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Abstract 
 
Thermal monitoring is useful for revealing some serious electrical problems in a factory that often 
go undetected until a serious breakdown occurs. In factories, there are various types of 
functioning machines to be monitored. When there is any malfunctioning of a machine, extra heat 
will be generated which can be picked up by thermal camera for image processing and 
identification purpose. In this paper, a new and effective omnidirectional machine condition 
monitoring system applying log-polar mapper, quaternion based thermal image correlator and 
max-product fuzzy neural network classifier is proposed for monitoring machine condition in an 
omnidirectional view. With this monitoring system, it is convenient to detect and monitor the 
conditions of (overheat or not) of more than one machines in an omnidirectional view captured by 
using a single thermal camera. Log-polar mapping technique is used to unwarp omnidirectional 
thermal image into panoramic form. Two classification characteristics namely: peak to sidelobe 
ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are 
applied in the proposed machine condition monitoring system. Large PSR and p-value observe in 
a good match among correlation of the input thermal image with a particular reference image, 
while small PSR and p-value observe in a bad/not match among correlation of the input thermal 
image with a particular reference image. Simulation results also show that the proposed system is 
an efficient omnidirectional machine monitoring system with accuracy more than 97% 

 
Keywords: Machine Condition Monitoring System, Neuro Fuzzy System, Thermal Imaging, Quaternion, 
Omnidirectional. 

 
 
1. INTRODUCTION 
Many factories in all over the world rely on machines to help improve their production and 
process. An effective machine condition monitoring system play an important role in those 
factories to ensure that their production and process are running smoothly all the time. Infrared 
cameras or thermal cameras are used in many heavy factories for monitoring the temperature 
conditions of the machines. When there is any malfunctioning of machines, extra heat will be 
generated and it can be picked up by thermal camera. Thermal camera will generate an image to 
indicate the condition of the machine. This enables the operator to decide on the on/off switch. 
Any malfunctioned machines detected will proceed to further repairmen action. This process is 
term as thermal imaging monitoring.  
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Thermal imaging monitoring is more convenient in compare to conventional maintenance method. 
In conventional maintenance method, functioning machines needs to be frequently monitored by 
operator. The problem is it required more man power and longer maintenance time. However, 
with thermal imaging monitoring, the operating machines can be maintained and monitored by the 
operator with observing the thermal images captured routinely on the functioning machines and 
display on a monitor, even from a remote location. So, hands on workload, man power, 
maintenance time can be reduced and improve safety, since some overheat devices cannot see 
through eyes, but can read from thermal images, hence the use of thermal imaging monitoring 
can prevent accident happen too [1]. 
 
If a single thermal camera is applied to monitor a single machine, then for more functioning 
machines in different angle of view, more thermal cameras are required. This will increase cost, 
beside complicated the monitoring network. In this paper, a new and effective omnidirectional 
machine condition monitoring system applying log-polar mapper, quaternion based thermal image 
correlator and max-product fuzzy neural network classifier is proposed for monitoring machine 
condition in an omnidirectional view. In terms of hardware part, an omnidirectional thermal 
imaging system consists of thermal camera, custom made IR reflected hyperbolic mirror, camera 
mirror holder, and laptop/PC as image processing tools is proposed for effective machine 
condition monitoring purpose. Thermal images captured from the custom made hyperbolic mirror 
are in omnidirectional view. Log-polar mapping technique [2] is applied for unwarping the 
captured omnidirectional thermal images into panoramic form, providing the observer or image 
processing tools a complete wide angle of view. 
 
Quaternion correlator is so far commonly used in color human face recognition [3] and color 
alphanumeric words recognition [4]. It is found to be useful in machine condition monitoring too, 
especially in thermal condition monitoring. In [5], quaternion correlator was proposed to be used 
in thermal image recognition for machine condition monitoring system, so called the quaternion 
based thermal image correlator. The quaternion based thermal image correlator was in pair with 
max-product fuzzy neural network classifier were used to monitor fixed angle machines’ condition. 
The experimental results in [5] also shown that the proposed system achieves high accuracy in 
monitoring machines condition. It’s never been used in omnidirectional approach. Therefore, in 
this paper, quaternion based thermal image correlator and max-product fuzzy neural network 
classifier are proposed for omnidirectional machine condition monitoring system as a new 
approach. 
 
In quaternion based thermal image correlator proposed in [5], a strong and sharp peak can be 
observed in the output correlation plane when the input thermal image comes from the authentic 
class (input thermal image matches with a particular training/reference image stored in the 
database), and there will be no discernible peak if the input thermal image comes from imposter 
class (input thermal image does not match with the particular reference image). For better 
recognition, peak-to-sidelobe ratio (PSR) [6] is introduced to test whether an input thermal image 
belongs to the authentic class or not. In [5], it is discovered that by considering the peak value 
with the region around the peak value is more accurate compare to just a single peak point. 
According to the results in [5], the higher is the value of PSR, the more likely is the input thermal 
image belonging to the reference image class. Another parameter use in [5] for quaternion 
correlation is the real to complex ratio of the discrete quaternion correlation output (p-value [4]). 
p-value is used in quaternion based thermal image correlator for measuring the quaternion 
correlation output between the colors, shape, size and brightness of the input thermal image and 
a particular reference thermal image. 
 
