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Abstract 

 
Recently, the wavelet transform has emerged as a cutting edge technology, within the field of 
image compression research. Telemedicine, among other things, involves storage and 
transmission of medical images, popularly known as Teleradiology. Due to constraints on 
bandwidth and storage capacity, a medical image may be needed to be compressed before 
transmission/storage. This paper is focused on selecting the most appropriate wavelet 
transform for a given type of medical image compression. In this paper we have analyzed the 
behavior of different type of wavelet transforms with different type of medical images and 
identified the most appropriate wavelet transform that can perform optimum compression for a 
given type of medical imaging. To analyze the performance of the wavelet transform with the 
medical images at constant PSNR, we calculated SSIM and their respective percentage 
compression.  
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1. INTRODUCTION 
With the steady growth of computer power, rapidly declining cost of storage and ever-
increasing access to the Internet, digital acquisition of medical images has become increasingly 
popular in recent years. A digital image is preferable to analog formats because of its 
convenient sharing and distribution properties. This trend has motivated research in imaging 
informatics [1], which was nearly ignored by traditional computer-based medical record systems 
because of the large amount of data required to represent images and the difficulty of 
automatically analyzing images. Besides traditional X-rays and Mammography, newer image 
modalities such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) can 
produce up to several hundred slices per patient scan. Each year, a typical hospital can 
produce several terabytes of digital and digitized medical images.  
 

2. IMAGE COMPRESSION 
Both JPEG and wavelet belong to the general class of “transformed based lossy compression 
techniques.” These techniques involved three steps: transformation, quantization, and 
encoding. Transformation is a lossless step in which image is transformed from the grayscale 
values in the special domain to coefficients in some other domain. No loss of information occurs 
in the transformation step. Quantization is the step in which loss of information occurs. It 
attempts to preserve the more important coefficients, while less important coefficients are 
roughly approximated, often as zero. Finally, these quantized coefficients are encoded. This is 
also a lossless step in which the quantized coefficients are compactly represented for efficient 
storage or transmission of the image [20].   
 
 



Krishna Kumar, Basant Kumar & Rachna Shah 

International Journal of Image Processing (IJIP), Volume (6) : Issue (2) : 2012                                       114 

2.1 JPEG Compression 
The JPEG specification defines a minimal subset of the standard called baseline JPEG, which 
all JPEG-aware applications are required to support. This baseline uses an encoding scheme 
based on the Discrete Cosine Transform (DCT) to achieve compression. DCT is a generic 
name for a class of operations identified and published some years ago. DCT-based algorithms 
have since made their way into various compression methods. DCT-based encoding algorithms 
are always lossy by nature.  
 

 
 

FIGURE 2.1: JPEG Compression & Decompression 

 

2.2 Wavelet Compression 
The Fourier transform is a useful tool to analyze the frequency components of the signal. 
However, if we take the Fourier transform over the whole time axis, we cannot tell at what 
instant a particular frequency rises. Short-time Fourier transform (STFT) uses a sliding window 
to find spectrogram, which gives the information of both time and frequency. But still another 
problem exists: The length of window limits the resolution in frequency. Wavelet Transform 
seems to be a solution to the problem above. Wavelet transforms are based on small wavelets 
with limited duration. The translated-version wavelets locate where we concern. Whereas the 
scaled version wavelets allow us to analyze the signal in different scale. It is a transform that 
provides the time -frequency representation simultaneously.  
 
2.3 Decomposition Process 
The image is high and low-pass filtered along the rows. The results of each filter are down- 
sampled by two. Each of the sub-signals is then again high and low-pass filtered, but now along 
the column data and the results is again down-sampled by two. 

 
 

FIGURE 2.3.1: One Decomposition Step of the Two Dimensional Images 

Hence, the original data is split into four sub-images each of size N/2 by N/2 and contains 
information from different frequency components. Fig. 2.3.2 shows the block wise 
representation of decomposition step. 

 

FIGURE 2.3.2: One DWT Decomposition Step 
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The LL subband contains a rough description of the image and hence called the approximation 
subband. The HH Subband contains the high-frequency components along the diagonals. The 
HL and LH images result from low-pass filtering in one direction and high-pass filtering in the 
other direction. LH contains mostly the vertical detail information, which corresponds to 
horizontal edges. HL represents the horizontal detail information from the vertical edges. The 
subbands HL, LH and HH are called the detail subbands since they add the high-frequency 
detail to the approximation image. 

2.4 Composition Process 
Fig. 2.4 corresponds to the composition process. The four sub-images are up-sampled and 
then filtered with the corresponding inverse filters along the columns. The result of the last step 
is added together and we have the original image again, with no information loss. 
 

 

FIGURE 2.4: One Composition Step of the Four Sub Images 

3. WAVELET FAMILIES 
There are many members in the wavelet family, Haar wavelet is one of the oldest and simplest 
wavelet.  

