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Abstract 

 
Segmentation and counting sub-cellular structure of size range 0.1 μm  to 1 μm is a very 

challenging problem even for medical experts. Image acquisition time for the state-of-the-art 
fluorescence microscopes is about 1-5 seconds. A fast and efficient method for segmentation and 
counting of sub-cellular structure is proposed for concurrent post-processing of fluorescence 
microscopy images. The proposed method uses a hybrid combination of several image 
processing techniques and is effective in segmenting the sub-cellular structures in a fast and 
effective manner. 
 
Keywords: Segmentation, Bio-cell Organelles, Fluorescence Microscopy, Ellipse Detection. 

 
 
1 .  INTRODUCTION 
Cell and sub-cellular segmentation in biomedical images is helpful in diagnosis and cell biology 
research. Often manual segmentation and classification is slow since one image may contain 
numerous cells or sub-cellular structures. Automatic segmentation software can be used for this 
purpose but the accuracy is often low and is often unable to filter away the artifacts on its own.  
 
Here, a segmentation algorithm for cells or sub-cellular structures that can be modeled as elliptic 
shapes is proposed. Examples of such datasets can be found in [1-4]. The dataset considered in 
this paper is a dataset of images of mixed cell organelle types (mitochondria and lysosomes) [4]. 
Fluorescence confocal microscope is used to generate the images. Preprocessing of the images 
leads to cleaner images in which the cells appear in the foreground (for example as shown in  
FIGURE 3(a)). These images are used as input images for the proposed algorithm. It is 
highlighted that in several of the images, no sub-cellular structures are seen. Thus, images that 
contain sub-cellular features are selected manually. There are a total of 444 such images, each of 
size 1349 x 1030 pixels. 
 
The proposed algorithm employs three simple blocks and the core of the algorithm is a least 
squares ellipse fitting method. The algorithm is tested on a dataset of images of two types of sub-
cellular structures [4] and the algorithm shows a good performance. Further it is quite fast and 
easily parallelizable. Thus, with some code optimization, it can be made real time. 
 
The proposed algorithm is presented in section 2. The dataset for testing the proposed algorithm 
and the control parameters chosen for this dataset are also discussed in section 2.  The results 
are presented in section 3. The paper is concluded in section 4. 
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2 .  PROPOSED ALGORITHM 
The proposed algorithm employs three simple blocks, viz., pre-processing, ellipse fitting, and 
ellipse selection. The flowchart of the proposed algorithm is shown in FIGURE 1. 
 

 
 

FIGURE 1: Flowchart of the proposed method. 

 

 
 

FIGURE 2: Flowchart for preprocessing block. 
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2.1 Preprocessing Block 
It is assumed that the input is the intensity image I  (gray scale 0-255). The flowchart of this block is 
presented in FIGURE 2. One of the critical aspects is the choice of the threshold level for obtaining the 
binary images. The images in the biomedical dataset obtained using microscopy can suffer from several 
issues. Examples include low contrast, bleaching (background illumination), noise, scattering from irrelevant 
organelles, etc. However, assuming that the same instrument and measurement setup is used to generate 

the images in a particular dataset, a suitable threshold level 1t  can be determined a priori for binarizing the 

image (step 1 in FIGURE 2), where the binary image is being referred to as 1I .  

 

In order to deal with extremely low contrast features, it is preferable to use a low value of 1t . Consider for 

example the image in FIGURE 3(a). The highlighted circle shows a region that contains a cell but is invisible 

due to extremely low contrast. As a consequence, this cell is present in the binarized image when 1 5t   is 

used (FIGURE 3(b)) but absent when 1 15t   is used (FIGURE 3(c)). It is also notable that artifacts due to 

noise appear when low threshold is used. 

 

   
(a) Original image 

(b) 1 5t   (c) 1 15t   

 

FIGURE 3: Example of the effect of threshold value 1t  on the binary image 1I . 

