
K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 240

Genetic Algorithm Processor for Image Noise Filtering Using
Evolvable Hardware

Dr. K. Sri Rama Krishna srk_kalva@yahoo.com
Professor & HOD /ECE
V R Siddartha Engg College
Vijayawada, Krishna (dist), A.P-520007, India

A. Guruva Reddy guruvareddy78@mail.com.com
Professor / ECE
NRI institute of Technology
Pothavarappadu , Agiripalli, Krishna (D), A.P-521 212, INDIA

Dr. M.N.GIRI PRASAD mahendran_gp@rediffmail.com
Principal,
JNTU college of Engineering,
Pulivendala, Kadapa (dist). A.P – 516390, India

Dr. K.Chandrabushan Rao cbraokota@yahoo.com
Professor/ECE
MVGR College of Engineering,
Vijayanagarm, A.P, India

M. Madhavi madhavi.418@gmail.com
Associatet Prof / ECE
NRI institute of Technology
Pothavarappadu , Agiripalli, Krishna (D), A.P-521 212, INDIA

Abstract

General-purpose image filters lack the flexibility and adaptability of un-modeled
noise types. On the contrary, evolutionary algorithm based filter architectures
seem to be very promising due to their capability of providing solutions to hard
design problems. Through this novel approach, it is made possible to have an
image filter that can employ a completely different design style that is performed
by an evolutionary algorithm. In this context, an evolutionary algorithm based
filter is designed in this paper with the kernel or the whole circuit for automatically
evolved.

The Evolvable Hard Ware architecture proposed in this paper can evolve filters
without a priori information. The proposed filter architecture considers spatial
domain approach and uses the overlapping window to filter the signal. The
approach that is chosen in this work is based on functional level evolution whose
architecture includes nonlinear functions and uses genetic algorithm for finding
the best filter configuration.

Keywords: Reconfigurable hardware, Processing elements, Genetic algorithm, Virtual Reconfigurable
Circuit

K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 241

Input
buffer

Pseudo
Random
Number

Generato
r

Virtual
Reconfigurab

le Circuit

Mutation
Unit

Selection
Unit

Out
put

Chromosome
Memory

Fitness
Calculati

Input

Outp
ut

1. INTRODUCTION
Non-linear Image processing [13] with good flexibility and adaptability is highly desirable in
several applications such as image transformation, correction of distortion effects, noise removal,
histogram equalization etc. Conventional adaptive filter lacks the flexibility for adapting to
changes in architecture and is therefore suitable for compensating non-uniform variations in
Signal-to-Noise Ratio (SNR). It is also reported that conventional adaptive filter performs well,
only when, the spatial density of the noise is less. In this paper, a reconfigurable computing
FPGA architecture is designed for adapting to the changes in task requirements or changes in
environment, through its ability to reconfigure its own hardware structure dynamically and
autonomously with design objectives such as high performance, specialization and adaptability.

In this paper, minimally sufficient hardware resources are dynamically allocated based on noise
levels at specific time intervals. To enable automatic recovery of a device after damage, an
autonomous restructuring algorithm to handle internal processing element fault is implemented
and tested successfully. The novelty of this work is the implementation of a reconfigurable system
[1] and an associated design methodology that has both flexibility and autonomous restructuring
[3] of Processing Elements. The reconfiguration process is achieved using an evolutionary
algorithm [2] such as Genetic Algorithm (GA).

2. IMAGE ENHANCEMENT USING EVOLUTIONARY DESIGN
The Evolvable Hard Ware (EHW) architecture [6] proposed in this work for filtering the noise
present in the image that is subsequently realized on an Field Programmable Gate Array (FPGA)
based image processing board, consists of the GA processor [11] and a virtual reconfigurable
circuit and is shown in Figure 1. This type of implementation integrates a hardware realization of
genetic algorithm and a reconfigurable device. These two modules of the EHW [5] are described
in the following sections:

FIGURE 1: EHW chip with the VRC and GA Processor

2.1 Implementation of the GA Processor
The implementation of simple GA [12] is composed of following basic modules: pseudo random
number generator, population memory, selection unit, mutation unit, fitness evaluator and output
buffer. These modules have already been discussed in chapter II of this thesis.
2.2 Implementing the Virtual Reconfigurable Circuit

K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 242

The Virtual Reconfigurable Circuit (VRC) is implemented [10] as a combinational circuit using the
concepts of pipelining. It consists of processing elements arranged in rows and columns. In this
work, a total of 25 PE’s are selected and are arranged in six rows and four columns with the 25th
PE representing the final output.

