pixels in each region share similar 
attributes [8, 9]. In quantitative studies, the information from segmentation can be used to analyze 
and measure tumor growth, and its response to treatments such as chemotherapy and radiation 
therapy [10, 11]. Software packages like OsiriX [12] allow doctors to view the entire brain volume 
as several image slices. However, there are still instances where, to determine the tumor volume, 
tumors must be detected manually and its boundaries traced by the doctors on each slice of the 
MRI sequence. This poses many difficulties as mentioned. 
 
Several techniques for segmentation have been suggested. The simplest is thresholding. This 
separates an image into foreground and background by comparing pixel intensities to a threshold 
value [13]. Otsu [14] presented a method to determine the optimum thresholding value based on 
the image’s grey-level histogram. Still, using thresholding to segment brain tumors can be difficult 
since tumors may have a grey-level coinciding with healthy brain tissue [1]. Another technique 
called region growing starts with a seed that belongs to the structure of interest and extracts all 
connected pixels that are similar [13]. Some disadvantages are that region growing requires 
human interaction for seed selection, and is noise sensitive [15]. Alternatively, clustering 
techniques classify pixels into a fixed number of clusters such that pixels in a cluster are similar 
but dissimilar to those in other clusters. Two common forms of clustering utilized are k-means and 
fuzzy c-means. In k-means, each pixel belongs to only one cluster whereas in fuzzy c-means, a 
pixel can belong to two or more clusters [8]. K-means is fast and simple, but results may vary as 
they depend on randomly selected initial centroids [5]. Fuzzy c-means is time consuming [1]. 
Furthermore, a comparison done in [8] found k-means to outperform fuzzy c-means in 
completeness of segmentation while maintaining outstanding correctness. Based on this previous 
analysis, k-means clustering was employed in the proposed work. Although there are many other 
techniques that may produce results with greater accuracy, computational complexity would be 
sacrificed [1]. 
 
This paper presents a novel, fully automatic brain tumor segmentation and volume estimation 
method using two types of MRI sequences: T1-contrasted and T2. Clinically, multiple MRI 
sequences are used to identify different compartments of the tumor [13]. Since using a 
combination of MRI sequences provides more information, it is inferred that the efficiency of an 
algorithm to define the boundaries can be increased. The brightness of the tumor border is 
enhanced in T1-contrasted images and likewise, the core and edema regions from the T2 image 
[13]. The algorithm combines these characteristic features from each image using a variety of 
techniques including anisotropic diffusion, k-means clustering, morphological operations, and 
temporal smoothing. From the segmentation, the volume of the tumor region is obtained by taking 
the sum of its voxels (pixel and thickness of MRI slice). This paper is organized as follows. 
Section 2 gives details of the proposed algorithm. Section 3 presents results of tests performed. 
Discussions are made in section 4, and conclusions in section 5.  

 
2. METHODOLOGY 

This section describes the proposed algorithm, whose respective flow chart is shown in Figure 1. 
The proposed work was implemented in the MATLAB environment, which contained numerous  
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FIGURE 1: Flow chart of the proposed brain tumor segmentation and volume estimation algorithm. 

 
image processing tools. The algorithm first loaded all the brain MRI slices (the volume) from the 
T1-contrasted and T2 scans. The dimensions of the MRI volumes were determined and two 
empty arrays of the same dimensions were created to store the results of the subsequent steps. 
The proposed segmentation procedure involved the use of: anisotropic diffusion, k-means 
clustering, combining overlapping regions, and morphological operations. The steps were 
performed on all corresponding slices from each sequence, then a temporal smoothing procedure 
was applied. This temporal smoothing procedure is a form of error checking that involved 
examining the consistency of the detected objects within a two-frame radius of the respective 
frame. Finally, the largest connected object segmented was selected as the tumor region, and its 
volume was found by summing its respective voxels. The preprocessing, segmentation and post-
processing steps are explained further in the subsections below. 
 