 
Thus, a suitable selection of the threshold is quite important. A statistical scheme is proposed 

here for choosing the value of threshold 1t . For determining the suitable value of 1t , the 

histogram of each image in the dataset is generated for gray levels 0 – 255. Let the histogram 

count for a gray level  0,255g  for an image I  be denoted as  ,h g I . Cumulative histogram is 

generated for each gray level and image is computed as: 
 

    
0

, ,
g

g
C g I h g I


  (1) 

 
Then, the normalized cumulative histogram is computed as follows: 
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The values of the normalized cumulative histogram for a given gray level g  are averaged for all the images 

and plotted in FIGURE 4(a). It is seen that the images have low intensity since only lower gray levels 

(till 100g  ) have contribution in the images. A zoom-in of FIGURE 4(a) is provided in FIGURE 4 (b) where 

only 0 to 31g   is considered). It is seen that 4g   is sufficient for more than 80% of the cumulative 

histogram of the images. Thus, 1 4t   is chosen as the threshold for binarizing the images (step 1 of 

FIGURE 2). 
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(a) Normalized cumulative histogram count 

averaged over all the selected images. 
(b) Zoom in of (a) above for gray levels 0 – 32. 

 
FIGURE 4: Normalized cumulative histogram averaged over all the images used for choosing the value of 

threshold 1t . 

 
Yet, as shown in FIGURE 3, the boundaries of the cells may not be well defined due the binarization. Thus, 

a spatial mean filter of size 5 is applied on the binary image 1I  to get a gray scale image 2I  with smoother 

features (step 2 in FIGURE 2). The image 2I  is binarized again using a threshold value of 0.5, since the 

image 2I  obtained after applying average filter on the binary image 1I  (step 3 in FIGURE 2) is a gray scale 

image. The final binary image used for further processing is denoted as 3I .  

 

The edge contours of the white regions in 3I  are extracted (step 4 in FIGURE 2) and are denoted by index 

1 to e e . For each edge e , polygonal approximation of the edge is derived using RDP-mod proposed in 

[5] (step 4 in FIGURE 2). Other polygonal approximation approaches may be considered as well [5-15]. The 
polygonal approximation of the edge contour is consequently used to remove the inflexion points and obtain 

smooth edges 1 to e e   using the algorithm for removing inflexion points appearing in section 2 of [16] 

(step 5 in FIGURE 2), see also [17-19]. 

 
2.2 Ellipse Fitting Block 

This block calls a least squares based ellipse fitting method for each edge 1 to e e  . If the 

method generates a valid ellipse, the geometric parameters of the ellipse (length of semi-major 

axis a , length of semi-minor axis b , x-coordinate of the center 0x , y-coordinate of the center 0y , 

and the angle made by semi-major axis with the xaxis   of the fitted ellipse) is appended in 

the array containing the parameters of ellipses E .  
 
The choice of the ellipse fitting method has a significant impact on the overall performance of the 
method. Hough transform based methods have several problems like a huge number of samples 
are required to obtain robust results, five-dimensional parameter space of ellipses is difficult to 
deal with computationally, and the whole process can be significantly time consuming. Hybrid 
methods for high end applications [16, 20, 21], which generally give high accuracy, are slow and 
computationally expensive. They also include other very sensitive steps like tangent estimation 
[22-27]. So, least squares based methods for fitting ellipses can be used. In our numerical results, 
it shall be shown that the geometry based least squares fitting method presented in [28] performs 
better than other least squares methods.  
 
For the sake of completeness, the algorithmic structure of the geometry based least squares 
fitting method presented in [28] is reproduced here. For a sequence of pixels 

  , ; 1 to i i iP x y i N    , we intend to find the parameters , , , ,  and c c ca b x y , such that the residue 
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given in eqn. (3) is minimized. Here,  denotes the absolute value in the case of scalars and 

Euclidean norm in the case of vectors. 
 

 i i i i ir y m x c       . (3) 

 

Step 1: Compute ,  i i i ix x x y y y      where  ,x y  are given by eqn. (4). 

 

 
1 1

;   i i
i i

x x y y
N N 

     (4) 

 

Step 2: Form the matrix X  and the vector Y as given in eqns. (5) and (6).  
 

 2 1i i i i ix x y x y

 
 

   
 
  

X  (5) 

 
T

2 2 2

1 2 ,  N

NY y y y Y     (6) 

 

Step 3: Compute   using eqn. (7). 
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1

T T Y

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Step 4: Compute , , , ,  and c c ca b x y  using eqns. (8) – (12). 
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   1

2 10.5tan 1c       (10) 

    2

2 4 3 2 12 4cx         (11) 

    2

2 3 1 4 2 12 4cy         (12) 

 

Step 5: Compute  and c c c cx x x y y y    .  

