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Abstract 

 
Accurate segmentation of brain MR images is of interest for many brain disorders. However, due 
to several factors such noise, imaging artefacts, intrinsic tissue variation and partial volume 
effects, brain extraction and tissue segmentation remains a challenging task. So, in this paper, a 
full automatic method for segmentation of anatomical 3D brain MR images is proposed. The 
method consists of many steps. First, noise reduction by median filtering is done; second 
segmentation of brain/non-brain tissue is performed by using a Threshold Morphologic Brain 
Extraction method (TMBE). Then initial centroids estimation by gray level histogram analysis is 
executed, this stage yield to a Modified version of Fuzzy C-means Algorithm (MFCM) that is used 
for MRI tissue segmentation. Finally 3D visualisation of the three clusters (CSF, GM and WM) is 
performed. The efficiency of the proposed method is demonstrated by extensive segmentation 
experiments using simulated and real MR images. A confrontation of the method with similar 
methods of the literature has been undertaken trough different performance measures. The 
MFCM for tissue segmentation introduce a gain in rapidity of convergence of about 70%.  

 
Keywords: Noise Reduction, Brain Extraction, Clustering, MRI Segmentation, Performance 
Measures. 

 
 
1. INTRODUCTION 

Magnetic resonance (MR) imaging has been widely applied in biological research and 
diagnostics, primarily because of its excellent soft tissue contrast, non-invasive character, high 
spatial resolution and easy slice selection at any orientation. In many applications, its 
segmentation plays an important role on the following sides: (a) identifying anatomical areas of 
interest for diagnosis, treatment, or surgery planning paradigms; (b) pre-processing for 
multimodality image registration; and (c) improved correlation of anatomical areas of interest with 
localized functional metrics [1]. 

Intracranial segmentation commonly referred to as brain extraction, aims to segment the brain 
tissue (cortex and cerebellum) from the skull and non-brain intracranial tissues in magnetic 
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resonance (MR) images of the brain. Brain extraction is an important pre-processing step in 
neuroimaging analysis because brain images must typically be skull stripped before other 
processing algorithms such as registration, tissue classification or bias field correction can be 
applied [2-6]. In practice, brain extraction is widely used in neuroimaging analyses such as multi-
modality image fusion and inter-subject image comparisons [2], [3]; examination of the 
progression of brain disorders such as Alzheimer’s Disease [7, 8], multiple sclerosis [9-12] and 
schizophrenia [13], [14]; monitoring the development or aging of the brain [15], [16]; and creating 
probabilistic atlases from large groups of subjects [2]. Numerous automated brain extraction 
methods have been proposed [17-24]. However, the performance of these methods, which rely 
on signal intensity and signal contrast, may be influenced by numerous factors including MR 
signal inhomogeneities, type of MR image set, stability of system electronics, and extent of 
neurodegeneration in the subjects studied. In [25] we have proposed simple hybrid method, 
based on optimal thresholding and mathematical morphology operators for extracting brain 
tissues from 2D T1-weighted cerebral MRI images. 
 
From the pattern recognition point of view, the tissue segmentation stage is to classify a set of 
elements defined by a set of features among which a set of classes can be previously known. In 
the MRI segmentation domain, the vector pattern X corresponds to the gray level of the studied 
point (pixel or voxel). From these approaches, one distinguishes the supervised methods where 
the class features are known a priori, and the unsupervised ones which use the features auto-
learning. From this point of view, several algorithms have been proposed such as: c-means [26], 
fuzzy c-means (FCM) [27], adaptive fuzzy c-means [28], modified fuzzy c-means [29] using 
illumination patterns and fuzzy c-means combined with neutrosophic set [30]. 
 
Segmentation is a very large problem; it requires several algorithmic techniques and different 
computational models, which can be sequential or parallel using processor elements (PE), 
cellular automata or neural networks. In [31], we have presented Parallel implementation of c-
means clustering algorithm to demonstrate the effectiveness and how the complexity of the 
parallel algorithm can be reduced in the reconfigurable mesh computer (RMC) computational 
model. In [32] the authors present the design, the modelling and the realisation of an emulator for 
this massively parallel re-configurable mesh computer. 
 