A max-product fuzzy neural network classifier is also proposed to perform classification on the 
thermal images based on the PSR and p-value output from the quaternion based thermal image 
correlator. Classification in pattern recognition [7] refers to a procedure whereby individual 
patterns are placed into groups based on quantitative information on one or more characteristics 
inherent in the patterns and based on a training set of previously labeled patterns, known as 
classes. The purpose of classification is to establish a rule whereby a new observed pattern will 
map into one of the existing classes. These classes are predefined by a partition of the sample 
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space, which is the attributes themselves. For example, a machine may be classified as 
overheated if the colors display in the thermal image is brighter than the predetermined limits. 
 
In [5], the max-product fuzzy neural network classifier was modified according to [8] to perform 
the classification in machine condition monitoring system. According to the designed max-product 
fuzzy neural network classifier, both the PSR and p-value output from the quaternion based 
thermal image correlator are first fuzzified with Gaussian membership function. The max-product 
fuzzy neural network classifier is applied for accurate classification with the weights obtained from 
training reference images. The weights are then applied for classification of input images in real 
time application. The same classifier is applied in this paper, for the omnidirectional approach. 
Experimental results show that in the authentic case, if an input image is well matched with a 
particular reference image in the database, followed by performing quaternion correlation on 
these two images, their output correlation plane will have sharp peaks. However in imposter case, 
if an input thermal image is not matched with a particular reference image in the database, the 
output correlation plane is flat. Large peak to sidelobe ratio (PSR) and real to complex ratio of the 
discrete quaternion correlation output (p-value) is proven to have a good match among 
correlation of the input thermal image with a particular reference image, while small PSR and p-
value reflect reversely. Experimental results in this paper also show that the proposed system is 
an efficient wide angle coverage machine condition monitoring system with accuracy above 97%. 
 
This paper is organized in the following order: Section 2 briefly comments on the quaternion 
based omnidirectional machine condition monitoring system, section 3 summarize the log-polar 
image geometry and the mapping techniques. The algorithm of the proposed quaternion based 
thermal image correlator is described in section 4. Section 5 describes the structure of the max-
product fuzzy neural network classifier. In section 6, the experimental results is discussed. Finally 
section 7 summarizes the work and some suggestions are proposed for future work. 

 

2. QUATERNION BASED OMNIDIRECTIONAL MACHINE CONDITION 
MONITORING SYSTEM MODEL 

The quaternion based omnidirectional machine condition monitoring system developed in this 
paper is shown in Fig. 1. 
 

 
 

FIGURE 1: Quaternion based omnidirectional machine condition monitoring system 

 
The omnidirectional thermal imaging system consists of three elements, which are the custom 
made IR reflected hyperbolic mirror, camera mirror holder set and thermal camera. The research 
group of OMNIVIEWS project from Czech Technical University developed MATLAB software for 
designing omnidirectional mirror [9]. Utilizing the MATLAB software, omnidirectional hyperbolic 
mirror can be designed by inputting some parameters specify the mirror dimension. The details of 
the mirror design can be found in [13]. The coordinates generated using MATLAB software as 
well as mechanical drawing using Autocad was provided to precision engineering company to 
fabricate/custom made the hyperbolic mirror. The hyperbolic mirror is milling by using aluminum 
bar and chrome plating with chromium. Chromium is selected because of its lustrous (good in IR 
reflection), high corrosion resistance, high melting point and hardness. The camera mirror holder 
is designed and custom made with aluminum material as shown in Fig. 2. 
 
The thermal camera used in the proposed omnidirectional thermal imaging system is an 
affordable and accurate temperature measurement model: ThermoVision A-20M manufactured 
by FLIR SYSTEM [10]. The thermal camera has a temperature sensitivity of 0.10 in a range from 
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-20ºC to 900ºC and it can capture thermal image with fine resolution up to 320 X 240 pixels 
offering more than 76,000 individual measurement points per image at a refresh rate of 50/60 Hz. 
For fast image and data transfer of real-time fully radiometric 16-bit images, an IEEE-1394 
FireWire digital output can be selected. For network and/or multiple camera installations, Ethernet 
connectivity is also available. Each A-20M can be equipped with its own unique URL allowing it to 
be addressed independently via its Ethernet connection and it can be linked together with router 
to form a network. Therefore, it is best outfitted for machine condition monitoring system in a big 
factory site. 
 
Log-polar mapper applying log polar mapping techniques [2]. It unwarps the captured 
omnidirectional thermal image into panoramic form, provided observer or image processing tools 
 

 
 

FIGURE 2: Overall fabricated omnidirectional thermal imaging system model. 

 
 a wide angle of view. Another merit of log-polar image representation is that it has data 
compression manner. Log-polar mapping has been used in [13] for unwarping omnidirectional 
thermal image for machine condition monitoring. Detailed discussion on log-polar mapping will be 
provided in Section 3. Image partitioner is used for partitioned the input thermal image into S-
partitioned sections, provided that the input thermal image consisted of S machines to be 
monitored. Each partitioned section consists of one machine to be monitored. An example of a 
panoramic thermal image with S=3 partition sections is shown in Fig. 3. 

 

 
 

FIGURE 3: Example of a panoramic thermal image with S=3 partition sections. 

 
Quaternion based thermal image correlator [5] is used to obtain correlation plane for each 
correlated input thermal image captured lively with reference images of all possible machines 
conditions stored in a database to calculate out some classification characteristics such as the 
real to complex ratio of the discrete quaternion correlation (DQCR) output,  p-value and the peak-
to-sidelobe ratio, PSR. These classification characteristics will later input to the max-product 
fuzzy neural network classifier to perform classification. Detailed discussion on quaternion based 
thermal image correlation will be performed in Section 4. 
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The max-product fuzzy neural network classifier [5] is first applied to train for an accurate 
classification with the weight (w) obtained form training reference images of all possible machines 
conditions stored in the database. During application, the PSR and p-value output from 
quaternion based thermal image correlator are first fuzzified into Gaussian membership function. 
Next, product value is calculated based on the multiplication of PSR in Gaussian membership 
value with p-value in Gaussian membership value. The product values are stored in an array and 
multiply with the weight (w). Max-composition is performing on the output based on two sets of 
fuzzy IF-THEN rules, and defuzzification is performed to classify each machine’s condition under 
monitoring. Detailed discussion on max-product fuzzy neural network classifier will be given in 
Section 5. 

