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Abstract 

 
De-noising is always a challenging problem in magnetic resonance imaging and 
important for clinical diagnosis and computerized analysis, such as tissue 
classification and segmentation. It is well known that the noise in magnetic 
resonance imaging has a Rician distribution. Unlike additive Gaussian noise, 
Rician noise is signal dependent, and separating signal from noise is a difficult 
task. An efficient method for enhancement of noisy magnetic resonance image 
using wave atom shrinkage is proposed. The reconstructed MRI data have high 
Signal to Noise Ratio (SNR) compared to the curvelet and wavelet domain de-
noising approaches. 
 
Keywords: De-noising, Gaussian noise, Magnetic Resonance Images, Rician noise, Wave Atom 
Shrinkage. 

 
 

1. INTRODUCTION 
De-noising of magnetic resonance (MR) images remains a critical issue, spurred partly by the 
necessity of trading-off resolution, SNR, and acquisition speed, which results in images that still 
demonstrate significant noise levels [1]–[7]. Sources of MR noise [8] include thermal noise (from 
the conductivity of the system’s hardware), inductive losses (from the conductivity of the object 
being imaged), sample resolution, and field-of-view (among others). Understanding the spatial 
distribution of noise in an MR image is critical to any attempt to estimate the underpinning (true) 
signal. The investigation of how noise is distributed in MR images (along with techniques 
proposed to ameliorate the noise) has a long history. It was shown that pure noise in MR 
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magnitude images could be modeled as a Rayleigh distribution [1]. Afterwards, the Rician model 
[4] was proposed as a more general model of noise in MR images. Reducing noise has always 
been one of the standard problems of the image analysis. The success of many analysis 
techniques such as segmentation, classification depends mainly on the image being noiseless. 
 
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that has proven to be 
particularly valuable for examination of the soft tissues in the body. MRI is an imaging technique 
that makes use of the phenomenon of nuclear spin resonance. Since the discovery of MRI, this 
technology has been used for many medical applications. Because of the resolution of MRI and 
the technology being essentially harmless it has emerged as the most accurate and desirable 
imaging technology [9]. MRI is primarily used to demonstrate pathological or other physiological 
alterations of living tissues and is a commonly used form of medical imaging. Despite significant 
improvements in recent years, magnetic resonance (MR) images often suffer from low SNR or 
Contrast-to-Noise Ratio (CNR), especially in cardiac and brain imaging. This is problematic for 
further tasks such as segmentation of important features, three-dimensional image 
reconstruction, and registration. Therefore, noise reduction techniques are of great interest in MR 
imaging as well as in other imaging modalities. 
 
This paper presents a de-noising method in Magnetic Resonance Images using Wave Atom 
Shrinkage that leads to the improvement of SNR in low and high noise level images. The paper is 
organized with sections as follows. In section II, the work related to this paper is briefly explained, 
In section III, the theoretical concepts of wavelet transform, curvelet transform and wave atom 
transforms are described, in section IV, the application of wave atom transform, curvelet 
transform and wavelet transforms to MRI and observations are discussed. In section V, the paper 
is concluded by briefly explained the pros and corns of the proposed method.  
 
 

2. RELATED WORKS 
The image processing literature presents a number of de-noising methods based on Partial 
Differential Equations (PDEs) [10], including some of them concentrated on MR Images [11] – 
[14]. Even though these methods have the advantage of simplicity and removal of stair case 
effect that occurs with the TV-norm filter. Such methods, however, impose certain kinds of 
models on local image structure that are often too simple to capture the complexity of anatomical 
MR images. Further, these methods entail manual tuning of critical free parameters that control 
the conditions under which the models prefer one sort of structure to another. These factors have 
been an impediment to the widespread adoption of PDE-based techniques for processing MR 
images. 
 
Another approach to image restoration is nonparametric statistical methods. For instance, in [15], 
[16] propose an unsupervised information-theoretic adaptive filter, namely UINTA, that relies on 
nonparametric MRF models derived from the corrupted images. UINTA restores images by 
generalizing the mean-shift procedure [17], [18] to incorporate neighborhood information. They 
show that entropy measures on first-order image statistics are ineffective for de-noising and, 
hence, advocate the use of higher-order/Markov statistics. UINTA, however, does not assume a 
specific noise model during restoration. In [19], [20] proposed a de-noising strategy along similar 
lines, namely NL-Means, but one relying on principles in nonparametric regression. 
 