2.1 Anisotropic Diffusion 
The preprocessing step improves upon the image quality to be more suitable for the 
segmentation step. Anisotropic diffusion filtering, proposed in [16] was used to eliminate noise in 
the image. It has an advantage over linear filters by smoothing the image without removing the 
edge information. The performance of this filter depends on several parameters: the conductance 
function, gradient magnitude threshold and the stopping time. The conductance function allows 
maximum diffusion within uniform regions and stops diffusion across edges. The gradient 
magnitude threshold controls the rate of diffusion and is a soft threshold between gradients 
attributed to noise and edges. Anisotropic diffusion is an iterative process. The choice of stopping  



Amrit Hanuman & Ken Sooknanan 

International Journal of Image Processing (IJIP), Volume (12) : Issue (2) : 2018 51 

 
 

FIGURE 2:  Flowchart of the k-means clustering algorithm [9] 

 
time has significant impact, where overestimating this value will blur edges, and underestimating 
it will leave unfiltered noise [17]. In this work, a conductance function that favored high-contrast 
edges over low-contrast edges was selected. After preliminary tests on sample data sets, a 
gradient threshold of 7 and a 15-iteration stopping time were chosen. Figure 3 (a, d) illustrates the 
T1-contrasted and T2 images before filtering while figure 3 (b, e) illustrates after anisotropic 
diffusion was applied respectively. 
 
2.2 K-Means Clustering 
The segmentation step began with K-means, which is an unsupervised clustering algorithm. This 
means that no previously labeled examples are needed to find structure in the data [15]. The 
algorithm separates the intensity values in the image into k clusters. Initially, k centroids C1-k are 
selected at random, where Ci (the i’th cluster) is within the intensity range of a grayscale image, 
0-255. The distances of each pixel intensity in the image to each centroid is calculated. The pixel 
intensities are assigned to the centroid with the smallest distance. A new centroid is computed by 
finding the average of the distances of the assigned pixel intensities. The distances are 
recalculated using the new centroids and the pixels are reassigned. The cycle repeats until there 
are no changes in centroids or until a fixed number of iterations have been completed [1]. Figure 
2 outlines the k-means algorithm. 
 
Brain images encompass the white matter, grey matter, cerebrospinal fluid (CSF) and 
background [11]. This work also included the tumor as a separate class. The T1-contrasted 
image was divided into 4 clusters to classify the background and CSF together, grey matter, white 
matter, and tumor. The T2 image was divided into 5 clusters; the background and CSF were 
separated. The background and CSF were grouped as a single class in the T1-contrasted image 
due to the closeness of pixel intensities. Since information in this class was not used further, it 
was not a concern that the background and CSF were grouped. A maximum iteration of 25 was 
used. The k’th clusters were the most useful since the bright tumor pixels would be assigned to 
them. Figure 3 (c, f) shows the pixels assigned to the k’th clusters for the T1-contrasted and T2 
images respectively. 
 
2.3 Combining Overlapped Objects 
The segmentation step continued by combining the information from k’th clusters and eliminating 
the noisy regions. MATLAB’s bwlabel function was used to label the objects in the k’th cluster 
from each MRI sequence. The combination was accomplished by first performing a logical AND 
operation on the k’th clusters to identify the overlapping regions between the two images, shown 
in figure 3 (g). 
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(a)                                                       (b)                                                      (c) 

 

 
 

(d)                                                       (e)                                                      (f) 

 

   
 

(g)                                                         (h)                                                     (i) 

 

FIGURE 3:  Major steps involved in the proposed segmentation algorithm. (a) T1-contrasted. (b) Filtered 

T1-contrasted. (c) T1-contrasted cluster 4. (d) T2. (e) Filtered T2. (f) T2 cluster 5. (g) Logical AND. (h) 
Combined segmented tumor (i) Post morphological operations (Closing, Erosion, Dilation). 

 
Using the labelled images for each sequence, only the labels that belonged in the overlap were 
extracted, and new images were generated displaying objects having the selected labels. These 
images were added together to give the segmented tumor image in figure 3 (h). It can be seen 
that the noisy pixels from figure 3 (c, f) were eliminated. 
 
2.4 Morphology 
Post-processing steps were taken to further improve the accuracy of the segmented tumor 
regions using morphological operations in the order of closing, erosion and dilation. This filled any 
holes in the tumor regions and smooths the edges. These operations were done using MATLAB’s 
imfill, imerode and imdilate functions. A 3x3 structuring element was used. The morphological 
operations are mathematically described below in equations (1), (2), and (3) respectfully. Figure 3 
(i) shows the result generated in this step using the image in figure 3 (h). 
 
Morphological closing of a binary image A by a structuring element B [11] 
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(a) Fn-2                                          (b) Fn-1                                              (c) Fn 
 

   
 

(d)   Fn+1                                       (e) Fn+2                                            (f) New Fn 

 
FIGURE 4:  Temporal smoothing applied on a frame Fn. After segmentation, frame Fn in (c) was erroneous 

in that it contained no objects while its neighboring frames did, as shown in (a, b, d, e). This error was 
rectified by using a weighting scheme in a five-frame window to produce (f). 