 

3. LOG-POLAR MAPPING 
Log-polar geometry or log-polar transform in short, is an example of foveated or space-variant 
image representation used in the active vision systems motivated by human visual system [11]. It 
is a spatially-variant image representation in which pixel separation increases linearly with 
distance from a central point [12]. It provides a way of concentrating computational resources on 
regions of interest, whilst retaining low-resolution information from a wider field of view. One merit 
of this kind of image mapping technique is data reduction. Foveal image representations like this 
are most useful in the context of active vision system where the densely sampled central region 
can be directed to pick up the most salient information. Mammalians especially human eyes are 
very roughly organized in this way. 
 
In the software conversion of log-polar images, practitioners in pattern recognition usually named 
it as log-polar mapping [13]. According to [13], it is found out that the use of log-polar mapping 
having numbers of merits such as help solving rotation and scaling problems in quaternion based 
thermal image correlation. However, the main merit of log-polar mapping to be applied in this 
paper is that it can unwarp/convert an omnidirectional image into panoramic image, hence 
providing the observer and image processing tools a complete wide angle of view for the 
surveillance area’s surroundings and preserving fine output image quality in a higher data 
compression manner.  

 
 

FIGURE 4 : A graphical view of log-polar mapping. 

 
The spatially-variant grid that represents log-polar mapping is formed by i number of concentric 
circles with N samples over each concentric circle [11]. An example of a spatially-variant 
sampling grid is shown in Fig. 4.  
 
The log-polar mapping use in this paper can be summarized as following [13]: Initially, 
omnidirectional thermal image is captured using the omnidirectional thermal imaging system as 
shown in Fig. 2. The geometry of the captured omnidirectional thermal image is in Cartesian form 
(x1,y1). Next, the Cartesian omnidirectional thermal image is sampled by the spatially-variant grid 
into a log-polar form (ρ,θ) omnidirectional thermal image. After that, the log-polar omnidirectional 
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thermal image is unwarped into a panoramic thermal image (x2,y2), another Cartesian form. Since 
the panoramic thermal image is in Cartesian form, subsequent image processing task will 
become much easier. 

The centre of pixel for log-polar sampling is described by [2]:   
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The centre of pixel for log-polar mapping is described by [2]:   
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θN  is the total number of pixels per ring in log-polar geometry. This value is assigned by 

user. For eg: if user assign 
θN =5, the ring is divided into 5 sectors or 5 pixels per ring. If 

θN =100, each ring is divided into 100 sectors or 100 pixels per ring. The higher the 
θN , 

the higher the resolution in θ-axis (angular). Refer [2] for detailed discussion on this 
issue. 
 

The number of rings in the fovea region is given by [2]: 
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λ

λ
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FIGURE 5 : Conventional circular sampling method for Log-Polar image.   FIGURE 6 : Sector sampling 
method for log polar image. 



Wai-Kit Wong, Chu-Kiong Loo & Way-Soong Lim 

 

International Journal of Image Processing (IJIP),Volume (5) : Issue (2) : 2011 151 

 
 

FIGURE 7 : Unwarping process 

 

The number of rings must be an integer. Hence, the calculated fovN is rounded to the closer 

integer value. To sample the Cartesian pixels (x1, y1) into log polar pixels (ρ, θ), at each center 
point calculated using (1) and (2), the corresponding log-polar pixel (ρn, θn) is cover a region of 
Cartesian pixels with radius: 

 

1−= nn rr λ       (7) 

 
where n=0, 1, …, N-1. Fig. 5 shows the conventional circle sampling method of log-polar mapping 
[11, 14]. 
 
One of the demerits of using circle sampling is that certain region of Cartesian pixels outsides 
sampling circle did not cover by any log-polar pixels. Therefore, some researchers [5, 15-17] had 
come out with sector sampling method as shown in Fig. 6, which could maximize the coverage of 
Cartesian pixels for each log polar pixel. The region of Cartesian pixels covers by an individual 
log-polar pixel will has the same color intensity follow the respective original Cartesian center 
sampling point. 
 
During unwarping process, the (ρ, θ) pixels will map to each corresponding (x2, y2) pixels as 
shown in Fig. 7. The region of Cartesian pixels on the panoramic image (x2,y2) is covered by an 
individual log-polar pixel on the log-polar (ρ,θ) omnidirectional image. Therefore, the pixels in that 
specific region on the panoramic image (x2,y2) will have the same intensity with respect to the 
corresponding individual log-polar pixel. 

 
4. QUATERNION BASED THERMAL IMAGE CORRELATOR 
In this section, the algorithm of the quaternion based image correlator as proposed in [5] will be 
discussed. 
 
