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Abstract 

The well known framework in the object recognition literature uses local information extracted at 

several patches in images which are then clustered by a suitable clustering technique. A visual 

codebook maps the patch-based descriptors into a fixed-length vector in histogram space to 

which standard classifiers can be directly applied. Thus, the construction of a codebook is an 

important step which is usually done by cluster analysis. However, it is still difficult to construct a 

compact codebook with reduced computational cost. This paper evaluates the effectiveness and 

generalisation performance of the Resource-Allocating Codebook (RAC) approach that 

overcomes the problem of constructing fixed size codebooks that can be used at any time in the 

learning process and the learning patterns do not have to be repeated. It either allocates a new 

codeword based on the novelty of a newly seen pattern, or adapts the codebook to fit that 

observation. Furthermore, we improve RAC to yield codebooks that are more compact. We 

compare and contrast the recognition performance of RAC evaluated with two distinctive feature 

descriptors: SIFT and SURF and two clustering techniques: K-means and Fast Reciprocal 

Nearest Neighbours (fast-RNN) algorithms. SVM is used in classifying the image signatures. The 

entire visual object recognition pipeline has been tested on three benchmark datasets: PASCAL 

visual object classes challenge 2007, UIUC texture, and MPEG-7 Part-B silhouette image 

datasets. Experimental results show that RAC is suitable for constructing codebooks due to its 

wider span of the feature space.  Moreover, RAC takes only one-pass through the entire data that 

slightly outperforms traditional approaches at drastically reduced computing times. The modified 

RAC performs slightly better than RAC and gives more compact codebook. Future research 

should focus on designing more discriminative and compact codebooks such as RAC rather than 

focusing on methods tuned to achieve high performance in classification. 
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1. INTRODUCTION 

Object recognition is one of the major challenges in computer vision. Researchers in computer 
vision have been trying to understand this for many years. Individuals can look around them and 
recognise familiar objects without much trouble. The ability to generalise from examples and 
categorise objects, events, scenes, and places is one of the core capabilities of the human visual 
system. However, this is not an easy task for computers. Local features are used in many 
computer vision tasks including visual object categorisation, content-based image retrieval, and 
object recognition. Local features can be thought of as patterns in images that differ from the 
immediate neighbourhood. Such a pattern can be a corner, blob or a region. The term interest 
points (or keypoints) usually refer to the set of points that are used to describe these patterns. 
Local feature detectors are used to find areas of interest in the images. 

In the state-of-the-art visual object recognition systems, the visual codebook model has shown 
excellent categorisation performance in large evaluations such as the PASCAL Visual Object 
Classes (VOC) Challenges [8] and Caltech object categories [11]. Desirable properties of a visual 
codebook are compactness, low computational complexity, and high accuracy of subsequent 
categorisation. Discriminative power of a visual codebook determines the quality of the codebook 
model, whereas the size of a codebook controls the complexity of the model. Thus, the 
construction of a codebook plays a central role that affects the model complexity. In general, 
there are two types of codebook that are widely used in the literature: global and category-
specific codebooks. A global codebook may not be sufficient in its discriminative power but it is 
category-independent, whereas a category-specific codebook may be too sensitive to noise. The 
codebook itself is constructed by clustering a large number of local feature descriptors extracted 
from training data. Based on the choice of a clustering algorithm, one might obtain different 
clustering solutions, some of which might be more suitable than others for object class 
recognition.  

The popular approach to constructing a visual codebook is usually undertaken by applying the 
traditional K-means method. However, clustering is a process that retains regions of high density 
in a distribution and it follows that the resulting codebook need not have discriminant properties. 
This is also recognised as a computational bottleneck of such systems. The resource-allocating 
codebook (RAC) approach [26] that we compare in this paper slightly outperforms more 
traditional approaches due to its tendency to spread out the cluster centres over a broader range 
of the feature space thereby including rare local features in the codebook than density-preserving 
clustering-based codebooks such as K-means and fast-RNN [20].  