Fully automatic brain tissue segmentation of magnetic resonance images (MRI) is of great 
importance for research and clinical study of much neurological pathology. The accurate 
segmentation of MR images into different tissue classes, especially gray matter (GM), white 
matter (WM) and cerebrospinal fluid (CSF), is an important task. Moreover, regional volume 
calculations of these tissues may bring even more useful diagnostic information. Among them, 
the quantization of gray and white matter volumes may be of major interest in neurodegenerative 
disorders such as Alzheimer disease, in movements disorders such as Parkinson or Parkinson 
related syndrome, in white matter metabolic or inflammatory disease, in congenital brain 
malformations or prenatal brain damage, or in post traumatic syndrome. The automatic 
segmentation of brain MR images, however, remains a persistent problem. Automated and 
reliable tissue classification is further complicated by the overlap of MR intensities of different 
tissue classes and by the presence of a spatially smoothly varying intensity inhomogeneity. 
 
In this paper we present fully automatic method for brain MRI volume segmentation. The system 
combines noise reduction by median filtering, the proposed TMBE method for non brain tissue 
removal, initial centroids estimation by gray level histogram analysis, and Fuzzy C-means 
Algorithm for tissue segmentation. Extensive experiments using simulated and real MR image 
data show that the proposed method can produce good segmentation results. Quantitative 
evaluation of the efficiency of the proposed method for brain extraction and tissue segmentation 
is confronted to some well known methods trough standard performance measure in the 
literature.    
 
The reminder of this paper is organized as follows. Section 2 presents the pre-processing 
procedure in witch we represent our proposed method for brain extraction (TMBE) and a 
procedure for noise removing. Tissue classification method and performance measure are 
presented in section 3. Simulation results for the two main stages in the fully automatic method 
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for T1-weighted MRI images (Brain Extraction and tissue classification) are introduced in Section 
4. Finally, conclusion and perspectives are given in section 5. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      FIGURE 1: Global segmentation scheme.  

 
2. PRE-PROCESSING 
 
2.1. Noise reduction: Filtering 
This pre-processing stage performs a non linear mapping of the grey level dynamics for the 
image. This transform consists in the application of a 3x3 median filter. The use of median 
filtering derives from the nature of the noise distribution in the MR images. The main source of 
noise in this kind of images is due to small density variations inside a single tissue which tend to 
locally modify the RF emission of the atomic nuclei during the imaging process. Such variations 
derive either from casual tissue motions or by external RF interferences and they assume a salt-
and-pepper appearance. The median filter is a non-derivative low-pass one that removes 
efficiently this kind of disturb, allows homogeneous regions to become denser, thus improving 
clustering performance. The choice of the neighbourhood size derives from the need to avoid 
small regions to be confused with noise. Several approaches use complex models of the noise 
and perform anisotropic filtering because the noise distribution is, to some extent, oriented with 
the spatial direction of the RF atomic emission across the image. Here, the main concern is to 
reduce noise and make the single tissues more homogeneous. 
 
2.2 Brain Extraction 
The Brain extraction problem is a difficult task, which aims at extracting the brain from the skull, 
eliminating all non-brain tissue such as bones, eyes, skin, fat… This will allow us to simplify the 
segmentation of the brain tissues.  
 
 

Brain Extraction (TMBE) 

Noise reduction: Median Filtering 

Tissue Segmentation: Modified Fuzzy 

C-means Algorithm (MFCM) 

Initial Cluster center 

Estimation: Histogram 

analysis based 

3D Visualization 

T1-weighted brain MRI  

Labeling: Maximum Membership 

Procedure 
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2.2.1 Some Previous Brain Extraction Techniques 
 
2.2.1.1 Brain Extraction Tool (BET) 
BET [21] is developed by FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of 
the Brain) and is available at http://www.fmrib.ox.ac.uk/fsl/ for research purposes. In BET, the 
intensity histogram is processed to find “robust” lower and upper intensity values for the image, 
and a rough brain/non-brain threshold is determined. The center-of-gravity of the head image is 
found, along with the rough size of the head in the image. Next a triangular tessellation of a 
sphere’s surface is initialized inside the brain, and allowed to slowly deform, one vertex at a time, 
following forces that keep the surface well-spaced and smooth, whilst attempting to move towards 
the brain’s edge. If a suitably clean solution is not arrived at then this process is re-run with a 
higher smoothness constraint.  
 