4.1 Algorithm For Quaternion Based Thermal Image Correlator 
The reference image after performing discrete quaternion Fourier transforms (DQFT) [4] is given 
by: 

 

kIjIiII BGR ).nm,().nm,().nm,()nm,( ++=         (8) 

 
where m, n are the pixel coordinates of the reference image. R, G, B parts of reference image are 

represented by )nm,(RI , )nm,(GI and )nm,(BI respectively, and i-, j-, k- are the imaginary parts 

of quaternion complex number [18], whereby the real part of it is set to zero. Similarly, )nm,(h i is 

used for representing input image. Then, output )nm,(b can be produced to conclude whether the 

input image matches the reference image or not. If )nm,(h i is the space shift of the reference 

image: 
 

)nn ,mm()nm,(h 00i −−= I     (9) 

then after some calculation, 
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          ( ) )n ,m(b)nm,(bMax 00rr −=     (10) 

 

where )nm,(br means the real part of )nm,(b and  
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where M, N is the image x-axis, y-axis dimension. At the location (-m0, n0), the multiplier of i-, j-, k- 
imaginary part of b(-m0, n0) are equal to zero: 
 

0)n ,m(b)n ,m(b)n ,m(b 00k00j00i =−=−=−    (12) 

 
Hence, the process as below for thermal image correlation is followed [5]: 
 

1.) Calculate energy of reference image )nm,(I  : 
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Then the reference image )nm,(I and the input image )nm,(h i are normalized as: 
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2.) Calculate the output of discrete quaternion correlation (DQCR): 
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where ‘ ’ means the quaternion conjugation operation and perform the space reverse 

operation:    
 

)n-  m,(g)n m,(g a −=      (17) 

 
3.) Perform inverse discrete quaternion Fourier Transform (IDQFT) on (17) to obtain the 

correlation plane )n m,(P . 

 
4.) Search all the local peaks on the correlation plane and record the location of the local peaks 

as (ms, ns). 
 
5.) Then at all the location of local peaks (ms, ns) found in step 4, we calculate the real to complex 

value of the DQCR output is calculated: 
 

)n ,(mP)n ,(mP)n ,(mP)n ,(mP

)n ,(mP
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ssr

+++
=p    (18) 

 

where )n ,(mP ssr is the real part of )n ,m(P ss . )n ,(mP ssi , )n ,(mP ssj and )n ,(mP ssk are the i-, j- 

k- parts of )n ,m(P ss  respectively. If 1d≥p  and 2ss1 c)n ,P(mc << , then it can be concluded 

that at location (ms, ns), there is an object that has the same shape, size, color and brightness 

as the reference image. 1d1 < , 21 c1c <<  and c1, c2 and d1 are all with values near to 1. The 
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value of p decays faster with the color difference among the match image to the reference 
image. 

 
Another classification characteristic proposed in quaternion based thermal image correlation by [5] 
is the peak-to-sidelobe ratio (PSR) which will be discussed in details as below. The quaternion 
based thermal image correlation involved 2 stages [5]: 1. Enrollment stage, and 2. Recognition 
stage. During the enrollment stage, one or multiple panoramic thermal images of each machine 
condition are acquired. These multiple reference images should have the variability in the color 
tones for different temperature conditions of the machines. The DQFT of the reference images 
are used to train fuzzy neural network and determine correlation filter for each possible machines’ 
conditions. During recognition stage, omnidirectional thermal imaging system captures a live 
omnidirectional machines’ thermal image, unwarps it into panoramic thermal image, and the 
DQFT of such image is correlated with the DQFT form of the reference images stored in the  

 
 

 
 

FIGURE 8 :  Schematic of enrollment stage 

 
database together with their corresponding filter coefficients, and the inverse DQFT of this 
product results in the correlation output for that filter. 
 
A strong peak can be observed in the correlation output if the input image comes from imposter 
class. A method of measuring the peak sharpness is the peak-to-sidelobe ratio (PSR) which is 
defined as below [3, 5]: 

 

)(

)(
PSR

sidelobe

sidelobemeanpeak

σ

−
=     (19) 

 
where peak is the value of the peak on the correlation output plane. sidelobe refers a fixed-sized 
surrounding area off the peak. mean is the average value of the sidelobe region. σ is the standard 
deviation of the sidelobe region. Large PSR values indicate the better match of the input image 
and the corresponding reference image. Enrollment stage and recognition stage are discussed in 
details in next subsections. 
 
4.2 Enrollment Stage 
The schematic of enrollment stage for quaternion based thermal image correlator as proposed in 
[5] is shown in Fig. 8. To be applied in omnidirectional approach in this paper, during the 
enrollment stage, the reference panoramic thermal images for each possible machine’s 
conditions in database are partitioned according to S machine sections. Each machine section 
consists of one single machine to be monitored. S is the total number of machines to be 
monitored. These partitioned reference images are then encoded into a two dimensional 
quaternion array (QA) as follows [5]: 
 

kji .I.I.III )sB(t)sG(t)sR(t)sr(t)s(t 11111
+++=    (20) 

 

where t1 = 1, 2, … , T represents the number of reference images, )sr(t1
I represents the real part of 

quaternion array of s-th machine section for reference image t1, s = 1, 2, …, S represents the 
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number of partitioned machines’ sections. )sR(t1
I , )sG(t1

I and )sB(t1
I each represents the i-, j-, k- 

imaginary part of s-th machine section for reference image t1 respectively. 
 
The quaternion array in (20) is then performs discrete quaternion Fourier transform (DQFT) to 
transform the quaternion image to the quaternion frequency domain. A two-side form of DQFT 
has been proposed by Ell [19, 20] as follows: 
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          (21) 
where e is exponential term, µ1 and µ2 are two units pure quaternion (the quaternion unit with real 
part equal to zero) that are orthogonal to each other [21]: 
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The output of DQFT, )s(t1
I is used to train the max-product fuzzy neural network classifier and 

design the correlation filter. 
 