 
Morphological erosion of a binary image A by a structuring element B [4] 

 
 
Morphological dilation of a binary image A by a structuring element B [4] 

 
 

2.5 Temporal Smoothing 
Once the previous steps have been completed for all slices and the result stored in the first empty 
array, temporal smoothing was performed to maintain consistency throughout the segmentations 
obtained. The first and last two segmented image slices were copied to the second empty array, 
which stores the result of the temporal smoothing. In this procedure segmentations for a frame, 
Fn (where n = 3: max. slice – 2), were obtained using a weighted average scheme from a five-
frame sliding window, as described in equations (4) and (5). The result from each frame was 
cleaned using a median filter. Figure 4 shows sample images that were generated in this step for 
a frame Fn before and after temporal smoothing. 
 

     (4) 

 

                        (5) 

 

2.6 Find the Largest Connected Object 
MATLAB’s bwlabeln function was used to label connected objects throughout the segmented 
volume; that is the second array. The properties of the connected components were measured 
and the largest object label was determined. The tumor was considered the largest object. The 
sum of all pixels that made up the tumor was taken and multiplied by the voxel dimensions (given 
in the MRI sequence) to find the tumor volume. 
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(a)                                                        (b)                                                    (c) 
 

   
 

(d)                                                        (e)                                                     (f) 

 
FIGURE 5: Sample Segmentation results of three test cases by the proposed algorithm. Tumor ground truth 

frames are shown in (a), (b) and (c) and the corresponding segmentations obtained where the tumor regions 
were: (d) correctly identified, (e) correctly not detected, and (f) not detected. 

 
3. RESULTS 

The algorithm was tested using brain volumes from the MICCAI BRATS 2012 dataset [18]. This 
dataset consisted of T1, T1-contrasted, T2 and Flair MRI sequences. Ground truth data was also 
provided, and all images were skull-stripped and aligned. In each test case, a voxel size was 
1mm x 1mm x 1mm. The precision, recall, specificity and Dice Score Coefficient (DSC) metrics 
were used to evaluate the tumor regions obtained. Precision is a measure of accuracy, recall is a 
measure of completeness, and specificity measures the true negative rate. The DSC measures 
the overlap between the ground truth and the automatic segmentation. The calculation of these 
metrics is given in equations (6) through (9) respectfully. 

 

                     (6) 
 

             (7) 
 

                        (8)  
 

                               (9) 
 
Where: TP – True Positive; TN – True Negative; FP – False Positive; FN – False Negative 
 
A true positive was counted for every pixel in the detected tumor region having a binary 1 value 
that matched the ground truth. A false positive was counted for every pixel in the detected tumor 
region that had a binary 1 value, but the corresponding pixel in the ground truth had a binary 0 
value. A true negative was counted for every pixel in the detected tumor region having a binary 0  
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(a) Ground truth 
 

   
 

(b) Proposed Algorithm                  (c) Akram and Usman                      (d) Thapaliya and Kwon 

 

     
 

(e) Dessai et al.                           (f) Vijay and Subhashini                    (g) Gupta et al. 

 

FIGURE 6:  Brain tumor single-slice sample segmentations detected by algorithms examined. (a) Ground 

truth. (b) Proposed algorithm. (c) Akram and Usman [4]. (d) Thapaliya and Kwon [5]. (e) Dessai et al. [1]. (f) 
Vijay and Subhashini [9]. (g) Gupta et al. [19]. 

 
value that matched the ground truth. Lastly, a false negative was counted for every pixel in the 
detected tumor region that had a binary 0 value, but the corresponding pixel in the ground truth 
had a binary 1 value. Figure 5 shows samples of the detected tumor regions by the proposed 
algorithm compared to the ground truth. These samples include three cases where the tumor 
region was: correctly identified, correctly not detected for a non-tumor slice, and not detected. 
 