 
2.3 Ellipse Filtering Block 
After fitting ellipses on each edge contour, available a priori information about the dataset can be 
used to filter/remove some unreasonable ellipses. The filtering criteria depend upon the dataset 
and a priori information known about it. For example the imaging resolution and the CCD grid size 
can be used to determine the size range of the cells and thus the bounds on the lengths of semi-

major axis a  and semi-minor axis b  may be generated. Also, the biological information about the 

cells can be used to generate an estimate of the maximum ratio of the semi-major and semi-

minor axes a b . In the proposed algorithm, the following filtering criteria have been used: 

 

 2a b t  (13) 
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3 4t b t   (14) 

 
where 2t , 3t , and 4t  are the thresholds determined based on the apriori knowledge of the cells 

and the imaging system. The ellipses satisfying eqns. (13) and (14) are retained. It is known that 
the size of the lysosomes and mitochondria varies in the range 0.1 μm  to 1 μm . Thus, the value 

of the threshold 2t  is chosen as the ratio of the maximum to the minimum size of these sub-

cellular structures, i.e., 2 10t  . Further, based on the general size of the sub-cellular structures in 

the dataset, the threshold values of 3t  and 4t  are chosen as 10 and 100 respectively. 

 

  

  

(a) Original image 1 (b) segmented 
ellipses for (a) 

(c) Original image 2 (d) segmented 
ellipses for (c) 

 
FIGURE 5: Examples of images and ellipses segmented by the proposed method. 

 

 
 

FIGURE 6: Comparison of the performance for various least squares methods. Prasad here represents the 

unconstrained least squares method presented in section 2.2. 

 
3 .  NUMERICAL RESULTS 
Two examples of the result of the proposed algorithm are shown in FIGURE 5. It is clearly seen 
that the proposed algorithm can segment the sub-cellular structures very well for low contrast as 
well as high contrast images, even when some of the sub-cellular structures may be occluded by 
other structures. The number of ellipses found using the proposed algorithm is denoted using 

algoE  and the number of ellipses found by a human (occluded or otherwise) is denoted by humanE . 

The quantity algo humanE E  is plotted for 100 randomly chosen images (since it is difficult to 

collectively present and compare the results for all 444 images) in FIGURE 6. As highlighted in 
section 2.2, the method chosen for least squares ellipse fitting has a significant impact on the 
performance of the algorithm. Thus, four methods (Prasad [28] – used in the proposed algorithm 
and presented in section 2.2, Chaudhuri [29], Harker [30], and Maini [31]) are considered and 
their performances are compared in FIGURE 6. It is seen that Prasad gives the best 
performance, thus proving to be the best choice among the four least squares ellipse fitting 
methods.  
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 Average time (s) Standard Deviation 

Preprocessing 0.52 0.43 

Ellipse fitting (Prasad) 7.86 2.04 

Ellipse fitting (Chaudhuri) 9.42 2.93 

Ellipse fitting (Harker) 11.27 3.38 

Ellipse fitting (Maini) 9.46 3.01 

Ellipse filtering 0.02 0.02 
 

TABLE 1: Statistics of computation time without parallel processing 
 

 Average time (s) Standard Deviation 

Preprocessing 0.52 0.43 

Ellipse fitting (Prasad) 0.99 0.30 

Ellipse fitting (Chaudhuri) 1.21 0.38 

Ellipse fitting (Harker) 1.42 0.43 

Ellipse fitting (Maini) 1.23 0.39 

Ellipse filtering 0.02 0.02 
 

TABLE 2: Statistics of computation time with parallel processing 

(parallelization of step 2 of  
FIGURE 2 is performed using 8 parallel cores) 

 
The time comparison of the four methods is presented in TABLE 1 (without any parallelization). It 
is seen that among the four least squares ellipse fitting methods, Prasad takes the least 
computation time as well. It is also noted that the preprocessing and ellipse filtering steps take 
very little time. In fact, the computation time for each image can be easily reduced below 1 
second by parallelizing the ellipse fitting block. This is illustrated in TABLE 2, where it is shown 
that the proposed method with Prasad’s unconstrained least squares method takes less than 1 
second for the most time consuming portion when 8 cores are used. The time performance can 
be further improved by increasing the number of cores and more effective programming. Thus, 
the proposed algorithm is capable of providing computation time less than the image acquisition 
time of a typical fluorescence microscope. 

 
4 .  CONCLUSION 

A fast algorithm is proposed to segment the sub-cellular structures in a dataset of fluorescence 
microscopy images. The three blocks in the proposed algorithm are simple, fast and effective. 
The core of the algorithm is the least squares fitting method used in the ellipse fitting block. It is 
shown that [28] is superior choice than three other least squares fitting methods. 
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