The objective of this paper is to study the performance of discriminative clustering techniques for 
object class recognition. Here a scale-invariant feature descriptors, SIFT and e-SURF have been 
included in order to study the performance of recognising objects. Consequently K-means,  
fast-RNN and RAC methods are used to cluster the extracted descriptors and these clustering 
techniques performances are compared.   

Following the introductory section, the rest of this paper is organised as follows. In section 2, we 
summarise the background information that are closely related to this paper. This includes visual 
descriptors that are widely used in codebook model-based object recognition and various 
clustering techniques that have been used in constructing a codebook. Section 3 provides a 
summary of previous work on object recognition that has used a codebook model-based 
approach. Section 4 provides the experimental setup and testing results of our work. In section 5, 
we discuss the extension of RAC in constructing more compact codebooks for object recognition. 
Finally, section 6 concludes our work.  
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2. BACKGROUND 
Several combinations of image patch descriptors, different features, matching strategies, various 
clustering methods and classification techniques have been proposed for visual object 
recognition. Assessing the overall performance of the individual components in such systems is 
difficult, since the computational requirements and the fine tuning of the different parts become 
crucial. The well-known framework in the literature uses the SIFT descriptors to describe the 
patches and cluster them using the standard K-means algorithm, in order to encode the images 
as a histogram of visual codewords. This section briefly describes several descriptors, clustering 
techniques and the well known classification method that were used in comparing different 
codebook models. 
 
2.1 Local Invariant Features 
Usually images are composed of different sets of colours, a mosaic of different texture regions, 
and different local features. Most previous studies have focused on using global visual features 
such as edge orientation, colour histogram and frequency distribution. Recent studies use local 
features that are more robust to occlusions and spatial variations. This new way of looking at 
local features has opened up a whole new range of applications and has brought us a step closer 
to cognitive level image understanding. Even though many different methods for detecting and 
describing local image regions have been developed, the simplest descriptor is a vector of image 
pixels. In this subsection we summarise the well known patch-based scale-invariant feature 
transform (SIFT) descriptors [21] and its follow up technique, the Speeded-Up Robust Features 
(SURF) descriptors [2]. 
 
2.1.1 Scale-Invariant Feature Transform (SIFT) 
SIFT is a method to extract distinctive features from gray-value images, by filtering images at 
multiple scales and patches of interest that have sharp changes in local image intensities. The 
SIFT algorithm consists of four major stages: Scale-space extrema detection, keypoint 
localisation, orientation assignment, and representation of a keypoint descriptor. The features are 
located at maxima and minima of a difference of Gaussian (DoG) functions applied in scale 
space. Next, the descriptors are computed based on eight orientation histograms at a 4 � 4 sub 
region around the interest point, resulting in a 128 dimensional vector. In PCA-SIFT [15], the 
principal component analysis (PCA) is used instead of weighted histograms at the final stage of 
the SIFT. The dimensionality of the feature space is reduced from 128 to 20 which require less 
storage and increases speed in matching images. Although the size of the feature vector is 
significantly smaller than the standard SIFT feature vector, it has been reported that PCA-SIFT is 
less distinctive than SIFT [13]. 
 
2.1.2 Speeded-Up Robust Feature (SURF) 
SURF is partly inspired by SIFT that makes use of integral images. The scale space is analysed 
by up-scaling the integral image-based filter sizes in combination with a fast Hessian matrix-
based approach. The detection of interest points is selected by relying on the determinant of the 
Hessian matrix where the determinant is maximum. Next, the descriptors are computed based on 
orientation using 2D Haar wavelet responses calculated in a 4�4 sub region around each interest 
point, resulting in a 32 dimensional vector. When information about the polarity of the intensity 
changes is considered, this in turn results in a 64 dimensional vector. The extended version of 
SURF has the same dimension as SIFT.  SURF features can be extracted faster than SIFT using 
the gain of integral images and yields a lower dimensional feature descriptor (i.e. 64 dimensions) 
resulting in faster matching and less storage space but it is not stable to rotation and illumination 
changes. In [13], e-SURF (i.e. 128 dimensions) is proved to have better performance than SURF. 
 