2.2.1.2 Brain Surface Extractor (BSE) 
BSE [22] is developed by NeuroImaging Research Group, University of Southern California and 

the executable is available from http://neuroimage.usc.edu/BSE/. BSE is an edge based 
method that employs anisotropic diffusion filtering. Edge detection is implemented using a 2D 
Marr-Hildreth operator, employing low-pass filtering with a Gaussian kernel and localization of 
zero crossings in the Laplacian of the filtered image. The final step is morphological processing of 
the edge map. 
 
2.2.1.3 McStrip (Minneapolis Consensus Stripping) 
McStrip [16], [17] is developed by International Neuroimaging Consortium (INC) and is available 
for download at http://www.neurovia.umn.edu/incweb/McStrip_download.html. McStrip is 
initialized with a warp mask using AIR (http://bishopw.loni.ucla.edu/AIR5/), and dilates the AIR 
mask to form a Coarse Mask. It then estimates a brain/ non-brain threshold based on the intensity 
histogram, and automatically adjusts this threshold to produce a Threshold Mask. The volume of 
tissue within the Threshold Mask determines the choice of the BSE Mask from among a suite of 
15 masks computed using parameter combinations spanning both smoothing and edge 
parameters. The final, McStrip Mask is a union of the Threshold and BSE masks after void filling 
and smoothing. 
 
2.2.2 Threshold Morphologic Brain Extraction (TMBE) 
Our simple and effective method is divided in five steps [25] 
 
2.2.2.1 Binarisation by Thresholding 
This step is based on global binary image thresholding using Otsu's method [33]. Figure 2-b 
shows a result of this operation. 
 
2.2.2.2 Greatest Connected Component Extraction 
A survey based on a statistical analysis of the existing connected components on the binary 
image, permits to extract the region whose area is the biggest. Figure 2-c shows a result of this 
operation.  
 
2.2.2.3 Filling the Holes 
The remaining holes in the binary image obtained in step 2, containing the greatest connected 
component, are filled using morphologic operation consisting of filling holes in the binary image.  
A hole is a set of background voxels within connected component. The result of this operation is 
shown in figure 2-d. 
 
2.2.2.4 Dilatation 
This morphologic operation consists of eliminating all remaining black spots on the white surface 
of the image. These spots are covered by the dilatation of the white parts. This carried out by 
moving a square structuring element of size (S*S) on binary image and applying logical OR 
operator on each of the (S

2
-1) neighbouring pixels (figure 2-e). Here we choose S=3.  
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2.2.2.5 Brain Extracting 
The region of interest is the brain. To extract this region we use the AND operator between the 
original filtered image (figure 2-a) and the binary mask obtained in last step as is shown in figure 
2-f. The non-brain tissues are obtained by applying AND operator between the image in figure 2a 
and the logical complement of the mask in figure 2e, the result is in figure 2-g.  
 

a) b) c) d) 

e) f) g) h) 
 

FIGURE 2: TMBE steps on sagitale slice number 120/181 from normal brain simulated phantom [40]. 

 
The figure 2-h shows the region of interest corresponding to the effective brain tissues in original 
MRI delimited by contour.   
 
2.3. Histogram Based Centroids Initialization 
Clustering algorithms requires an initialisation of the centroids values. Usually, this is randomly 
made. However, an adequate selection permits generally to improve the accuracy and reduces 
considerably the number of required iterations to the convergence of these algorithms.  
Among the methods used to estimate initial cluster values in the image, we used the histogram 
information analysis [25], [34].  
 
The choice of the class number is done according to the quantity of information that we want to 
extract from the image. In our case this number is known in advance since we have extract three 
clusters from normal images (CSF, GM and WM). 
 

