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Abstract 

 
 In this paper the standard SVD method is used for image processing and is combined with some 
interpolation methods as linear and quadratic interpolation for reconstruction of compressed 
image.The main idea of the proposed method is to select a particular submatrix of main image 
matrix and compress it with SVD method, then reconstruct an approximation of original image by 
interpolation method. The numerical experiments illustrate the performance and efficiency of 
proposed methods.  
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1. INTRODUCTION 
Image compression techniques plays an important role in transmision and storage of image 
information in computer science and related domains.The goal of image compression is to obtain 
a representation that minimizes the bits volume while still maintaining the important meaning and 
the intrinsic structure of the original image. Image compression techniques can be classified into 
two groups. Lossless compression and lossy compression. 
 
 In lossless compression the reconstructed image is identical to the original one and deduces a 
low compression ratio while lossy compression methods allow a loss in the actual image data. So 
the original image cannot be created excactly from the compressed image. But these methods 
deduce high compression ratio. There is many ways to compress depending on the application 
field. One popular method for compressing an image is the wavelet teqnique [1]. Wavelet 
functions form an orthonormal basis on which it is possible to project each data set. Another 
important method is the Singular Value Decomposition (SVD). This technique is based on the 
factoriziation of the real matrix of image in three matrices that can be used to reconstruct the 
main image or an approximation of it, for more information see [2,3,4]. 
 
 In this paper the SVD method is combined with two interpolation processes, that are linear 2D 
interpolation (triangular interpolation), and bilinear interpolation, to decrease the volume of 
transfered image . This paper is orgonized as follows. Section 2 is specified to describe the basic 
concepts of proposed method. Section 3 presents the numerical experiments . Finally section 4 
concludes the paper with discussion. 

 
2. THE BASIC CONCEPTS OF METHOD  
Suppose that a nm×  pixel gray-scale image is given. Each pixel having some level of black and 

white given by some integers that can be selected between 0  and 255  or a real number 



J.  Izadian , A. Hosaini & M. Jalili 

International Journal of Image Processing (IJIP), Volume (6) : Issue (5) : 2012 274 

between zero and one. In the case of integer, each integer requires approximately one byte to 
store. Then the resulting image has approximately nm×  bytes volume. If the image is coloured 

in (RGB) system the image contains three nm×  matrices for red, green, and blue colours, then 

nm××3  pixels image. The Singular Value Decomposition (SVD) for a gray-scale image for 

compressing nm×  pixels image matrix is based on the following decomposition of A ,  

.=
T

USVA  

Actually, recalling from advanced linear algebra one has the following theorem, that is 
demonstrated in advanced linear algebra (for example see [5,6]).  

Theorem 2.1 Any nonzero real nm×  matrix A  with rank 0>r , there are an orthogonal mm×  

matrix U , and an orthogonal nn×  matrix V  such that SAVU
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Value Decomposition (SVD) of A .  
 By using above theorem and assuming that  
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Similarly for orthogonal nn×  matrix ,V  by considering.  
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where iv  are for ni 1,...,=  are columns of ,V  it yields  
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Here, S  is nm×  diagonal matrix with singular values of A  on the diagonal of D  in rectangular 

matrix S . The matrix S  can be presented by the following matrix:  
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For = 1,2,...,i n , 
i

σ  are singular values of matrix A . It is proved in Theorem(2.1) that 

1 2
... 0rσ σ σ≥ ≥ ≥ >  and 

1 2
... 0r r nσ σ σ

+ +
= = = = . For = 1,2,...,i m , 

i
σ  are called singular values of 
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matrix 
T