4.2.1 Quaternion Correlator (QC) 
To train the max-product fuzzy neural network classifier, the output of the DQFT is first passed to 
a quaternion correlator (QC) as shown in Fig. 9 [5]. 
 

 
 

FIGURE 8 : Quaternion correlator (QC) 
 

The function of the QC is summarized as below [5]: For DQFT output of s-th machine section, 

perform discrete quaternion correlation (DQCR) [22, 23] on reference image )s(t1
I with reference 

image )s(t2
I and multiply with corresponding filter coefficients (filt(t2)): 
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where t1, t2 = 1, 2, …, T are the number of reference image. After that, (26) is performing inverse 
DQFT to obtain the correlation plane function:  
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The correlation plane is a collection of correlation values, each one obtained by performing a 

pixel-by pixel comparison (inner product) of two images ( )s(t1
I and )s(t2

I ). A sharp peak in the 

correlation plane indicate the similarity of )s(t1
I and )s(t2

I , while the absence or lower of such peak 

indicate the dissimilarity of )s(t1
I and )s(t2

I . 

 

Calculate )t,s(t 21
p  and )t,s(t 21

PSR from the correlation plane as in (27) using (18) and (19) 

respectively. )t,s(t 21
p means p-values of reference image )(t1

I  correlate on reference image )(t2
I in s-

th machine section, while )t,s(t 21
PSR  means PSR values of reference image )(t1

I  correlate on 

reference image )(t2
I in s-th machine section. These values are then feed into max-product fuzzy 

neural network classifier to perform training and calculate weight, which will be presented in 
section 5. 

 
4.2.2 Correlation Filter Selection 
According to research justification work done in [5], correlation filter outperforms conventional 
matched filters in filtering nonlinear image distortion (scale, rotation and pose invariant). Among 
the correlation filter, the minimum average correlation energy (MACE) filters [26] show good 
results in the field of automatic target recognition, face recognition and applications in biometric 
verification [6, 27]. MACE filters are using more than one reference image to synthesize a single 
filter template, therefore making its classification performance invariant to shift of the input image 
[25]. 
 
There are three types of MACE filters in general, namely: 1.) Conventional MACE filter [26], 2.) 
Unconstrained MACE (UMACE) filter [28] and 3.) Unconstrained optimal tradeoff synthetic 
discriminant filter (UOTSDF), all with the goal to produce sharp peaks that resemble two 
dimensional delta-type correlation outputs when the input image belongs to the authentic class 
and low peaks in imposter class. Conventional MACE filter [26] minimizes the average correlation 
energy of the reference images while constraining the correlation output at the origin to a specific 
value (usually 1), for each of the reference images. Lagrange multiplier is used for optimization, 
yielding: 

 

cX)D'X(XDfilt
111

MACE

−−−=       (28) 

This equation is the closed form solution to be the linear constrained quadratic minimization. D is 
diagonal matrix with the average power spectrum of the reference images placed as elements 
along diagonal of the matrix. X contains Fourier transform of the reference images 
lexicographically re-ordered and placed along each column. As an example, if there are T thermal 
reference images of size 282×  60(=16920), then X will be a 16920× T matrix. X’ is the matrix 
transpose of X. c is a column vector of length T with all entries equal to 1. 
 
The second type of MACE filter is the unconstrained MACE (UMACE) filter [28]. Just like 
conventional MACE filter, UMACE filter also minimizes the average correlation energy of the 
reference images and maximizes the correlation output at the origin. The different between 
conventional MACE filter and UMACE filter is the optimization scheme. Conventional MACE filter 
is using Lagrange multiplier but as for UMACE filter, it is using Raleigh quotient which lead to the 
following equation:  

 

 mDfilt
1

UMACE

−=       (29) 

 
where D is the diagonal matrix same as that in conventional MACE filter. m is a column vector 
containing the mean values of the Fourier transform of the reference images. 
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The third type of MACE filter is the unconstrained optimal tradeoff synthetic discriminant filter 
(UOTSDF) shown by Refreiger [29] and Kumar et al [30] has yielding good verification 
performance. The UOTSDF is by: 

 

 mC)α1D(filt 12

UOTSDF

−−+= α     (30) 

 
where D is a diagonal matrix with average power spectrum of the training image placed along the 
diagonal elements. m is a column vector containing the mean values of the Fourier transform of 
the reference images. C is the power spectral density of the noise. White noise spectrum is the 
dominant source in predicting the performance of a thermal imaging system [31]. It is cause by 
the fluctuation in the detector output. Other noise sources (total up as background noise) are not 
that significant and normally limited /filter out by internal filter of some advanced thermal imaging 
system. For most of the applications, a white noise power spectral density is for assumption,  
therefore C reduces to the identity matrix. According to the derivation work done in [30], to 
determine the OTSDF, the authors minimize the energy function which obtains: α

2
+β

2
+γ

2
+δ

2
=1. In 

UOTSDF, the constant β, γ, δ ≈ 0.  α term is typically set to be close to 1 to achieve good 
performance even in the presence of noise, however it also helps improve generalization to 
distortions outside the reference images. 
 
The comparison work of the three correlation filters listed above is done in [5]. As a summary, 
UOTSDF is plan to extend into quaternion based thermal image correlator for the classification of  
 

 
 

FIGURE 10 : Schematic of recognition stage 

 
machine condition since it is less complicated in computational viewpoint than conventional 
MACE filter and achieve good performance.  
 