Recently, many of the popular de-noising algorithms suggested are based on wavelet 
thresholding [21]–[24]. These approaches attempt to separate significant features/signals from 
noise in the frequency domain and simultaneously preserve them while removing noise. If the 
wavelet transform is applied on MR magnitude data directly, both the wavelet and the scaling 
coefficients of a noisy MRI image become biased estimates of their noise-free counterparts. 
Therefore, it was suggested [22] that the application of the wavelet transform on squared MR 
magnitude image data (which is noncentral chi-square distributed) would result in the wavelet 
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coefficients no longer being biased estimates of their noise-free counterparts. Although the bias 
still remains in the scaling coefficients, it is not signal-dependent and can therefore be easily 
removed [22], [24]. The difficulty with wavelet or anisotropic diffusion algorithms is again the risk 
of over-smoothing fine details particularly in low SNR images [25]. 
 
From points discussed above, it is understood that all the algorithms have the drawback of over-
smoothing fine details. In [26], stated that oscillatory functions or oriented textures have a 
significantly sparser expansion in wave atoms than in other fixed standard representations like 
Gabor filters, wavelets and curvelets. Due to the signal dependent mean of the Rician noise, one 
can overcome this problem by filtering the square of the noisy MR magnitude image in the 
transformed coefficients [22]. 

3. THEORY 
3.1. Wavelet 
Wavelet bases are bases of nested function spaces, which can be used to analyze signals at 
multiple scales. Wavelet coefficients carry both time and frequency information, as the basis 
functions varies in position and scale. The fast wavelet transform (FWT) efficiently converts a 
signal to its wavelet representation [27]. In a one-level FWT, a signal is split into an approximation 
part and a detail part. In a multilevel FWT, each subsequent is split into an approximation and 
detail. For 2-D images, each subsequent is split into an approximation and three detail channels 
as horizontally, vertically, and diagonally oriented details, respectively. The inverse FWT (IFWT) 
reconstructs each subsequent from approximation and detail channels. If the wavelet basis 
functions do not have compact support, the FWT is computed most efficiently in the frequency 
domain. This transform and its inverse are called the Fourier-wavelet decomposition (FWD) and 
Fourier-wavelet reconstruction (FWR), respectively. 
 
Assume that the observed data 

)()()( tNtStX   
contains the true signal S(t) with additive noise N(t) as functions in time t to be sampled. Let W(.) 
and W−1(.) denote the forward and inverse wavelet transform operators. Let D(.,  ) denote the 
de-noising operator with hard threshold . To wavelet shrinkage de-noise X(t) in order to recover  

)(tS


 as an estimate of S(t). Then the three steps 
1. Take the forward transform         Y = W(X)            (2) 
2. Apply shrinkage        Z = D(., )            (3) 

3. Take inverse transform      

S = W−1(Z)                       (4) 

summarize the procedure. For implementation MATLAB functions were used with db5 wavelet 
and the decomposition level depends upon the row size of the image (i.e. If the row size is N, 
then the decomposition level becomes log2N). 
 
3.2. Curvelet 
The curvelet transform, like the wavelet transform, is a multiscale transform, with frame elements 
indexed by scale and location parameters.  Unlike the wavelet transform, it has directional 
parameters, and the curvelet pyramid [28][29] contains elements with a very high degree of 
directional specificity. The elements obey a special scaling law, where the length of the support of 
a frame elements and the width of the support are linked by the relation width = length2. Curvelets 
are interesting because they efficiently address very important problems where wavelets are far 
from ideal.  
 
For example, Curvelets provide optimally sparse representations of objects, which display curve-
punctuated smoothness except for discontinuity along a general curve with bounded curvature. 
Such representations are nearly as sparse as if the object were not singular and turn out to be far 
sparser than the wavelet decomposition of the object. 

(1) 
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This phenomenon has immediate applications in approximation theory and in statistical 
estimation. In approximation theory, let mf  be the m -term curvelet approximation 
(corresponding to the m largest coefficients in the curvelet series) to an object 

)2(2)2,1( RLxxf  . Then the enhanced sparsity says that if the object f  is singular along a 

generic smooth 2C  curve but otherwise smooth, the approximation error obeys 

  232 .log.2
 mmCff

Lm                    (5) 

and is optimal in the sense that no other representation can yield a smaller asymptotic error with 
the same number of terms. The implication in statistics is that one can recover such objects from 
noisy data by simple curvelet shrinkage and obtain a MSE in order of magnitude better than what 
is achieved by more traditional methods. In fact, the recovery is asymptotically near optimal. The 
statistical optimality of the curvelet shrinkage extends to other situations involving indirect 
measurements as in a large class of ill-posed inverse problems [30]. For implementation 
software, we refer to the home page http://www.curvelet.org due to Demanet and Ying. 
 