The algorithm was compared to several others in previous works [1, 4, 5, 9, 19]. To obtain the 
tumor region, thresholding and morphological operations were used by three authors: Akram and 
Usman [4], Thapalya and Kwon [5], and Gupta et al. [19], while k-means was used by two 
authors: Dessai et al. [1], and Vijay and Subhashini [9]. They were all fully-automatic and used 
one MRI sequence, T2, except for Gupta et al. [19], which was semi-automatic and used three 
MRI sequences, T1 and T1-contrasted included. The tests were conducted on 20 brain volumes. 
The quality of the images in each test volume varied, often having less contrast or tumor regions 
that were indistinguishable by an untrained eye. These variations in image quality caused high 
fluctuations in values obtained from all algorithms. Figure 6 shows sample tumor outputs for one  
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FIGURE 7: Tumor volumes obtained from the first test sequence for all algorithms examined. 

 
MRI slice in the first test volume, detected by all algorithms examined. Figure 6 (a) is the expertly 
segmented ground truth to which the results from the algorithms were compared. In this instance, 
the proposed algorithm produced a tumor region visibly similar in size and shape to the ground 
truth, shown in figure 6 (b). This can be attributed to combination of T1-contrasted and T2 tumor 
boundaries. Other algorithms reasonably identified the region of interest with the tumor area less 
or greater than the ground truth. Though, Thapalya and Kwon [5] and Vijay and Subhashini [9] in 
figure 6 (d, f) respectively, also detected sizable false positives. 
 
Results for the experiments with regards to the average tumor volume, precision, recall, 
specificity, and DSC values obtained from each algorithm are given in figures 7-11 respectively. 
Figure 7 shows the volumetric measurements of the tumor regions obtained by the different 
algorithms from the first test case. The actual tumor volume, which was taken as the sum of all  
tumor pixels in the ground truth, was 56743 mm

3
. The proposed algorithm measured less volume 

than the actual tumor at 43755 mm
3
. Still, this was the closest value to the actual, having a 

difference of 12988 mm
3
 or an absolute error of 22.89%. The percentage absolute error values 

obtained from the past algorithms in increasing order are as follows: 41.58% from Gupta et al. 
[19], 43.36% from Akram and Usman [4], 69.58% from Vijay and Subhashini [9], 145.21% from 
Dessai et al. [1], and 408.64% from Thapalya and Kwon [5]. Gupta et al. [19] measured the 
lowest volume of 33152 mm

3
. The other algorithms had a volume greater than the actual due to a 

high number of false positives detected. 
 
In the first test case, the proposed algorithm recorded the highest precision value of 88.55%, a 
minor lead over Gupta et al. [19] with 85.09%. Next was Akram and Usman’s [4] algorithm at a 
precision of 69.85%. This was closely followed by Dessai et al. [1] with 69.49%. The algorithm by 
Vijay and Subhashini [9] had 66.57% precision, and the lowest was Thapaliya and Kwon [5] with 
53.71%. Dessai et al. [1] had the most complete actual tumor with a recall of 81.47%. Thapaliya 
and Kwon [5] followed with 79.33%, then the proposed algorithm at 72.52%. Vijay and 
Subhashini’s [9] algorithm had a recall of 64.03%. Lastly, Akram and Usman’s [4] and Gupta et al. 
[19] detected half of the tumor with their 50.98% and 49.71% recall, respectively. In this test case, 
the proposed algorithm determined that no tumors existed in all the non-tumor slices as shown by 
its specificity value of 100%. All algorithms performed similarly well in this area with the lowest 
specificity value being 95.91% from Thapaliya and Kwon [5]. The DSC gave a value between 0 
and 1, where 1 represented perfect overlap. These values closely followed that of the recall. 
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Despite the inconsistency of image quality, the proposed algorithm outperformed others where 
the highest precision value was recorded in 45% of the test cases. Since the recall values were 
frequently lower than the corresponding precision values unlike other algorithms, the tumor 
volume would have been made up more of the actual tumor than false positives. The DSC 
reflected the recall. The proposed algorithm was also able to confirm non-tumor slices better than 
the other algorithms, as seen from the specificity values. 

 

 
 

FIGURE 8: Average precision values obtained from all algorithms examined for 20 test volumes. 

 

 
 

FIGURE 9: Average recall values obtained from all algorithms examined for 20 test volumes. 
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FIGURE 10: Average specificity values obtained from all algorithms examined for 20 test volumes. 

 

 
 

FIGURE 11: Average DSC values obtained from all algorithms examined for 20 test sequences. 