4.3 Recognition Stage 
The schematic of recognition stage for classification of machine condition by quaternion based 
thermal image correlator as proposed in [5] is shown in Fig. 10. To be applied in omnidirectional 
approach in this paper, during the recognition stage, live omnidirectional machines’ image 
captured by omnidirectional thermal imaging system, unwarped into panoramic thermal image is 
first partitioned according to S machine sections. The partitioned image is then encoded into two 
dimensional quaternion array (QA) as follows [5]: 
 

kji .h.h.hhh sB(i)sG(i)sR(i)sr(i)s(i) +++=    (31) 

 

where i represents the input image, sr(i)h represents the real part of quaternion array of s-th 

machine section for input image i, s = 1, 2, …, S represents the number of partitioned machines’ 

sections. sR(i)h , sG(i)h and sB(i)h each represents the i-, j-, k- imaginary part of s-th machine section 

for input image i respectively. 
 
The quaternion array in (31) is then performing DQFT to transforms the quaternion image to the 
quaternion frequency domain. A two-side form of DQFT is used [5]: 
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 )Nnη(2
1M

0τ

1N

0η
s(i)

)Mmτ(2

s(i)
21  ).η τ,(.h)n m,(

πµπµ −
−

=

−

=

−∑∑= eeh          (32) 

 
where e is exponential term, µ1 and µ2 are two units pure quaternion as shown in (22) and (23) 

respectively. The output of the DQFT, s(i)h is cross correlated with every quaternion correlation 

filter in the database using the quaternion correlator (QC) just as the one shown in Fig. 8, but the 

DQFT output is now s(i)h . In QC, performs quaternion correlation is performs on s(i)h  with 

reference images )s(t2
I from database, and multiply with corresponding filter coefficients (filt(t2)) [5]: 

 

 ∑∑
−

=

−

=

−−=
1M

0τ

1N

0η
)(t)s(ts(i)) ts(i, 222

filt .)nη m,τ( .n) (m,g Ih        (33) 

 
After that, (33) is performing inverse DQFT to obtain the correlation plane function [5]:  
 

∑∑
−

=

−

=

−=
1M

0τ

1N

0η
) ts(i,

)Mmτ(2

2) ts(i,  ).n m,(.g
4

1
)n m,(P

2

1

2

πµ

π
e

)Nnη(22 πµ−
e    (34) 

 

Calculate )ts(i, 2
p  and )ts(i, 2

PSR from the correlation plane as in (34) using (18) and (19) 

respectively. )t,s(t 21
p means p-values of input image (i)h  correlate on reference image )(t2

I in s-th 

machine section, while )ts(i, 2
PSR  means PSR values of input image (i)h  correlate on reference 

image )(t2
I in s-th machine section. These values are then feed into max-product fuzzy neural 

network classifier to perform classification for machines’ conditions, which will be presented in 
section 5. 
 

5. MAX-PRODUCT FUZZY NEURAL NETWORK CLASSIFIER 
Fuzzy logic is a problem solving system which is capable of dealing with approximate reasoning. 
Fuzzy logic provides high level of abstract through process which can appropriately handle the 
uncertainty in linguistic semantics, model expert heuristics and provide requisite high level 
organizing principles [32]. On the other hand, neural network is a computational biological 
network that can provides self organizing substrates for low level representation of information 
with adaptation capabilities. Both fuzzy logic and neural network are complimentary technologies 
and these two approaches is plausible to combine in the design of classification systems. Such 
integrated system is terms as fuzzy neural network classifier [32].  
 
Many types of fuzzy neural network classifiers available in literature [33-36], and many fuzzy 
neural networks had been shown interest in applying max-min composition as functional basis 
[37-39]. However, Leotamonphong and Fang in their research work [40] mentioned that the max-
min composition is “suitable only when a system allows no compensatability among the elements 
of a solution vector”. They proposed to use max-product composition in fuzzy neural network 
rather than max-min composition. Research work done by Bourke and fisher in [41] also 
commented that the max-product composition gives better results than the traditional max-min 
operator. Subsequently, many efficient learning algorithms have been studied by others [42, 43] 
using the max-product composition. 
 
Fuzzy neural network classifier using max-product composition for thermal image classification 
has been proposed in [5] for fixed angle machine condition monitoring system. In this paper, it will 
be once again repurposed for omnidirectional approached machine condition monitoring system.  
 
5.1 Define 2 Classes, Namely: Overheat Class and Non-overheat Class 
The reference images for all possible machines’ conditions are captured, unwarped into 
panoramic form and stored in a database. Each of these reference images will be assigned with a 
unique number start from 1 till T, where T is the total number of reference images. These 
reference images are interpreted by an operator (human observer), the overall description of 
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which could be called the ‘Operator perceived activity’ (OPA)[44]. The operator will comments on 
each of the reference images and classified it into either overheat class or non-overheat class by 
storing the unique number of the reference images according to the classes respectively. 
 
5.2  Training Max-product Fuzzy Neural Network Classifier 
The max-product fuzzy neural network classifier is training with 4 steps [5]: 

 

1.) )t,s(t 21
PSR and )t,s(t 21

p  output from the quaternion correlator of the enrollment stage are fuzzified 

through the activation functions (Gaussian membership function): 
  

 
( )













 −−
=

2

2

)t,s(t

PSR
σ

1PSR
expG 21

)2t,1(ts
     (35) 

 
( )







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



 −−
=

2

2

)t,s(t

σ

1
expG 21

)2t,1(ts

p
p     (36) 

 
where σ is the smoothing factor, that is the deviation of the Gaussian functions. 