3.2. Waveatom 
Demanet and Ying [31] introduced so-called wave atoms, that can be seen as a variant of 2-D 
wavelet packets and obey the parabolic scaling of curvelets wavelength= (diameter) 2. Oscillatory 
functions or oriented textures (e.g., fingerprint, seismic profile, engineering surfaces) have a 
significantly sparser expansion in wave atoms than in other fixed standard representations like 
Gabor filters, wavelets, and curvelets. 
 
Wave atoms have the ability to adapt to arbitrary local directions of a pattern, and to sparsely 
represent anisotropic patterns aligned with the axes. In comparison to curvelets, wave atoms not 
only capture the coherence of the pattern along the oscillations, but also the pattern across the 
oscillations. 
 
In the following, we shortly summarize the wave atom transform as recently suggested in [31]. 
See also [32] for a very related approach. 

Consider a 1-D family of wave packets )(, xj
nm , Nnmj  ,0,0 , centered in frequency 

around mw j
mj 2,   with jj cmc 22 21   (where 21 cc   are positive constants) and 

centered in space around nx j
nj

 2, . For that purpose, let g be a real valued C bumb function 

with compact support in  6/5,6/7   such that for 3/   
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Then the function )(ˆ 0  m is determined by the formula 
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where m
me )1(  and ))2/1()(2/(  mm  . The properties of g have to ensure that  
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Then the translates  )(.0 nm   form an orthonormal basis of )(2 RL . Introducing the basis 
functions  

)2(2)2()( 02/
, nxnxx j

m
jjj

m
j

nm                                   (10) 

The transform )()(: 22 ZlRLWA   maps a function u onto a sequence of wave atom 
coefficients 
                                                                                                 




 duj
m

njiedxxj
nmxunmjc )(ˆ)(2

2
1)(,)(,, 









                            (11)                           

In the 2-D case, Let ),,( nmj , where )2,1( mmm  and )2,1( nnn  . We consider 

)2(
2,2

)1(
1,1

)2,1( xj
nmxj

nmxx                                               (12) 

and the Hilbert transformed wavelet packets 

)2(
2,2

)1(
1,1

)2,1( xj
nmxj

nmxx                                   (13) 

 
Where for decomposition  

 )()()( ,,,,,  j
nm

j
nmnm i    with )()( ,,,,  j

nm
j

nm    and the Hilbert transform 
is defined by 

   )()()( ,,,,,

^
 j

nm
j

nm

j

nm iiH                            (14) 

(Note that the above decomposition of nm,

^
  is possible since nm,  is real-valued). A 

recombination 
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provides basis functions with two bumps in the frequency plane being symmetric with respect to 
the origin. Together, )1(

  and )2(
  form a wave atom frame, and the wave atom coefficients 

)1(
uC , )2(

uC  are the scalar products of u with )1(
  and )2(

 . 
 
In [31], a discretization of this transform is described for the 1-D case, as well as an extension to 
two dimensions. The algorithm is based on the fast Fourier transform and a wrapping trick. For 
implementation software, we refer to the homepage http://www.waveatom.org/software.html due 
to Demanet and Ying. 
 
The wave atom shrinkage can be formulated as a hard threshold function given by 





 











 x
x

x
xxh
,0

,)(
2

                                  (16) 

Where   is the standard deviation, estimated by histogram based techniques.  

4. EXPERIMENTS AND RESULTS 
This section gives a detailed qualitative and quantitative analysis of the proposed MRI de-noising 
algorithm. It compares the performance of the proposed method with wavelet shrinkage and 
curvelet shrinkage. It is evaluated with simulated images and real images. 
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4.1. Simulated Images 
To validate the proposed method with simulated images, images were down loaded from 
Brainweb[33]. Rician noise is generated by adding independent and identically distributed (i.i.d.) 
additive Gaussian noise with the noise free image and, subsequently, taking the magnitude of the 
resulting complex-valued image [34]. Noisy image with different values of standard deviation are 
applied on the proposed de-noising method and the Signal to Noise ratio (SNR) [34] is obtained 
by 

))ˆvar(/)(var(10log10 xxxSNR                       (17) 

where x  is noise free simulated image and x̂  is noisy image or de-noised image. 