2.2 Codebook Construction 
A simple nearest neighbour design for patch-based visual object recognition is a possible way 
forward, but is computationally not feasible for large scale data. Hence, a way to cope with the 
enormous amount of the patch-based descriptors and their higher dimensionality is to cluster 
them by using an appropriate clustering method that captures the span of the feature space. 
Instead of the features themselves, the cluster centroids or representative points are used for the 
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different cluster members. Interest points are detected in training images and a visual codebook 
is constructed by a vector quantization technique that groups similar features together. Each 
group is represented by the learnt cluster centres referred to as ‘codewords’. The size of the 
codebook is the number of clusters obtained from the clustering technique. Each interest point of 
an image in the dataset is then quantized to its closest codeword in the codebook, such that it 
maps the entire patches of an image in to a fixed-length feature vector of frequency histograms, 
i.e. the visual codebook model treats an image as a distribution of local features. In this 
subsection we describe the traditional K-means method and two other techniques known as RAC 
and fast-RNN that mainly focuses in constructing compact codebooks.  
 

2.2.1 K-means 
K-means is one of the simplest unsupervised learning algorithm that solves the well known 

clustering problem. Given a matrix X � �N�� (representing N points described with respect to  
d features, then K-means clustering aims to partition the N points into K disjoint sets or clusters 
by minimizing an objective function, which is the squared error function, that minimizes the within-
group sum of squared errors. K-means is a Gaussian mixture model with isotropic covariance 
matrix the algorithm is an expectation-maximization (EM) algorithm for maximum likelihood 
estimation.  
 
There are several known difficulties with the use of K-means clustering, including the choice of a 
suitable value for K, and the computational cost of clustering when the dataset is large. It is also 
significantly sensitive to the initial randomly selected cluster centres. The time complexity of the 
traditional K-means method is O
NdKm�, where the symbols in parentheses represent number of 
data, dimensionality of features, the number of desired clusters and the number of iterations of 
the EM algorithm. 
 
2.2.2 fast-RNN 
In [20] the authors have presented a novel approach for accelerating the popular Reciprocal 
Nearest Neighbours (RNN) clustering algorithm and named as fast-RNN. A novel dynamic slicing 
strategy is used to speed up the nearest neighbour chain construction. When building nearest 
neighbour (NN) chains, it finds all the points that lie within a slice of the d-dimensional space of 
width 2ε centred at query point. To determine the nearest neighbour of x� in S, i.e. x� � NN
x�� 

where S is a set of N points S � �x�, x�, … . xN�, it builds the first slice of width 2ε  centred at x�. 
Then, it performs a search for the NN of x� considering only the points inside this slice. Once x� is 

identified, it searches for its NN via slicing again, and so on. 

Thereafter, agglomerative clustering builds the codebook by initially assigning each data point to 
its own cluster after that repeatedly selecting and merging pairs of clusters. Thus, it builds a 
hierarchical tree merging from the bottom (leaves) towards the top (root). The authors in [17] 
have improved the agglomerative clustering method based on the construction of RNN pairs. 
 
2.2.3 Resource-Allocating Codebook 
In [26], a Resource-Allocating Codebook (RAC) has been proposed for constructing a 
discriminate codebook. RAC is a much simplified algorithm that constructs a codebook in a one-
pass process which simultaneously achieves increased discrimination and a drastic reduction in 
the computational needs. It is initialised by a random seed point selected from the set of visual 
descriptors. When a subsequent data item is processed, its minimum distance to all entries in the 
current codebook is computed using an appropriate distance metric. If this distance is smaller 
than a predefined threshold r (radius of the hypersphere) the current codebook is retained and no 
action is taken. If the threshold is exceeded by the smallest distance to codewords (i.e. it is a 
group represented by the learnt cluster centres), a new entry in the codebook is created by 
including the current data item as the additional entry. This process is continued until all data 
items are seen only once. The pseudocode of this approach is given in Algorithm 1. The RAC 
partitions the feature space into a set of overlapping hyperspheres when the distance metric used 
is the Euclidean norm. 
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Algorithm 1: Resource-Allocating Codebook 

Input: Visual descriptors (D) and radius (r) of the hyperspheres. 