A .The vector 
i

v for = 1,2,...,i n  are called the right singular vector of A  , and 
i

u
 

for = 1,2,...,i m  . are the left singular vectors of A  (see[4,5]). then 
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 When compressing the image, the sum is not performed to the very last . The singular values 

with small enough values are dropped. A matrix of rank k  is obtained by truncating these sums 

after the first k  terms, denoted by  

,= 221111

T
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 is chosen as approximation of A . The total storage volume for kA  will be 1)( ++ nmk . This 

matrix is an approximation of A , that can be used as an approximation of compressed image A . 
For having a criterion for storage volume decrease, the compression ratio is defined as follows:  
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We also use the Schur norm to measure the quality of obtained image kA , called Mean Square 

Error (MSE), which is introduced by following expression:  
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A typical choice of k  is so that the storage space required for kA  will be less than .
5

1
 For having 

an superior compression ratio, one can utilize a submatrix of A  for small k  and use an 

interpolation process to reconstruct kA . 

Consider m  and n  are even, and A
~

 is a submatrix of order 
22

nm
×  of A , by omitting the 

element of A  which are situated on rows or column of odd numbers. This matrix is approximated 

by SVD  method with a suitable value of k . Then an interpolation method is used to reconstruct 

an approximation of kA , that can be chosen as approximation of kA  as obtained image. In linear 

case, consider the chosen submatrix of A  as:  
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 where m  and n  are even numbers and the elements of k  can be determined from 
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 The matrix kA
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 is of order ,
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×  therefore it has 
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 less element than kA . This matrix is 

chosen as the compression of A  that results a compression ratio given by  
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Therefore, in this method the compression ratio is doubled in comparison with kA . The matrix kA
~

 

is supposed as a base for interpolating method to reconstruct an approximation of kA . In the 

linear case, this matrix is calculated with the following equations:  
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In order to describe the hybrid SVD  using bilinear interpolation, the following submatrix of kA  is 

considerd  
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where kA  is considered a nm×  matrix which m  and n  are the integers that are divisible by 3. 
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Now for each 44×  block of matrix kA  which is reduced to 22×  block matrix kA
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bilinear interpolation is applied on ,[0,1]
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3. NUMERICAL EXPERIMENTS 
In this section some test examples are presented. In these examples we compare visually and 
numerically the compressing. The reconstructed image and the compression ratio and, the mean 

square error ( MSE ) in each case are presented. In the tables, 
IL , and BI , are used for linear 

and bilinear interpolation, respectively.  
 
3.1  Example 

 In this example we consider a 300144×  pixels black and white image from MATLAB gallery. 

The initial and final images are given in Figure 1.(a), and (b), the results for simple SVD linear 
interpolation and bilinear interpolation are presented in Figures 2. and 3, respectively. In Table 
3.1. numerical results for three methods are given.  
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  method   k    e  CR  MSE  cpu  time  

 SVD   9   0.4304 10.78658 1.2458×10^-4 8.7622  

SVD   16  0.3384 6.0674 8.0855× 10^-5 8.6436  

SVD   25   0.258 3.8831 5.5209× 10^-5 8.0967  

SVD   36  0.1889 2.6966 3.9410 ×10^-5 9.4412 

SVD,LI  9   0.3873 10.7143 2.5198 ×10^-4 8.1953 

SVD,LI 16 0.2860 6.00268 1.6349 ×10^-4 8.4375 

SVD,LI  25 0.1985 3.8571 1.1551 ×10^-4 8.7658 

SVD,LI  36 0.1228 2.6786 8.1363 ×10^-5 11.4910 

SVD,BI  9 0.3335 95.3642 4.001 ×10^-4 7.3140 

SVD,BI  16 0.2308 53.6424 2.5966 ×10^-4 7.9940 

SVD,BI  25 0.1579 34.3311 1.6774 ×10^-4 11.3992 

SVD,BI 36 0.0454 23.8411 1.0217 ×10^-4 12.6754 
 

TABLE 3.1: The results for black and white image. 

   

        
[original]                          [final] 

FIGURE 1:  The results of SVD method for k=36.   

        
[original]                          [final] 

FIGURE 2:  The results of SVD and linear interpolation method for k=36.   

