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Abstract 

 
This paper compares the error bounds of two classes of dominant point detection methods, viz. 
methods based on reducing a distance metric and methods based on digital straight segments. 
We highlight using two methods in each class that the error bounds within the same class may 
vary depending upon the fine details and control parameters of the methods but the essential 
error bound can be determined analytically for each class. The assessment presented in this 
paper will enable the users of dominant point detection methods to understand the nature of error 
in the method of their choice and help them to make better decision about the methods and their 
control parameters. 
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1 :  INTRODUCTION 
Dominant point detection in digital curves is a preliminary but important step in various image 
processing applications like shape extraction, object detection, etc. [1-13]. Despite being a very 
old problem of interest, this problem attracts significant attention even today in the research 
community. Some of the recent PA methods are proposed by Masood [14, 15], Carmona-Poyato 
[16], Wu [17], Kolesnikov [18, 19], Chung [20], Ngyuen [21], and Bhowmick [22] while few older 
ones are found in [23-33]. These algorithms can be generally classified based upon the approach 
taken by them. Often, algorithmic approach is used for classification. For example, some used 
dynamic programming [18, 19, 23], while others used splitting [27-29], merging [24], tree search 
[21, 22, 34], suppression of break points [14-16, 35, 36], etc.. However, this is not the focus of the 
current work.  
 
The focus of the current work is the basic discrete geometry approach used in the methods since 
the geometric concept used in the method determines the achievable accuracy or the inherent 
error bound of the dominant point detection methods. In the sense of geometric approach, there 
are three major categories – methods based on minimization of a distance metric (like maximum 
deviation, integral square error, etc.) [14-20, 27-33, 37], based on the concept of digital straight 
segments [21, 22, 38], or based on curvature and convexity [17, 20, 25, 26, 30-32]. We highlight 
that the methods based on curvature and convexity often use k-cosine term for studying the 
convexity and curvature changes and the decisive factor in the selection of dominant points is 
often based on some distance metric or another. Thus, the error analysis of methods based on 
curvature and convexity is considered redundant with the error analysis of methods based on 
distance metric presented in this paper.  
 
The outline of the paper is as follows. The error bound for the methods based on distance metrics 
is presented in section 2. The error bound for the methods based on digital straight segments is 
presented in section 3. The paper is concluded in section 4. 
 

2 :  METHODS BASED ON MINIMIZING THE MAXIMUM DEVIATION 
Two most famous and classic methods from this class of dominant point detection methods are 
considered here, Ramer-Douglas-Peucker method [28, 29] (RDP) and Lowe’s method [27]. 
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These methods are classical methods which use splitting the digital curve based on maximum 
deviation. They have laid foundation for dominant point detection in terms of the algorithm, the 
idea of using distance measures, and the support region of the dominant points. Thus, they have 
been the basis of several later works on dominant point detection methods. Notwithstanding the 
later work, their computational efficiency and effectiveness in representing the digital curves has 
ensured the popularity and use of these methods in several image processing applications. 
These methods and their error metrics are discussed in the subsequent sub-sections. 

 
2.1 Ramer-Douglas-Peucker method 
Ramer-Douglas Peucker (RDP) method was first proposed in [28, 29]. The method is briefly 

described as follows. Consider a digital curve 1 2 NS P P P , where iP  is the i th edge 

pixel in the digital curve e . By default, the start and end points 1, NP P  are included in the list of 

dominant points. If the digital curve is a close loop, then only one of them is included. For the 

straight line joining the points 1, NP P , the deviation id  of a pixel ( , )i i iP x y S  is computed. 

Accordingly, the pixel with maximum deviation (MD) can be found. Let it be denoted as maxP . 

Then considering the pairs 1 max,P P  and max , NP P , two new pixels of maximum deviations are 

found from S . This process is repeated until the condition in inequality eq. (1) is satisfied by all 

the line segments. The algorithm is terminated when the condition in eq. (1) is satisfied.  
 

 tolmax( )id d , (1) 

 

where told  is the chosen threshold and its value is typically a few pixels. 

 
Thus, the error bound of the RDP method is determined by the theoretical value of the maximum 

deviation max( )id  of the pixels from the polygon formed by the dominant points or the control 

parameter told . In general, researchers heuristically choose the value of told  in the range 1,2 . 

 
It is notable that the maximum deviation is used as optimization goal or termination condition in 
several methods [14, 15, 20, 36, 37]. Further, several other methods use the integral square error 
(ISE) as the optimization goal or termination condition [18-20, 32, 33]. Since the maximum value 

of the integral square error is upper bounded by 
2

max( )iN d  where N  is the number of pixels, 

thus max( )id  serves as the indicator of the upper bound for these methods as well.  