2. TISSUE CLASSIFICATION 
 
3.1. Image Segmentation 
The objective of image segmentation is to divide an image into meaningful regions. Errors made 
at this stage would affect all higher level activities. In an ideally segmented image, each region 
should be homogeneous with respect to some criteria such as gray level, color or texture, and 
adjacent regions should have significantly different characteristics or features. More formally, 
segmentation is the process of partitioning the entire image into C regions {Ri} such that each Ri 
is homogeneous with respect to some criteria. In many situations, it is not easy to determine if a 
voxel should belong to a region or not. This is because the features used to determine 
homogeneity may not have sharp transitions at region boundaries. To alleviate this situation, we 
inset fuzzy set concepts into the segmentation process. In fuzzy segmentation, each voxel is 
assigned a membership value in each of the C regions. If the memberships are taken into 
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account while computing properties of regions, we obtain more accurate estimates of region 
properties. One of the known techniques to obtain such a classification is the FCM algorithm.  
 
3.2. Clustering: Modified FCM Algorithm 
The fuzzy c-means (FCM) clustering algorithm was first introduced by DUNN [35] and later was 
extended by BEZDEK [36]. Fuzzy C-means (FCM) is a clustering technique that employs fuzzy 
partitioning such that a data point can belong to all classes with different membership grades 
between 0 and 1. 

The aim of FCM is to find C cluster centers (centroids) in the data set { }
pRxxxX

N
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m є [1,∞[ : Fuzzy weighting exponent (generally equals 2).  
N: Number of data. 
C: Number of clusters, 2≤C≤N. 
p: Number of features in each data xj. 
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We have modified this iterative algorithm to include the proposed procedure for estimating 
initial centroids with histogram analysis; this algorithm is in the following steps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 0. Estimate the number of clusters C according to the procedure in section 2-3, choose the 

correspondent’s gray level values as initial values of cluster centres 
)0(V , Choose 

fuzzification parameter m ( ∞<< m1 ) m=2, and choose threshold ε>0. Initialize the 

membership matrix (U) according to the constraints of equations 2a, 2b and 2c. 

At iteration Ni    

{   Step 1. Calculate centroids V
(Ni)

 using Equation (3). 

   Step 2. Compute dissimilarity function JNi using equation (1). If its improvement   over previous 
iteration (JNi –JNi-1) is below a threshold ε>0, Go to Step 4. 

   Step 3. Compute a new membership matrix (UNi) using Equation (4). Go to Step 1. 

   Step 4. Stop. } 
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3.3. Performance Measures 
To compare the performance of various segmentation techniques, we compute different 
coefficients reflecting how well two segmented regions match. The manually segmented regions 
are used as a gold standard (Truth Verity), and the automatically segmented ones are compared 
to them. To provide comparison between methods, we use a different performance measure: 
 
3.3.1. Jaccard Similarity Coefficient 
 According to [37] the Jaccard similarity coefficient JSC is formulated as: 
  

)(/)(
2121

RRCardRRCardJSC ∪∩=        (5) 

 
Where R1 is the automatically segmented region, R2 is the correspondent region of the manually 
segmented image, and Card(X) denotes the number of voxels in the region X. A JSC of 1.0 
represents perfect overlap, whereas an index of 0.0 represents no overlap. JSC values of 1.0 are 
desired.  
 
3.3.2. Dice Similarity Coefficient [38] 
Dice Similarity Coefficient is used to show the similarity level of automatically segmented region 
to manual segmented one. The Dice coefficient is defined as: 
 

)(/)(*2
2121

RRCardRRCardDSC +∩=        (6) 

 
Where R1 is the automatically segmented region, R2 is the region of the manually segmented 
image, and Card(X) denotes the number of voxels in the region X. A DSC of 1.0 represents 
perfect overlap, whereas an index of 0.0 represents no overlap. DSC values of 1.0 are desired. 
 
3.3.3. Sensitivity and Specificity [39] 
We also compute the sensitivity and specificity coefficient of the automated segmentation result 
using the manually segmented mask. The Sensitivity is the percentage of voxels recognized by 
the algorithm (Equation 7). The Specificity is the percentage of non recognized voxels by the 
algorithm (Equation 8). 
 

FNTP

TP
ySensitivit

+
=    (7) 

FPTN

TN
ySpecificit

+
=    (8) 

 
Where TP and FP stand for true positive and false positive, which were defined as the number of 
voxels in R1 correctly and incorrectly classified as R2 by the automated algorithm. TN and FN 
stand for true negative and false negative, which were defined as the number of voxels in R1 
correctly and incorrectly classified as non R2 by the automated algorithm. 
 