 
 

FIGURE 3: Different Types of Wavelets 
 

Daubechies wavelets are the most popular wavelets. They represent the foundations of wavelet 
signal processing and are used in numerous applications.The Haar, Daubechies, Symlets and 
Coiflets are compactly supported orthogonal wavelets. These wavelets along with Meyer 
wavelets are capable of perfect reconstruction. The Meyer, Morlet and Mexican Hat wavelets 
are symmetric in shape. The wavelets are chosen based on their shape and their ability to 
analyze the signal in a particular application.  Biorthogonal wavelet exhibits the property of 
linear phase, which is needed for signal and image reconstruction. By using two wavelets, one 
for decomposition (on the left side) and the other for reconstruction (on the right side) instead of 
the same single one, interesting properties are derived. 
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4. MEDICAL IMAGES 
Computed tomography (CT) , is a medical imaging procedure that uses x-rays to show cross-
sectional images of the body. A CT imaging system produces cross-sectional images or "slices" 
of areas of the body, like the slices in a loaf of bread. These cross-sectional images are used 
for a variety of diagnostic and therapeutic purposes. Magnetic resonance imaging (MRI) is an 
imaging technique used primarily in medical settings to produce high quality images of the 
inside of the human body. ECG (electrocardiogram) is a test that measures the electrical 
activity of the heart. The heart is a muscular organ that beats in rhythm to pump the blood 
through the body. The signals that make the heart's muscle fibres contract come from the 
sinoatrial node, which is the natural pacemaker of the heart. In an ECG test, the electrical 
impulses made while the heart is beating are recorded and usually shown on a piece of paper. 
Mammography can be used for diagnosis or for screening asymptomatic patients. 
Mammography is a highly effective imaging method for detecting, diagnosing, and managing a 
variety of breast diseases, especially cancer. It is an application where an emphasis on patient 
dose management and risk reduction is required. This is because of a combination of two 
factors. First, breast tissue has a relatively high sensitivity to any adverse effects of radiation, 
and second, mammography requires a higher exposure than other radiographic procedures to 
produce the required image quality. Retinal (eye fundus) images are widely used for diagnostic 
purposes by ophthalmologists. The normal features of eye fundus images include the optic 
disc, fovea and blood vessels. Ultrasound imaging is a common diagnostic medical procedure 
that uses high-frequency sound waves to produce dynamic images (sonograms) of organs, 
tissues, or blood flow inside the body.  

 
5. FIDELITY CRITERIA 
It is natural to raise the question of how much an image can be compressed and still preserve 
sufficient information for a given clinical application. This section discusses some parameters 
used to measure the trade-off between image quality and compression ratio. Compression ratio 
is defined as the nominal bit depth of the original image in bits per pixel (bpp) divided by the 
bpp necessary to store the compressed image. For each compressed and reconstructed image, 
an error image was calculated. From the error data, maximum absolute error (MAE), mean 
square error (MSE), root mean square error (RMSE), signal to noise ratio (SNR), and peak 
signal to noise ratio (PSNR) were calculated.  
The maximum absolute error (MAE) is calculated as [21]  

                                                                       

(5.1) 
 Where f (x, y) is the original image data and f*(x, y) is the compressed image value. The 
formulae for calculating image matrices are: 

                                              (5.2) 

                                                                                (5.3) 

                                                    (5.4) 

                                                                      (5.5) 

Structural Similarity Index Measurement (SSIM): 

Let x, y � R” where n >2. We define the following empirical quantities: the sample mean  

                                                                         (5.6) 

The sample variance  

            (5.7) 

and the sample cross-variance 
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        (5.8) 

We define  and  similarly. The SSIM index is defined as, 

                                           (5.9) 

Where , i=1, 2. The SSIM index ranges between -1 and 1, where positive values closed 

to 1 indicates a small perceptual distortion. We can define a distortion “measure” as one minus 
the SSIM index, that is, 

d(x,y)                                     (5.10) 

which ranges between 0 and 2 where a value closed to 0 indicates a small distortion. The SSIM 
index is locally applied to N×N blocks of the image. Then, all block indexes are averaged to 
yield the SSIM index of the entire image. We treat each block as an n-dimensional vector where 
n= . 

Compression ratio,           where, n, m is the image size. 

Percentage compression =                              

(5.11) 

 
6. PROPOSED METHOD 
In this proposed method we have analyzed the different medical images with different wavelet 
transforms at constant PSNR and computed the percentage compression and SSIM. 
 

 
 

FIGURE 6: Proposed Algorithm 

 
7. SIMULATION & RESULTS 
 

 
    CT Scan                           ECG   Fundus                  Infrared Image 

 
FIGURE 7.1.1: Original images 
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                      Mammography                         MRI                       US Image                        X-Ray 

 
FIGURE 7.1.2: Original images 

 

 

 
 

FIGURE 7.2: Compressed Images after Haar Transform at 2-Level Decomposition 
 

 

 
 

FIGURE 7.3: Compressed Images after Daubechies Transform at 2-Level Decomposition 

 

 

FIGURE 7.4.1: Compressed Images after Coiflets Transform at 2-Level Decomposition 
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FIGURE 7.4.2: Compressed Images after Coiflets Transform at 2-Level Decomposition 

 

 

FIGURE 7.5: Compressed Images after Biorthogonal Transform at 2-Level Decomposition 
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TABLE 7.1: Percentage Compression for Different Medical Images with Wavelet Transforms 

 

 
 

FIGURE 7.6: Percentage Compression for Different Medical Images with Wavelet Transforms 

 

 
 

FIGURE 7.7: PSNR (dB) for Different Medical Images with Wavelet Transforms 
 

 

 
 

FIGURE 7.8: SSIM for Different Medical Images with Wavelet Transforms 
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8. CONCLUSION 
In this paper we have analyzed that the Coiflets transform gives a higher percentage of 
compression for CT, US and Mammography images, Daubechies transform gives a higher 
percentage of compression for MRI, Fundus and Infrared images, Haar transform gives a 
higher percentage of compression for ECG images and Biorthogonal transform gives a higher 
percentage of compression for X-ray images at constant PSNR. 
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