          
[original]                          [final] 

FIGURE 3:  The results of SVD and bilinear interpolation method for k=36. 

  
3.2  Example 

 In this example a 5123843 ××  pixel colored image from MATLAB gallery is selected. The initial 

and final images are given in Figure 4. and the results for SVD linear interpolation , and bilinear 
interpolation are shown in Figure 4-5, respectively. The numerical results are presented in Table 
3.2.  
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  method   M    e  CR  MSE  time   

 SVD   9   0.4913 24.3538 5.9974×10^-5 25.9324  

SVD   16  0.3969 13.6990 3.3733 ×10^-5 26.5473  

SVD   25   0.32242 8.7674 1.9898 ×10^-5 26.3382  

SVD   36 0.2685 6.0884 1.3075 ×10^-5 28.4017 

SVD,LI  9   0.7508 24.2726 2.2499 ×10^-4 11.3439 

SVD,LI 16 0.7158 13.6533 2.0673 ×10^-4 11.8093 

SVD,LI  25 0.7084 8.7381 2.0631 ×10^-4 12.4191 

SVD,LI  36 0.6945 6.0681 2.0611×10^-4 14.2736 

SVD,BI  9 0.7370 217.0066 7.0313 ×10^-4 8.7288 

SVD,BI  16 0.7001 122.0662 6.9817 ×10^-4 10.8634 

SVD,BI  25 0.6922 78.1224 6.9801 ×10^-4 12.1687 

SVD,BI  36 0.6535 54.2517 6.978 ×10^-4 13.1736 
 

TABLE 3.2: The results for black and white. 

   

      
[original]                        [final] 

 
FIGURE 4:  The results for SVD method for k=36. 

     
[original]                        [final] 

 
FIGURE 5:  The results for SVD and linear interpolation method. 
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FIGURE 6:  The results for SVD and bilinear interpolation method.   

  
3.3  Example 

 In this example an other colored image is chosen from MATLAB gallery which has 3183183 ××  

pixels. The initial and final images are given in Figures 7-9. and the results for simple SVD linear 
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interpolation, and bilinear interpolation are shown in the same Figures, respectively. The 
numerical results are presented in Table 3.3.  

  

  method   M   
im   in    e  CR  MSE  time   

 SVD   9   3   3  0.4304 17.6389 8.8662× 10^-5 17.8987  

SVD   16 4  4  0.3384 9.9212 4.4780 ×10^-5 18.5721  

SVD   25   5   5 0.2580 6.3500 2.9478× 10^-5 25.36016  

SVD   36   6  5  0.1889 4.4097 1.968 ×10^-5 32.3716 

SVD,LI  9   3  3 0.7493 17.5562 3.5891× 10^-4 10.3739 

SVD,LI  16 4 4 0.7192 9.8754 3.5681 ×10^-4 11.7131 

SVD,LI  25 5 5 0.6943 6.3202 3.5630× 10^-4 13.90725 

SVD,LI  36 6 5 0.6738 4.3891 3.5615 ×10^-4 17.5310 

SVD,BI  9 3 3 0.7330 155.7969 0.0016 9.1011 

SVD,BI  16 4 4 0.6995 87.6358 0.0016 10.1484 

SVD,BI  25 5 5 0.6720 56.0869 0.0016 12.1943 

SVD,BI  36 6 5 0.6535 38.9491 0.0016 13.17828 
Table 3.3: The results for colour image  . 

 

     
[original]                      [final] 

 
FIGURE  7:  The results for SVD method for k=36. 

   
[original]                      [final] 

  
FIGURE 8:  The results for SVD and linear interpolation method for k=36 
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[original]                      [final] 

FIGURE  9:  The results of SVD and bilinear interpolation method for k=36 

    

4. CONCLUSION 
In this paper two hybrid SVD  methods, using linear interpolation, and bilinear interpolation are 

presented. The results show the preference of bilinear interpolation combined with SVD . The 

linear method is also economically acceptable.   
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