4. RESULTS AND DISCUSSION 
 
4.1. Brain Extraction 
To prove the effectiveness of the proposed method for the skull stripping problem we have 
massively experiment TMBE using simulated and real MR image data in different modalities of 
acquisition. The figure 3 shows some samples of pre-processed images. 

 
To evaluate the TMBE method we used a set of simulated and real volumes given from reference 
sites, they are presented as follows:  
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
k) 

 
FIGURE 3: Some examples of pre-processed images by the proposed TMBE method (for Qualitative 

evaluation). a)-c) Simulated T1-weighted image number 127/217 in coronal direction, d)-f) T2-weighted 
image with tumor, g)-k) PD-weighted image with Multiple Sclerosis (MS) lesion. 

 
- 20 simulated volumes of size 181x217x181 voxels given from the Brainweb simulated brain 
database [40] and their given manual segmentation (determined by union of the three tissues to 
form the correspondent region of interest (Brain) for each volume). This T1-weighted data are 
provided with 1mm×1mm×1mm in spacing. 
 
- 18 real T1-weighted volumes which were acquired coronally with size 256×256×128 voxels and 
0.94mm×0.94mm×1.5mm as spatial resolution from the International Brain Segmentation 
Repository IBSR V2.0 [41]. The MR brain data sets and their manual segmentations in three 
tissues by expert radiologists were provided by the Center for Morphometric Analysis at 
Massachusetts General Hospital (The image data sets used were named IBSR_01 through 
IBSR_18).  

T1-weighted modality, that belong to the fastest MRI modalities available, are often preferred, 
since they offer a good contrast between gray (GM) and white cerebral matter (WM) as well as 
between GM and cerebrospinal fluid (CSF).  
 
To compare the performance of TMBE with three well known brain extraction techniques BET 
[21], BSE [22] and McStrip [23, 24] we compute the different coefficients described in section 3.3. 
The manually segmented brains are used as a Truth Verity (TV), and the automatically extracted 
brains by the proposed method TBME are compared to them.  
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Quantitative comparison of the proposed Brain Extraction method TMBE to these brain extraction 
methods for two real datasets (IBSR_07 and IBSR_12) is summarised in Table.1 and Table.2. 
The values indicated in tables are average values for multiple essays. 
 
Notice that, we have implemented the method in MATLAB 7.8 and have been used on a Pentium 
IV personal computer (Intel) with 2.6 GHz, 1024 MB of main memory, and an NVIDIA Geforce 
7900 graphics card with 256 MB of graphics memory. 

 JSC DSC Sensitivity Specificity time 
BET [21]  0.81 0.76 0.603 0.912 3 min 
BSE [22]  0.82 0.88 0.607 0.973 2 min 

McStrip [23,24] 0.80 0.84 0.600 0.903 6 min 
TMBE 0.80 0.87 0.599 0.901 4 min 

TABLE 1: Different similarity index calculated for brain extraction of ISBR_7. 

 JSC DSC Sensitivity Specificity time 
BET [21]  0.85 0.78 0.600 0.902 3 min 
BSE [22]  0.86 0.89 0.622 0.923 2 min 

McStrip [23,24] 0.82 0.82 0.610 0.913 6 min 
TMBE 0.84 0.86 0.591 0.923 4 min 

TABLE 2: Different similarity index calculated for brain extraction of ISBR_12. 

The comparison of TMBE with the three brain extraction techniques against expertly hand 
stripped T1-weighted MRI volumes revealed that TMBE method gives comparable results to BSE 
and BET in term of accuracy but with lowest time processing (creating mask in about 4 min). But 
when compared with McStrip technique it is faster.  

4.2 Tissues Classification 
The tissues classification aims to divide the extracted volume by TMBE in three clusters: 
Cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM). The background voxels are 
removed by simple thresholding before the clustering starts. 
 