 
4. DISCUSSION 

Precision and recall values can give a sense of the tumor volume output and its closeness to the 
actual. Ideally, it is desirable for both the precision and recall values to be high. This would mean 
that there were little to no false positives and the actual tumor pixels were almost entirely 
detected. A low precision means many false positives were detected which would increase the 
volume output of the tumor. If the corresponding recall was high, a lot of the actual tumor made 
up that volume, but if it was low, then the actual tumor made up less of that volume. In the 
comparison of algorithms for the first test volume, the proposed algorithm had the highest 
accuracy, and lower recall. While the algorithm by Dessai et al. [1] had a recall higher than the 
proposed algorithm, their precision value was even lower. It is more favorable to have a precision 
value higher than the recall value as opposed to a recall value higher than the precision value. 
Less of the actual tumor may have been detected but there would be little false positives, instead 
of having more of the actual tumor along with greater false positives representing healthy brain 
tissue. This is supported by the volume measurements where the proposed algorithm had 
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produced a volume less than the actual tumor with the smallest error. The algorithms by Dessai 
et al. [1], and Thapaliya and Kwon [5] produced the two highest volumes with great error from the 
actual. 
 
Certain steps taken by past algorithms intended to improve performance may have had the 
opposite effect. Contrast enhancement is widely used as a preprocessing step to make the tumor 
more distinguishable. This makes the bright tumor pixels brighter and the dark, healthy brain 
tissue darker. The algorithms would identify the bright pixels as the tumor. While contrast 
enhancement works great for tumor slices, when it is performed on non-tumor slices it increases 
the intensity of the healthy brain tissues. Since the algorithms segment the bright pixels as the 
tumor, false positives would increase. For this reason, contrast enhancement was not used in the 
proposed algorithm. After thresholding or clustering was done, some algorithms selected the 
object with the largest area in a slice as the tumor region, eliminating others as noise. The issue 
with this is that there may be bright non-tumor regions or noise segmented that are larger than 
the tumor. Therefore, when selecting the largest connected object in that slice, false positives 
would be selected. By using two MRI sequences in the proposed algorithm, finding the overlap 
confirmed tumor regions and eliminated noise in the images. Instead of selecting the object with 
the largest area in each slice, the object with the largest volume throughout all slices was taken 
as the tumor. An inference made was that superior results can be obtained when information from 
the T1-contrasted and T2 MR Images are combined. Evidence of this claim was seen when the 
algorithm by Gupta et al. [19], which used T1, T1-contrasted and T2 MR Images, obtained the 
best results among the authors who utilized thresholding and morphological operations to obtain 
the tumor region. However, it should be noted that this algorithm was semi-automatic where a 
rough outline of the tumor region was manually identified, possibly improving tumor detection and 
eliminating noise. 
 
The proposed algorithm had shortcomings of its own. The use of k-means clustering had random 
initial centroids selected. Testing the same brain volume again may produce slightly different 
results as the initial centroids would affect the outcome of clustering. It was suggested in [20] that 
it is better if the centroids are as far apart as possible. Since a grayscale image has a range of 0-
255 intensity and the number of clusters is known, fixed centroids can be found that are an equal 
distance apart. The centroid at the high end of the intensity range would be of interest as the 
bright tumor would be assigned to it. However, the use of fixed centroids would not be advisable if 
the image quality is not consistent, as with the dataset used. If the contrast is low or the tumor 
shares intensity with healthy brain tissue, then no pixels would be assigned to the interested 
centroid leading to false negatives. Another possible problem is that the bright clusters from any 
slice of the T1-contrasted and T2 images may not overlap, suggesting that there is no tumor in 
that slice and leading to false negatives. This was solved by temporal smoothing, where data 
from slices before and after were used to fill any gaps. Lastly, the execution time taken for the 
proposed algorithm was longer than others. This occurred for several reasons: the steps used 
were applied to two MRI sequences instead of one, as well as the added time taken for iterations 
in anisotropic diffusion and k-means clustering. 
 