Output: Centres of the hyperspheres (C) 

Step 1: C� � D�           

             i � 2   // to the next descriptor 

                      j � 1   // size of the present C 

Step 2: Repeat Steps 3 to 4 while i $ size
(� 

Step 3: If min*D� + C�*
�

, -�   ./ 

             then create a new hypersphere of r such that 

                         C� � D�                

                          j � j 0 1 

            endif 

Step 4: i � i 0 1 

Step 5: return C 

 

2.3 Classification Using Support Vector Machine (SVM) 
SVM is a supervised learning technique based on a statistical learning theory that can be used for 
pattern classification. In general SVMs outperform other classifiers in their generalisation 
performance [3]. A linear SVM finds the hyperplane leaving the largest possible fraction of points 
of the same class on the same side, while maximizing the distance of either class from the 
hyperplane. SVMs were originally developed for solving binary classification problems [5] and 
then binary SVMs have also been extended to solve the problem of multi-class pattern 
classification. There are four standard techniques frequently employed by SVMs to tackle multi-
class problems, namely One-Versus-One (OVO) [7], One-Versus-All (OVA) [29], Directed Acyclic 
Graph (DAG) [25], and Unbalanced Decision Tree (UDT) [28].  

OVO method is implemented using a “Max-Wins” voting strategy. This method constructs one 
binary classifier for every pair of distinct classes and in total it constructs N(N-1)/2 binary 
classifiers, where N is the number of classes. The binary classifier C�� is trained with examples 

from the i12 class and the j12  class only. The max-wins strategy then assigns a test data X to the 
class receiving the highest voting score. 

OVA method is implemented using a “Winner-Takes-All” strategy. It constructs N binary classifier 

models. The i12 binary classifier is trained with all the examples in the i12 class with positive 
labels, and the examples from all other classes with negative labels. For a test example X, the 
winner-takes-all strategy assigns it to the class with the highest classification boundary function 
value. 

DAG-SVMs are implemented using a “Leave-One-Out” strategy. The training phase of the DAG is 
the same as the OVO method, solving N(N-1)/2 binary classifiers. In the testing phase it uses a 
rooted binary directed acyclic graph. Each node is a classifier C�� from OVO. A test example X is 

evaluated at the root node and then it moves either to the left or the right depending on the output 
value.  

UDT-SVMs are implemented using a “knock-out” strategy with at most 
N + 1� classifiers to make 
a decision on any input pattern. Each decision node of UDT is an OVA-based optimal 
classification model. Starting at the root node, one selected class is evaluated against the rest by 
the optimal model. Then the UDT proceeds to the next level by eliminating the selected class 
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from the previous level of the decision tree. UDT terminates when it returns an output pattern at a 
level of the decision node.  

3. PREVIOUS WORK 
In [6], the authors used the Harris affine region detector to identify the interest points in the 
images which are then described by SIFT descriptors. A visual codebook was constructed by 
clustering the extracted features using K-means method. Images are then described by 
histograms over the learnt codebook. K-means were repeated several times over a selected size 
of K and different sets of initial cluster centres. The reported results were the clusters that gave 
them the lowest empirical risk in classification. The size of the codebook used in reporting the 
results is 1000. The authors compared Naive Bayes and SVM classifiers in the learning task and 
found that the OVA SVM with linear kernel gives a significantly (i.e. 13%) better performance. The 
proposed framework was mainly evaluated on their ‘in-house’ database that is currently known as 
‘Xerox7’ image set containing 1,776 images in seven object categories. The overall error rate of 
the classification is 15% using SVMs. It has been reported that RAC approach in [26] performs 
slightly better than the method in [6] but was achieved in a tiny fraction of computation time. 