 
2.2 Lowe’s method 
While the algorithmic structure of the Lowe’s method proposed in [27] is essentially similar to 
RDP, its termination condition is different from RDP and more useful than using only the 

maximum deviation. Lowe considers two distances, first the maximum deviation max( )id  of the 

pixels in the digital curve spanned by two consecutive dominant points (just like RDP method), 
second the distance between the two dominant points (say s ). He defines the significance ratio: 

 

 max( )ir s d , (2) 

 
and uses it as the basis for the decision to retain a dominant point. For three consecutive 

dominant points 1jDP , jDP , and 1jDP , if 1, , 1 1, 1max ,j j j j j jr r r , then the dominant point 

jDP  is retained. This is done for all the dominant points except the start and end points. Then the 

points with 4jr  are also deleted.  

 
It is notable that Lowe assumes that the maximum deviation is always at least 2 pixels. It was 
shown in [37, 39] that the maximum deviation is less than 2 pixels in most cases. Further, it is 
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evident that the error bound of Lowe’s method is determined by the inverse of the significance 

ratio max( )id s . 

 
It is also notable that such similar significance ratios were used by several subsequent 
researchers as well [11, 16, 17, 20, 31-35], sometimes as a constraint and other times as the 
decision determinant. Most notably, such a ratio has served as the criterion of the support region 
of the dominant points.  
 
2.3 Comparison of the methods based on error bound of the maximum deviation 
It was shown in [37, 39, 40] that if a continuous line segment is digitized, the maximum distance 
of the pixels of the digital line from the continuous line segment is given by: 
 

 1 2
max max max

1
max tan sin cos 1d s t t

s
 (3) 

 
where s  is the length of the continuous line segment, tan  is the slope of the line segment and 

maxt  is given by: 

 

 max

1
cos sint

s
 (4) 

 

While the error bound maxd  directly applies to the methods based on maximum deviation and 

integral square error, such as discussed in section 2.1, the ratio maxd s  applies to the methods 

based on significance ratio such as discussed in section 2.2. The expression for this is given by: 
 

 1 2max
max max max

1
max tan sin cos 1

d
t t

s s
 (5) 

 
 

 

 
 

(a) plot of maxd  (b) plot of max  

 Figure 1: Illustration of the error bounds of the distance based methods. 

 
These two errors bounds are plotted in Figure 1. Figure 1(a) shows the theoretical error bound for 

RDP method. Based on the analysis, it is seen that the typical range of tol 1,2d  used by most 

researchers incorporates the theoretical error bound. This is also the basis of the non-parametric 
framework presented in [37]. Figure 1(a) also indicates that Lowe’s assumption that the maximum 
deviation is at least two pixels is incorrect and the maximum deviation is typically less than two 
pixels. Figure 1(b) shows the theoretical error bound for Lowe’s method. It is seen that the 

maximum value of maxd s  is close to 0.5, which indicates that the constraint on the value of the 
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significance ratio can be 2r , as opposed to Lowe’s criterion 4r . Similar analysis can be 

made regarding the error bounds of other distance based methods also using eqn. (3).   
 

3 :  METHODS BASED ON DIGITAL STRAIGHT SEGMENTS 

The concept of the digital straight segments (DSS) is a mathematical concept of discrete 
geometry [41] which specifically discusses a continuous line segment and a digital line segment 
and its properties. Evidently, it should serve as an important concept for dominant point detection 
methods. However, the simplicity and effectiveness of already popular distance based methods 
and the mathematical rigor of the concepts of DSS have restricted the researchers’ interest in 
using DSS for dominant point detection. Nevertheless, DSS based methods are a very important 
class of dominant point detection methods, especially for extremely noisy digital curves for which 
the distance based metrics force over-fitting of the dominant points. Here, we consider two recent 
methods based on DSS, Nguyen’s method [21] and Bhowmick’s method [22]. 

 
3.1 Nguyen’s method of blurred digital straight segments 
Nguyen [21] uses the concept of maximally blurred segments for determining the dominant points 
on a noisy digital curve. The concept of the blurred segments in turn is based upon the concept of 
DSS which is presented here briefly. A digital curve is called a digital straight segment 

( ), , , ; , , ,D a b a b  if the points on the digital curve satisfy the equation below: 

 

 ax by  (6) 

 

The digital straight segment is called maximal if a b  and blurred segment of width v  if 

1 max( , )a b v  [21]. Thus, the error bound of Nguyen’s method is determined by the value 

of the control parameter v . The value of v  used in [21] varies from 0.7 for noiseless digital curves 

to 9 for noisy digital curves. 
 