2.) Calculate the product value for s-th machine section of the fuzzy neural network classifier at 
each correlated images: 

 

  
)2t,1(t)2t,1(t21 ss

GGG PSR)t,s(t p×=     (37) 

 
3.) Gather and store the product values in an array: 
  

  




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
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


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GGG

GGG

X

L
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L

L

   (38) 

 
4.) The output will set so that it will output 1 if it is authentic class and 0 if it is imposter class, and 

it is in an array identityY , whereby it is an identity matrix of dimension T× T. To calculate the 

weight w for s-th machine section, the equation is: 
 

  identity

1

strainings YX
−

=w      (39) 

 
5.3  Max-product Fuzzy Neural Network Classification 
The max-product fuzzy neural network classification is with 7 steps [5]: 

 

1.) )ts(i, 2
PSR and )ts(i, 2

p  output from the quaternion correlator of the recognition stage are fuzzified 

through the activation functions (Gaussian membership function): 
 

( )
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
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


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
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=
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2
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σ

1
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p
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2.) Calculate the product value for s-th machine section of the fuzzy neural network classifier at 
input image on the training images in database: 

 

  
)2t(i,)2t(i,2 ss

GGG PSR)t,s(i p×=      (42) 
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3.) Gather and store the product values in an array: 
 

  [ ]T)s(i,s(i,2)s(i,1)tionclassifica s GGGX L=    (43) 

 
4.) Obtain the classification outcomes for each machine condition in the s-th section by multiply 

(43) with the weight trained at (39): 
 

  stionclassifica stionclassifica s XY w×=     (44) 

 
5.) Classify the input machine condition with the class of machine condition it belongs to by using 

max composition: 
 

  { }tionclassifica ss YmaxClass =      (45) 

 

6.) Determine which element in tionclassifica sY matrix match with sClass : 

ψ = the position number of element in tionclassifica sY matrix which has the equal value with 

sClass .                 (46) 

 
ψ is corresponds to the assigned number of reference image in database. 

 
7.) Based on two sets of fuzzy IF-THEN rules, perform defuzzification: 
 

1

sR : IF ψ  is match with the number stored in overheat class of s-th machine, THEN alarm: 

‘machine s overheat’.    (47) 
 

2

sR : IF ψ  is match with the number stored in non-overheat class of s-th machine, THEN 

alarm: ‘machine s function properly’.   (48) 
 

6. EXPERIMENTAL RESULTS 
In this section, the application of log-polar mapper, quaternion based thermal image correlator 
together with max-product fuzzy neural network classifier is briefly illustrate for omnidirectional 
machine condition monitoring system. Here, some experiments are use to prove the algorithms 
introduced in section 3, 4 and 5. 
 
6.1 Database of Reference Thermal Images for All Possible Machines’ Condition.  
A database with thermal images collected at the Applied Mecahnics Lab in Faculty of Engineering 
and Technology, Multimedia University is use to test the proposed quaternion based 
omnidirectional machine condition monitoring system. The database consists of panoramic 
thermal images unwrap from omnidirectional thermal images captured from three functioning 
machines by the use of omnidirectional thermal imaging system as shown in Fig. 2. A digital 
image captured with digital camera on the site is shown in Fig. 11, and a thermal image is also 
captured by the omnidirectional thermal camera set as shown in Fig. 12 at the same position 
based on all the functioning machines are in overheat condition.  Comparing Fig. 11 and Fig. 12, 
observed that the material (mirror) good in IR reflection not necessary good in human visual 
range reflection. The corresponding panoramic form unwarped using log-polar mapping of Fig. 11 
and Fig. 12 are shown in Fig. 13 and Fig. 14 respectively. In Fig. 13, machine A (leftmost one) 
and machine C (rightmost one) are vibro test machines with same model and same 
specifications, while machine B (center one) is a fatigue test machine. Three machines are 
considered to be overheating when their motors’ temperature achieves 90°C. 
 



Wai-Kit Wong, Chu-Kiong Loo & Way-Soong Lim 

 

International Journal of Image Processing (IJIP),Volume (5) : Issue (2) : 2011 160 

 
 

FIGURE 11 : Digital color form on site image     FIGURE 12 : Thermal on 
site image 

 

 
 

FIGURE 13 : Panoramic form of Fig. 11.     FIGURE 14 : Panoramic form of  

 

The thermal images captured using FLIR ThermoVision A20M is with 320x240 display resolution 
pixels. Log-polar mapper will unwarp it into panoramic images with 282x60 display resolution 
pixels. The log-polar mapping process is by 4.54:1 reduction mapping scale, with almost four and 
a half fold data compression compare to original omnidirectional thermal image. Each machine 
section later partition into 94x60 pixels, as shown in Fig. 3. The database has T = 30 reference 
images, each with dimension 282 horizontal pixels × 60 vertical pixels of varying possible 
machines’ conditions (temperature level with different color tones ranging from black, blue, purple, 
red, orange, yellow, light yellow to white) and can be divided into 8 major outcomes, namely: 1.) 
All machines function properly (none of the machines overheat), 2.) machine A overheat, 3.) 
machine B overheat, 4.) machine C overheat, 5.) machine A and machine B overheat, 6.) 
machine A and machine C overheat, 7.) machine B and machine C overheat, 8.) machine A, B, 
and C overheat. 