4.2.1 Classification Results 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 

FIGURE 4: Example of segmentation results comparison. a) Segmented image by the proposed method, b) 
Cerebrospinal fluid (CSF) cluster, c) Gray matter (GM) cluster and d) The white matter (WM) cluster. e) 

Truth Verity image. f), g) and h) Manual segmentation of the same brain tissues (Brainweb). 

For qualitative evaluation, Figure.4 shows segmentation results of axial T1-weighted slice of 
number 84 in axial direction obtained from the web site Brainweb [40] its about 
t1_icbm_normal_1mm_pn0_rf0 volume file which we call Dataset1, the image was segmented in 
three clusters (Truth Verity). It is very clear from this figure that the separation of the three 
clusters is very effective in comparison with the correspondent’s results (TV). 

4.2.2 Parameters Dynamic of the MFCM. 
Table.3 shows the Different parameters states of the Modified FCM clustering by starting from 
centroids: (C1: CSF, C2: GM and C3: WM) = (53.50, 115.01 and 150.50), corresponding to the 
results in figure 4 and figure 5. 

 

 Value of each Cluster Number of voxels in each Cluster ObjFcn value 
Ni CSF GM WM Card(CSF) Card(GM) Card(WM) J(Ni) 
1 53.50 115.01 150.50 2364 7270 7617 1299906.70 

2 52.93 113.42 151.71 2322 7312 7617 1293634.77 

3 52.51 113.05 151.78 2288 7346 7617 1293020.71 

4 52.31 112.92 151.76 2288 7346 7617 1292923.43 

5 52.23 112.87 151.74 2288 7346 7617 1292907.25 

6 52.20 112.86 151.74 2288 7346 7617 1292904.56 

 
TABLE 3: Different parameters states of the clustering method starting from centroids:  

(C1: CSF, C2: GM and C3: WM) = (53.50, 115.01and 150.50). 
 



Bouchaib CHERRADI, Omar BOUATTANE, Mohamed YOUSSFI & Abdelhadi RAIHANI  

International Journal of Image Processing (IJIP), Volume (5) : Issue (2) : 2011 230 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
40

60

80

100

120

140

160

Ni

 

 

CSF

GM

WM

 
a) 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2000

3000

4000

5000

6000

7000

8000

Ni

 

 

Card(CSF)

Card(GM)

Card(WM)

 
b) 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1.292

1.293

1.294

1.295

1.296

1.297

1.298

1.299

1.3
x 10

6

Ni

 

 

ObjFcn

 
c) 

2 2.5 3 3.5 4 4.5 5 5.5 6
-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

Ni

 

 

Err

 
d) 

 

FIGURE 5: Dynamic of different clustering parameters: 
 a) Centroids starting from (C1, C2, C3) = (35.50, 115.01, 150.50) as results of histogram analysis, 

b) Cardinality of each tissue, c) Value of objective function J(Ni), d) Value of Err=(J(Ni)-J(Ni-1)). 
 

In figure.5 we present the dynamic of different clustering parameters using the results of 
histogram analysis leading to a centroids initialization of the extracted region of interest consisting 
of brain tissues that we want segment. These results correspond to variation trough the iterations 
of the clusters centroids values, the cardinality of each cluster, the FCM objective function J(Ni) 
and the difference between two successive objective function values (J(Ni)-J(Ni-1)) used as 
criteria for convergence.  
 
As shown in figure. 5 and trough many experiment done on different images, the rapidity of the 
method is much enhanced (6 iterations) in comparison with the case of random initialisation of the 
cluster centroids that is practiced in standard FCM clustering (about 20 iterations). 
 
Table.3 shows the dynamic of different parameters states of the modified FCM clustering starting 
from centroids: (C1: CSF, C2: GM and C3: WM) = (53.50, 115.01 and 150.50), corresponding to 
the results presented in figures 4 and 5, this values of initial centroids are obtained by histogram 
analysis described in section 2-3. 

 
In this table we show that we can stop iterative procedure more early, since the clusters 
cardinalities don't change anymore from the iteration number 3. The clusters centres have their 
tower change with very small amounts. 
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4.2.3 Noise Robustness of the Proposed Method 
To evaluate the robustness of the proposed method for tissue classification to the presence of 
noise, we used Dataset1 with additional noise levels: 0%, 1%, 3%, 5%, 7% and 9%. 
Dataset1: t1_icbm_normal_1mm_pn0_rf0 [40], is simulated normal brain phantom of 
181x217x181 voxels with 1mm

3
 for each voxel without any noise or intensities inhomogeneity. 