2.3 Architecture of The VRC
The architecture of the VRC is shown in Figure 2. I4 represents the filtered output from the VRC.
The nature of operation performed on the input depends on the configuration bits downloaded
into the configurable memory from the genetic unit.

FIGURE 2: Architecture of the VRC

3. GENETIC ALGORITHM FOR EVOLVABLE HARDWARE
The configuration bits are obtained using genetic algorithm and are downloaded into the
reconfiguration circuit which results in relocation of hardware modules inside VRC. The flow
diagram of reconfiguration process is shown in figure 3.
The class of evolutionary algorithm most commonly used in evolvable hardware [4] is the genetic
algorithm. Most commonly these operate on a fixed size population of fixed length binary strings
called chromosomes. Each chromosome encodes a common set of parameters that describe a
collection of electronic components and their interconnections, thus each set of parameter values
represents an electronic circuit. The set of all possible combinations of parameter values defines
the search space of the algorithm, and the circuits that they represent define the solution space of
the algorithm.
The Evolvable hardware with Genetic algorithm [7] begins by initialising the bits of each
chromosome with random values. The chromosomes are then evaluated in turn by creating a
circuit based on the parameter values, either as a simulated model of the circuit or as a concrete
circuit embodied in reconfigurable hardware . The circuit’s fitness for performing the target task is
then measured by passing it a set of test values and evaluating the veracity of the circuit’s output.
The selection operator then probabilistically populates the next generation of chromosomes such
that chromosomes with high fitness are more likely to be selected. The operator selects two
individuals at random and compares their fitness. Only the individual with the highest fitness is
inserted into the next generation. If they have equal fitness the individual to be inserted is chosen
at random. Once the new population has been selected, it is varied. Common variation operators
are one-point crossover and point mutation. One point crossover recombines two chromosomes
by choosing a position at random along the chromosome and swapping every bit beyond this
point between the strings. It is stochastically applied according to a fixed probability. Point
mutation independently inverts each bit in the chromosome according to a fixed probability.
These operators are applied to all members of the new population. Often in addition to these
operators, the best member of the original population is copied into the new population
unchanged, The new population is now complete and the algorithm then iterates the steps of

VRC
Configurable

memory

I
0 I
1

I
8

I
 Replaces the center
pixel in the 3x3
kernel of the original
image

Configurable Bits

K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 243

evaluation, selection and variation until a circuit that functions adequately is found, or a pre-
specified number of generations is completed.

FIGURE 3: Flow diagram of VRC using Genetic Algorithm.

The configuration bits are obtained using genetic algorithm [12] and are downloaded into the
reconfiguration circuit which results in relocation of hardware modules inside VRC.

4. COMPONENTS OF VIRTUAL RECONFIGURABLE CIRCUIT
In reconfigurable computing sequence of configurations is not known at the design time. It
involves the usage of software and hardware components normally referred to as IP cores. This
concept is very much useful in effective designing of the complex systems. The reconfigurable
device is part of the evolvable component. The genetic unit in the evolvable component
generates the configuration bits (Chromosomes). The fitness calculation is usually performed
outside the evolvable component. Internal reconfiguration implies that a CLB can configure other
CLB’s.

K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 244

FIGURE 4: VRC with the internal MUX for selecting inputs and functions Helvetica

In figure 4. Slice 1 is a ‘m’ bit vector and selects any one of many inputs and assigns it as first
input X

Slice 2 is a ‘m’ bit vector and selects any one of many inputs and assigns it as second input Y

Slice 3 is a ‘n’ bit vector and selects any one of the 16 functions to be performed on X and Y

The X and Y are both 8-bit vectors and the processed output is also an 8 - bit vector.