3.2 Bhowmick’s method of approximate digital straight segments 
Bhowmick’s method [22] is based on approximate digital straight segments (ADSS), which is also 
based upon the concept of DSS. However, as compared to several usual works on DSS, 
Bhowmick uses the properties of the DSS derived from the Freeman chain code in [41]. Out of 
the four properties of DSS (R1-R4 in [22]), only two (R1 and R2) are used for defining ADSS and 
two additional conditions (c1 and c2 in [22]) are imposed on the digital curve to be concluded as 
ADSS. It is highlighted that the isothetic error bound of the ADSS was presented in [22] but is 
reconsidered for comparison with other methods. According to [22], the isothetic error bound is 
given by: 
 

 1
1

d

p
 (7) 

where 
1

2

p
d  and p  is the minimum intermediate run-lengths of the freeman chain code of 

the digital curve (see [22] for details). Thus, the maximum value of the isothetic error is 1.5 . 

However, the error bound of the polygonal approximation in [22] is the product of both the 
isothetic error and the control parameter  selected heuristically. Thus, the net error bound of 
Bhowmick’s method is given by 1.5 . The value of  in [22] varies from 1 to 14. 

 
3.3 Comparison of the methods based on digital straight segments 
The methods based on DSS can be compared with each other directly based on the maximum 
isothetic (vertical/maximum distance of the pixels from the continuous line segment) distance of 
the digital curve from the line segments formed by dominant points. Thus, from the control 
parameters’ values and the error bounds of Nguyen’s and Bhowmick’s methods, it can be seen 
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that the maximum values of the upper error bounds of these methods are 9 and 21 respectively, 
while the minimum are 0.7 and 1.5 respectively.     

 
If the DSS based methods should be compared with distance based methods, the maximum 
perpendicular distance of the pixels from the digital curves should be determined for DSS based 
methods also. Such distance can be easily computed by taking the projection of the maximum 
isothetic distance on the direction normal to the line segments. If the isothetic distance is denoted 

by isod , then the desired distance for comparison is computed as iso cosd  where tan  is the 

slope of the line segment joining the dominant points. It is notable that in both [21] and [22], it is 

assumed that 0 a b , which implies that tan 0,1 .  

 
Accordingly, the upper bound of the maximum deviation of Nguyen’s method (for width 

0.7,9v ) varies as shown in Figure 2(a) and Bhowmick’s method (for 1,14 ) varies as shown 

in Figure 2(b). From both the upper bounds, it is seen that DSS based methods allow for a large 
value of maximum deviation, which is especially suitable for extremely noisy curves. As a trade-
off, the quality of fitting in the DSS based methods is severely dependent upon the choice of the 
control parameters. 
 

  
(a) Maximum deviation for Nguyen’s method for 

0.7,9v  

(b) Maximum deviation for Bhowmick’s method for 

1,14  

Figure 2: Illustration of the error bounds of the maximum deviations of Nguyen’s and Bhowmick’s methods. 

 
It is also worth considering the error bound when both the blurred segments of Nguyen [21] and 
the ADSS of Bhowmick [22] are both forced to be the maximal straight segments (which is a well-
defined control parameter independent) quantity. In such situation, considering the equation of a 
line in eqn. (8): 
 

 ax by c  (8) 

 

where a  and b  correspond to a maximal digital line segment , ,D a b  while the points ( , )P x y  

belong to the continuous two-dimensional space. For the pixels ,P x y  belonging to the digital 

straight segment , ,a b , if they are to satisfy eqn. (8), then c  has to satisfy inequality (9): 

 

 c a b  (9) 

 
Using the above, the perpendicular distance (deviation) of the pixels in the maximal DSS from the 
line given in eqn. (8) satisfies eqn. (10) below: 
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 0 sin cosid  (10) 

 

where 1tan a b . This error bound DSS sin cosd  is plotted in Figure 3. It can be 

seen that the maximum deviation for the DSS based methods (assuming no blurring or 

approximation of DSS) is about 2  pixels.   

 

 
Figure 3: Illustration of the error bounds of the methods based on digital straight segments. 

 
4 :  CONCLUSION 
The error bounds of various methods falling into two categories of dominant point detection 
methods are assessed and compared in this paper. It is shown that the analytical bound on the 
maximum deviation can be computed for both distance based and DSS based dominant point 
detection methods. It is observed in each analysis that the error bound depends upon the 
orientation of the line segment and the control parameter of the algorithm. The assessment also 
gives clues on assessing the error bound of other methods as well. Thus, this work shall help 
researchers on studying the effect of the control parameters and the error bounds of the dominant 
point detection methods. A well understood choice of dominant point detection method shall in 
turn result into better performance for their higher level applications as well [1-13, 42, 43].  
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