 
 

 

TABLE 4: Performance measures for Modified FCM Clustering results of WM tissue (Dataset1). 
 
In table.4 and table.5 we summarise the performance measure results calculated for segmented 
GM and WM of different variants of Dataset1 obtained with additional noise of different amounts. 
 

Noise JSC DSC Sensitivity Specificity 
0% 0.952 0.975 0.657 0.897 

1% 0.948 0.973 0.653 0.887 

3% 0.929 0.963 0.642 0.880 

5% 0.903 0.949 0.625 0.870 

7% 0.874 0.932 0.614 0.850 

9% 0.849 0.918 0.598 0.840 

 

TABLE 5: Performance measures for Modified FCM Clustering results of GM tissue (Dataset1). 
 
4.2.4 Visualisation of 3D Rendered Surface. 
To appreciate the segmentation results obtained slice by slice, in 3D space, we export our 
segmentation results to ANALYZE 10.0 that is a comprehensive and interactive package for 
multidimensional image visualization, processing and analysis developed by The Biomedical 
Imaging Resource at Mayo Clinic, Rochester, MN [42]. 
 
The figure.6 shows 3D rendered surface of the segmentation results for the three tissues 
extracted from Dataset1. For the CSF we have limited the visualisation to the lateral ventricles. 

 

 
a) 

 
b) 

 
c) 

 
FIGURE 6: 3D visualization of rendered surface for segmented volume (Dataset1). a) Lateral Ventricular 

CSF, b) GM, c) WM. 
 
 
 

Noise JSC DSC Sensitivity Specificity 
0% 0.942 0.955 0.757 0.895 

1% 0.948 0.953 0.743 0.895 

3% 0.919 0.943 0.732 0.899 

5% 0.893 0.929 0.715 0.899 

7% 0.854 0.922 0.704 0.897 

9% 0.849 0.908 0.688 0.897 
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5. CONCLUSION AND PERSPECTIVES 
In this paper, we have presented a complete MRI images segmentation method. Unlike other 
brain segmentation methods described in the literature, the one described in this paper is truly 
automatic because it does not require a user to determine image-specific parameters, thresholds, 
or regions of interest. 
 
The automatic proposed method for extracting the brain from the T1-weighted MRI head scans is 
based on a hybrid processing techniques including global optimal thresholding and mathematical 
morphology operators. Our quantitative results show that the proposed method achieves 
comparable performance with synthetic BrainWeb data, and real IBSR V2.0 data against 
standard techniques such as BSE and BET, and McStrip. Our results are also more consistent 
across the datasets, making the proposed method suited for measuring brain volumes in a clinical 
setting.  
 
Concerning the tissues classification we used modified FCM that is a clustering technique that 
utilizes the distance between voxels and cluster centres in the spatial domain to compute the 
membership function. The modification consists of using the histogram analysis for the 
determination of initial cluster centroids instead of a random initialization. The segmentation 
process is achieved in 6 iterations instead of about 20 iterations when we used standard FCM 
with random initial centroids. This is important improvement (about 70%) especially in our case 
where we manipulate big quantity of data.  
 
The accuracy and the effectiveness of the fully automatic proposed method for 3D brain MR 
images segmentation has been evaluated qualitatively and quantitatively, but more work can be 
done to improve the method that need to be tested on many more data sets to expose 
unexpected segmentation errors that might occur infrequently. The method should also be tested 
with more recent images database. 
 
More comprehensive comparison of MFCM with other clustering models will be addressed. 
Future work will focus on developing an automatic image based classification system for brain 
tumor using MRI data of different modalities and taking into account the intensity nonuniformity 
artefact. 
 
Another improvement in time processing can be gained while modifying the convergence criteria 
for FCM clustering by considering a threshold on the change of clusters centres instead of 
calculating the objective function.  
 
An implementation of the proposed method as well as other algorithms for MRI segmentation on 
massively parallel reconfigurable mesh computer emulator [32] is being finalised.   
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