5 IMAGE ENHANCEMENT ALGORITHM
5.1 Fitness Function
Popular measures of performance for evaluating the difference between the original and filtered
images includes
i. Peak Signal to Noise Ratio (PSNR) and
ii. Mean Difference per Pixel (MDPP)
In many applications the error is expressed in terms of a signal-to-noise ratio (SNR), and is given
in equation 1

 dB
MSE
σ10log SNR

2

10 (1)

 where ² is the variance of the desired or original image. The peak signal-to-noise
ratio (PSNR) is expressed as equation 2,

 dB
MSE
25510log PSNR

2

10 (2)

The fitness function using MDPP is given by

N

1ji,

|j)filt(i, - j)orig(i, |
NxN

1 MDPP (3)

3 3 3

8

(8)

3x3 Input window

I0 I1 I2
I3 I4 I5
I6 I7 I8

PE11

Mux

Configuration Word

Slice 2
(Select Input 2)

Output pixel replaces I4

Slice 1
(Select Input 1)

Slice 3
(Select Input 3)

8

K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 245

 where |orig(i,j) – filt(i,j)| is the absolute difference between the original and filtered images
In this work, the Mean Difference per Pixel (MDPP) is used as a performance measure by the
fitness evaluator module in the GA processor for the reason that MDPP fitness function is
computationally easier for hardware implementation in comparison to PSNR. The EHW
architecture that has the best MDPP (minimum MDPP) after a specified number of generations is
chosen as the evolved architecture.

6 NOISE MODELS
6.1 Multiplicative Noise
In this model, the noise magnitude depends on the signal magnitude itself. An example of
multiplicative noise is the degradation of film material caused by the finite size of silver grains
used in photosensitive emulsion.
6.2 Quantization Noise
This occurs when insufficient quantization levels are used, for example, only 50 levels for a
monochromatic image. Due to this noise false contours appear. However, this noise can be
eliminated by simple means.
6.3 Impulsive Noise
When an image is corrupted with individual noisy pixels whose brightness differs significantly
from that of the neighborhood, then it represents an impulse noise effect.
6.4 Salt and Pepper Noise
This describes [8] saturated impulsive noise – an image corrupted with white and/or black pixels.
The effect is more appropriate for binary images.
6.5 Gaussian Noise
Idealized noise, called white noise or Gaussian noise, has constant power spectrum, meaning
that its intensity does not vary with increasing frequency. This noise model is often used.

7. VHDL IMPLEMENTATION OF GA PROCESSOR
The model of GA processor is implemented in VHDL. The screen that captured the VHDL code
from the Xilinx ISE software package [9] is given in Figure 5. Each one of the signal implements,
the 12 bit random number generator and a sample output captured using the modelsim package,
is shown in Figure 6. These bits (GA processor output) are the configuration bits which control the
interconnections among the PE’s as well as and also the functionality of each PE in the VRC
module [10].

 FIGURE 5: Implementation of GA processor using VHDL

K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 246

 FIGURE 6: Modelsim Captured GA Processor output

8. IMPLEMENTATION RESULT OF EHW FILTER
In this section, the performance of EHW Filter in removing Gaussian noise is presented. The
evolved EHW architecture for this case is shown in figure 7.

FIGURE 7: Architecture of VRC evolved to filter Gaussian Noise

The standard test image, Lena as shown in figure 8a is used for study and the results. In figure
8b shows Additive Gaussian noise with mean 0 and standard deviation 0.05 is added. The results
obtained with Median filter and proposed EHW filter are shown in Figure 8c and 8d respectively. It
is observed that Median Filter does not effectively remove Gaussian noise and performs only in
edge regions, with blur effects still present in continuous regions. The EHW Filter performed well
both in edge and continuous regions and effectively removed Gaussian noise.

K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 247

FIGURE 8 a: Original Image,
 FIGURE 8 b: Gaussian noise added image

 FIGURE 8 c: Restored image using Median
 FIGURE 8 d: Restored image using EHW

The standard test image, Lena as shown in figure 9a. In figure 9b shows Salt And Pepper is
added for Lena image. The results obtained with sober filter and proposed EHW filter are shown
in Figure 9c and 9d respectively. It is observed that sober filter does not effectively remove salt

K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 248

and pepper noise. The EHW Filter performed well both in edge and continuous regions and
effectively removed salt and pepper noise.

FIGURE 9 a: Original Image,

 FIGURE 9 b: Salt and Pepper noise added image
 FIGURE 9 c: Restored image using Sober filter

 FIGURE 9 d: Restored image using EHW

K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 249

The comparision results are given in Table 1. It is clear that EHW filter outperforms the other
filters for both Gaussian and salt & pepper noise. The nonlinear part of EHW filter preserves the
edges and removes the Gaussian noise effectively. The linear part smoothens the salt and
pepper noise and removes the spurious part of the image.