 
6.2 Unconstrained Optimal Tradeoff Synthetic Discriminant Filter (UOTSDF) Used in 

Quaternion Based Thermal Image Correlator 
The 30 reference images stored in database is use to synthesize a single UOTSDF using (30). D, 
m are calculated from the reference images and C is set as an identity matrix of dimension 
30 × 30 and α set to 1. These values are substituted into (30) to calculate out the filter’s 
coefficients. In enrollment stage, for each filter line as in Fig. 8, cross correlations are performed 

on all the DQFT form of reference images in database ( )s(t1
I ) with the DQFT form of reference 

images in database as well ( )s(t2
I ), and multiply the output value with corresponding filter 

coefficients respectively, where t1, t2 = 1, 2, …, 30; s = 1, 2, 3. In recognition stage, for each filter 

line, cross correlation are also performed on the DQFT form of input image ( s(i)h ) with the DQFT 

form of reference images in database ( )s(t2
I ) and multiply the output value with corresponding 

filter coefficients respectively. For authentic case (good match in between two images), the 
correlation plane should have sharp peaks and it should not exhibit such strong peaks for 
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imposter case (bad or no match in between two images). These two cases will be investigated 
below: 
 
Authentic case: Fig. 16a-16c show the samples correlation plane for input thermal image (for 
every machine is overheat, as in Fig. 15) matching with one of the reference image of overheat 
class in the database, for section machine A, section machine B and section machine C 
respectively. Since the three pairs of images are in good match, their correlation planes are 
having smooth and sharp peaks. 

 

 
 

FIGURE 15 : Sample input thermal image (all machines overheat) 

 

   
         (a)                                                          (b)                                                        (c) 

 

FIGURE 16 : Samples correlation plane for input thermal image (for every machine is overheat) matching 
with one of the reference image of overheat class for both all the machines in the database (authentic case) 

a.) section machine A, b.) section machine B, c.) section machine C. 

 

Imposter case: Fig. 18a-18c show the samples correlation plane for input thermal image (for 
every machine is not –overheat as in Fig. 17) matching with one of the reference image of 
overheat class in the database (as in Fig. 12), for section machine A, section machine B and 
section machine C respectively. Since the three pairs of images are not in good match, their 
correlation planes are having no sharp peak at all. 
 

 
 

FIGURE 17 : Sample input thermal image (all machines not overheat) 

 

            
(a)                                                    (b)      (c) 

 

FIGURE 18 : Samples correlation plane for input thermal image (for every machine is not-overheat) 
matching with one of the reference image of overheat class for both all the machines in the database 

(imposter case) a.) section machine A, b.) section machine B, c.) section machine C. 
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Table 1 shows the PSR and p-value for both authentic and imposter case as in Fig. 16 and Fig 18 
for section machine A, B and C. Note that the sharp correlation peak resulting in large normalized 
PSR and p-value in authentic case of section machine A, B and C, whereas small PSR and p-
value exhibiting in the imposter case of section machine A, B and C. 

 
TABLE 1: Normalized PSR and p-values for both authentic and imposter case. 

 

Authentic 
case 

Normalized 
PSR 

Normalized 
p-value 

Imposter case Normalized 
PSR 

Normalized 
p-value 

Section  mac. 
A 

0.9820 0.9886 Section  mac. 
A 

0.0453 0.0363 

Section  mac. 
B 

0.9437 0.9836 Section  mac. 
B 

0.0365 0.0315 

Section  mac. 
C 

1.0000 0.9947 Section  mac. 
C 

0.0489 0.0375 

 
6.3 Efficiency of the Quaternion Based Machine Condition Monitoring System 
The quaternion based omnidirectional machine monitoring system was evaluated with respect to 
the thermal images captured live, unwarped into panoramic form and displayed on monitor 
screen as interpreted by a operator (human observer) the overall description of which could be 
called the ‘operator perceived activity’ (OPA) [45]. The operator will comments on the unwarped 
panoramic images captured by the omnidirectional thermal imaging system, whether any of the 
machines are overheat or not and compare with that classified by the proposed machine 
condition monitoring system. The system was evaluated for 10,000 samples images captured by 
the omnidirectional thermal imaging system for monitoring the functioning machines as in Fig. 11. 
Among the total 10,000 samples images, 9,702 were tracked perfectly (output machines’ 
conditions agreed by both observer and the machine condition monitoring system), i.e. an overall 
accuracy of 97.02%. 
 

7.  CONCLUSIONS 
This paper presented an omnidirectional machine condition monitoring system capable of 
monitoring machine condition in a wide area coverage using minimum hardware manner, 
whereby the machines surrounded in an omnidirectional (360°) view can be monitored by using a 
single thermal camera and a custom made hyperbolic IR mirror. The proposed machine condition 
monitoring system also using log-polar mapper unwarping 320x240 omnidirectional thermal 
images into 282x60 panoramic image, providing observer or image processing tools a wide angle 
of view and with data compression upto 4.5 folds. Therefore, log-polar mapping helps reduces the 
computation time in image processing and memory storage needs. Quaternion thermal image 
correlation method deals with color thermal images without converting them into gray-scale 
images. This can better preserved important color information.  Max-product fuzzy neural network 
is a high level framework for approximate reasoning, best suit to be used in classification of 
machine conditioning. Experimental results show that the proposed machine condition monitoring 
system is with accuracy as high as 97 %. The experimental results show that the apply of PSR 
and p-value give higher accuracy in tracking thermal condition for the proposed quaternion based 
omnidirectional machine condition monitoring system. In future, collaboration is plan seek for 
implementing the proposed quaternion based omnidirectional machine condition monitoring 
system in fossil power plant monitoring. The omnidirectional scenes in a site of turbine room, 
steam pipework system, boilers, high pressure by-pass drain valve etc within a fossil power plant 
can be monitored effectively with such system. A trespasser detection algorithm is also plan to 
develop for trespasser detection purpose. All these topics will be addressed in future work. 
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