The different procedures utilized in the proposed algorithm allowed for improvements from those 
in past works. Anisotropic diffusion sufficiently enhanced the images while preserving the edge 
information needed to delineate tumor boundaries. Since contrast enhancement was not done, 
the proposed algorithm saw a reduction of false positives detected in healthy brain MRI slices. 
This kept the volume output from the proposed algorithm closer to the actual volume while 
algorithms that used contrast enhancement saw a significant increase. In the segmentation 
phase, k-means clustering effectively classified the regions of the brain better than simply 
thresholding. Here, healthy brain tissue with intensities appearing similarly to the tumor region 
was less likely to be falsely identified. The reiterated centroids in k-means allowed the regions of 
the brain to be classified despite the images sometimes having low contrast. This is not possible 
using thresholding since the threshold value is fixed. The past algorithms examined that used k-
means only applied this technique on one MRI sequence. By using two MRI sequences in the 
proposed algorithm, tumor boundaries that may not have been visible in one MRI sequence were 
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able to be recognized in the other. When the objects detected were labelled and the overlap 
found, the proposed algorithm could automatically identify and confirm the region of interest as 
well as effectively remove noisy objects. Manual intervention was not needed. The addition of 
information from the two MRI sequences resulted in a more complete tumor. Furthermore, 
morphological operations were also used by past algorithms in their post-processing phase. This 
filled in any holes and smooths the edges of segmentations in a MRI slice. Nevertheless, for a 
tumor slice where no tumor was detected, this step offered no assistance in filling in gaps. The 
proposed algorithm implemented temporal smoothing which catered to this scenario given that 
tumors were detected in neighboring slices. Segmentation gaps that occurred in MRI slices were 
filled in and noise was also reduced by the weighted-average scheme, essentially improving true 
positive detection and reducing false positives. Lastly, the proposed algorithm selected the 
largest object volume as the tumor. This possibly reduces false positive regions selected unlike 
past algorithms which would have selected the largest area per slice. Selecting the largest area 
per slice may have wrongfully selected noisy regions instead of the tumor, reducing the precision 
of the algorithm to detect the tumor.  
 
The algorithms were all compared on the same dataset and measured with metrics commonly 
used for evaluation in past works, such as precision and recall [21]. The favorability of high 
precision and recall, or higher precision over recall was discussed with respect to what the values 
indicate about the tumor volume detected. The proposed algorithm achieved the highest precision 
in 45% of the test volumes that is more times than any other algorithm examined. Every step in 
the proposed algorithm saw attempts to improve the image quality and region of interest 
extraction, reduce noise, and fix errors in the segmentation results, to increase the precision and 
recall. The discussion on steps taken in this work illustrates the impact that can make in tumor 
detection. In the future, as techniques continue to advance and are reviewed [22], segmentation 
methods that are faster and more effective can be adopted. The method used for combining data 
from T1-contrasted and T2 MR images can also be refined for cases where no overlapped 
between the images were found, although this issue was fixed by implementing temporal 
smoothing. Pre-processing steps can be added for images that are not skull-stripped or aligned. 
Tests can also be repeated on datasets where the image quality is consistent. Other works 
include adding options allowing users to make manual interventions in selecting the region of 
interest, as well as applying the techniques used in the proposed work on the T2 MRI if the T1-
contrasted MRI is not available. Tests would need to be carried out to validate the effectiveness 
of applying the techniques used in the proposed work on the T2 MRI only. The suggested actions 
would guarantee that the most is made of the work. 

 
5. CONCLUSION 
Brain tumors are the most prevalent cause of cancer-related deaths in young people [23], and to 
diagnose and treat the deadly disease effectively, analysis of hundreds of MRI scans is usually 
performed manually. This manual procedure is not only very tedious and time-consuming for 
doctors, but also error prone. This paper presented a new, simple technique to automatically 
segment brain tumors from a combination of T1-contrasted and T2 MRIs, and obtain their 
volumes. Steps taken include anisotropic diffusion, k-means clustering, morphological operations 
and temporal smoothing. The algorithm was tested on 20 brain volumes with over 100 slices each 
from the MICCAI BRATS 2012 dataset, and compared to several others in previous works. Its 
performance was measured using the precision, recall, specificity and DSC metrics. From the 
results, the proposed algorithm outperformed those in past works. It is noted that none of the 
algorithms obtained consistent results; this was probably due to the large variance in image 
quality among the data set. Despite the poor image quality however, the proposed algorithm 
outperformed others in the category of precision, obtaining the highest precision values in 45% of 
the test cases. Advances were seen by its noise reduction, increase in accuracy and closeness to 
actual tumor volume. Future works include adopting more sophisticated segmentation 
techniques, making improvements to reduce the execution time, and adjusting the algorithm to 
cater for data that is not skull-stripped or aligned. Additionally, an alternate, semi-automatic option 
can be included to allow users to draw a region of interest for segmentation on the MRI. Should 
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T1-contrasted MRIs not be available, users can also have the choice to apply steps taken on the 
T2 MRI sequence only. These measures would ensure that users benefit from this work. 
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