Image PSNR (dB) MDPP MSE

Gaussian Noise of SD= 0.05

Median Filter 24.95 180606 23.08

EHW 27.05 143152 20.14

Salt and Pepper

Sober Filter 24.17 173449 23.96

EHW 26.69 133399 19.44

TABLE 1: Comparison Study

9. CONSLUSION & FUTURE WORK
In this work, a novel virtual reconfigurable circuit based image filter was presented. It is shown
that it is possible to successfully evolve noise removal filters that produce better image quality
than a standard median and sober filter. The n-bit configuration information that determines the
function of the functional block and the connection to the inputs is chosen optimally. Also, the
design guarantees that, in this constrained structure, no random configuration information can
ever destroy the chip. The fitness calculation part is the computationally time consuming
operation and hence, in this work, this part is performed inside the FPGA along with the VRC.
The utilized resources of the FPGA are also found to be practical and any commercially available
FPGA can be used for implementing the EHW. If noise corrupting the image varies, a more
accurate VRC filter is swapped into the FPGA hardware.

Future Work
To reduce the computational complexity and to enhance the speed, each kernel can be executed
on a floating point processor. This can overcome the limitation of architectures which support only
binary operations.

10. REFERENCES
1. Borgatti, M. Lertora, F. Foret, B. Cali, L. “ A reconfigurable system featuring dynamically

extensible embedded microprocessor, FPGA, and customizable I/O”. IEEE Journal of Solid-
State Circuits, Vol.38(3): 521- 529, Mar 2003

2. Christian Haubelt, Thomas Schlichter, and Jurgen Teich, “Improving Automatic Design Space

Exploration by Integrating Symbolic Techniques into Multi-Objective Evolutionary Algorithms”.
International Journal of Computational Intelligence Research, Vol.2(3): 239–254, 2006

K. Sri Rama Krishna, A. Guruva Reddy, M.N. Giri Prasad, K. Chandrabushan Rao & M. Madhavi

International Journal of Image Processing, Volume (4): Issue (3) 250

3. Guruva Reddy. A, Sri Rama Krishna. K, Giri Prasad. M.N and Chandra Bhushan Rao K,
“Autonomously Restructured Fault tolerant image enhancement filter,” ICGST International
Journal on Graphics, Vision & Image Processing, Vol.08, issue-3, pp.35-40, Oct 2008.

4. Higuchi, T. Iwata, M. Keymeulen, D. Sakanashi, H. Murakawa, M. Kajitani, I. Takahashi,

E. Toda, K. Salami, N. Kajihara, N. and Otsu, N, “Real-world applications of analog and
digital evolvable hardware”. IEEE Transactions on Evolutionary Computation, Vol.3(3): 220-
235, Sep 1999

5. Higuchi .T, N. Kajihara, "Evolvable Hardware Chips for Industrial Applications".

Communications of the ACM, Vol.42(4): 60-69, June 2006

6. Clark, G.R, San Diego and La Jolla. “novel function-level EHW architecture within modern

FPGAs”. In Proceedings of Congress on Evolutionary Computation (CEC 99), California Univ,
CA, 1999

7. Higuchi.T, Umezono and Tsukuba Ibaraki. “Evolvable hardware with Genetic learning”. In

Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '96), 1996

8. Jie Li and Shitan Huang. “Adaptive Salt-&-Pepper Noise Removal: A Function Level Evolution

based Approach”. In Proceedings of NASA/ESA Conference on Adaptive Hardware and
Systems, June 2008

9. Kyrre Glette and Jim Torresen. “A Flexible On-Chip Evolution System Implemented on a Xilinx

Virtex-II Pro Device”. In Proceedings of International conference on Evolvable systems, 2005

10. Sekanina.L. “Virtual Reconfigurable Circuits for Real-World Applications of Evolvable

Hardware”. In Proceedings of Fifth International Conference on Evolvable Systems
(ICES’03), 2003

11. Simon Harding. “Evolution of Image Filters on Graphics Processor Units Using Cartesian
Genetic Programming”. In Proceedings of IEEE Congress on Evolutionary Computation,
2008

12. Goldberg, D. E. “Genetic Algorithms in Search, Optimization & Machine Learning”, Pearson

Education, Inc, 1990.

13. Rafael C. Gonzalez and Richard E. Woods, “Digital Image Processing”, Second edition,

Pearson Education, 2007