 The shrinkage is obtained by  

)(1 uTTuX 
                                                              (18) 

where T denotes the transform and 1T  denotes the inverse transform,   is taken as a 
threshold function defined by a fixed threshold .0  
 
Analysis is made with four conditions vide i) fixed high SNR for various threshold ii) fixed low SNR 
for various threshold iii) fixed low threshold for various SNR and iv) fixed high threshold for 
various SNR 

i) The chosen SNR is 19.0505 dB and the threshold is varied from 0.03 to 0.3. The 
observations are given in Fig 1. It shows the wave atom shrinkage gives higher SNR on all 
threshold values compared to wavelet shrinkage and curvelet shrinkage. The performances of the 
models are given in Fig 2 for the threshold 0.06. 

ii) The chosen SNR is 9.21 dB and the threshold is varied from 0.03 to 0.3. The 
observations are given in Fig 3. It shows the wave atom shrinkage gives higher SNR on all 
threshold values compared to wavelet shrinkage and curvelet shrinkage except for the threshold 
0.03,0.06 and 0.3, where the curvelet shrinkage perform well. The performances of the models 
are given in Fig 4. for the threshold 0.24. 

iii) Here the threshold is fixed at 0.06 and SNR is varied from 9.37 dB to 19.12 dB. It 
shows the proposed method increases the SNR to the maximum of 16.6% compared to wavelet 
by 14.6% and  curvelet by 8%. The analysis is presented in Fig 5.  

iv) Here the threshold is fixed at 0.24 and SNR is varied from 9.26 dB to 18.87 dB. It 
shows the proposed method increases the SNR to the maximum of 57% compared to wavelet by 
52% and  curvelet by 52%.  The analysis is presented in Fig 6.  

 
It is observed that the performance of all filters depends on the proper selection of threshold 
value and the SNR of the noisy image. Also, the performance of the proposed method is better 
with the maximum increase of 57% SNR compared to the methods given in [35] like anisotropic 
diffusion by 34% and UINTA by 18.1% increase of SNR. 
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FIGURE 1: De-noised image SNR for high SNR noisy image. 

 
FIGURE 2: High SNR images (a) Noisy image (b) De-noised using Wave Atom (c) De-noised using Wavelet 

(d) Den-noised using Curvelet. 

 
FIGURE 3: De-noised image SNR for low SNR noisy image. 
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FIGURE 4: Low SNR images (a) Noisy image (b) De-noised using Wave Atom (c) De-noised using 

Wavelet (d) Den-noised using Curvelet. 

 
FIGURE 5: Performance between noisy and de-noised images with the threshold of 0.06. 

 

FIGURE 6: Performance between noisy and de-noised images with the threshold of 0.24 
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4.2. Real Images 
Fig. 7 show the performance of the proposed method and the wavelet and curvelet shrinkage on 
corrupted MR images of adult human brains taken from Sree Chitra Tirunal Institute of Medical 
Sciences, Thiruvananthapuram, where the MRI scans were acquired on a 1.5T Vision System 
(Siemens, Erlangen, Germany). T1-weighted magnetization prepared rapid gradient echo (MP-
RAGE) with the following specifications: FOV = 224, matrix = 256 x 256, resolution = 1 x 1 x 1.25 
mm3, TR = 9.7 ms, TE = 4ms, flip angle = 10, TI = 20 ms, TD = 200ms. The voxel size of the 
image is 0.781x0.781x2mm3. The proposed method is able to recover the image features to a 
significant extent, qualitatively, despite a significant level of intensity inhomogeneity apparent in 
some images. The medical doctors validated the images. 

 
FIGURE 7: Real (a) Noisy image (b) De-noised using Wave Atom (c) De-noised using Wavelet (d) Den-

noised using Curvelet 

 

5. CONCLUSION 
A novel scheme is proposed for the de-noising of Magnetic Resonance Images using wave atom 
shrinkage. It is proved that the proposed approach achieves a better SNR compared to wavelet 
and curvelet shrinkages. The edge preserving property is clearly an advantage of the proposed 
method. Further, including a large dataset of real-time normal and pathological MR images will 
emphasize the efficiency of proposed method. The next work is to analyze the performance of the 
proposed method on other modalities of MRI such as T2 and PD.    
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