In [14], the authors proposed a mean-shift based clustering approach to construct codebooks in 
an under sampling framework. The authors sub-sample patches randomly from the feature set 
and allocate a new cluster centroid for a fixed-radius hypersphere by running a mean-shift 
estimator [4] on the subset. The mean-shift procedure is achieved by successively computing the 
mean-shift vector of the sample keypoints and translating a Gaussian kernel on them. In the next 
stage, visual descriptors that fall within the cluster are filtered out. This process is continued by 
monitoring the informativeness of the clusters or until a desired number of clusters is achieved. 
The features used in their experiments are the gray level patches sampled densely from multi-
scale pyramids with ten layers. The size of the codebook was 2,500. The proposed method was 
evaluated on three datasets: Side views of cars from [28], Xerox7 image dataset [6] and the  
ETH-80 dataset [17]. Naive Bayes and linear SVM classifiers were compared in all their 
experiments. The authors’ mean-shift based clustering method is computationally intensive in 
determining the cluster centroid by mean-shift iterations at each of the sub samples. The 
convergence of such a recursive mean-shift procedure greatly depends on the nearest stationary 
point of the underlying density function and its utility in detecting the modes of the density. In 
contrast, the RAC approach pursued in [26] has a single threshold that takes only one-pass 
through the entire data, making it computationally efficient. 

In [34], the authors optimized codebooks by hierarchically merging visual words in a pair-wise 
manner using the information bottleneck principle [1] from an initially constructed large codebook. 
Training images were convolved with different filter-banks made of Gaussians and Gabor kernels. 
The resulting filter responses were clustered by the K-means method with a large value of K in 
the order of thousands. Mahalanobis distance between features is used during the clustering 
step. The learnt cluster centres and their associated covariances define a universal visual 
codebook. Classification results were obtained on photographs acquired by the authors, images 
from the web and a subset of 587 images in total that were selected from the PASCAL VOC 
challenge 2005 dataset. The initial codebook construction of this method which is based on 
hierarchically merging visual words in a pair-wise manner is extremely faster than K-means 
clustering on large number of features. However, if two distinct visual words are initially grouped 
in the same cluster, they cannot be separated later. Also the vocabulary is tailored according to 
the categories under consideration, but it would require fully retraining the framework on the 
arrival of new object categories. 

In [22], local features are found by extracting edges with a multi-scale Canny edge detector with 
Laplacian-based automatic scale selection. For every feature, a geometry term gets determined, 
coding the distance and relative angle of the object centre to the interest point, according to the 
dominant gradient orientation and the scale of the interest point. These regions are then 
described with SIFT features that are reduced to 40-dimension via PCA. The visual codebook is 
constructed by means of a hierarchical K-means clustering. Given a test image, the features were 
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extracted and a tree structure is built using the hierarchical   K-means clustering method in order 
to compare with the learnt model tree. Classification is done in a Bayesian manner computing the 
likelihood ratio. Experiments were performed on a five class problem taken from the PASCAL 
VOC 2005 image dataset.  

In [33], a novel method is proposed for constructing a compact visual codebook using a sparse 
reconstruction technique. Initially a large codebook is generated by K-means method. Then it is 
reformulated in a sparse manner, and weight of each word in the old visual codebook is learnt 
from the sparse representation of the entire action features. Finally, a new visual codebook is 
generated through six different algorithms. These algorithms are mainly based on L0 and L1 

distances. The authors approach has been tested on the Weizmann action database [10]. As a 
result, the obtained codebook which is half the size of the old visual codebook has the same 
performance as the one built by K-means. 
In [24], images are characterised by using a set of category-specific histograms generated one 
per object category. Each histogram describes whether the content can be best modelled by a 
universal codebook or by its corresponding category-specific codebook. Category-specific 
codebooks are obtained by adapting the universal codebook using the class training data and a 
form of Bayesian adaptation based on the maximum a posteriori criterion. The maximum number 
of Gaussians in the universal codebook was set to 2048. An image is then characterised by a set 
of histograms called bipartite as they can be split into two equal parts. Each part describes how 
well one codebook accounts for an image compared to the other codebook. Local patches were 
described by SIFT and colour features. PCA was applied to reduce the dimensionality of SIFT 
from 128 to 50, and the RGB colour channels from 96 to 50. Evaluations were performed on their 
own in-house database containing 19 classes of object categories and scenes, and the PASCAL 
VOC 2006 dataset. Classification was performed using linear SVMs and a logistic regression with 
a Laplacian prior. However, if two visual object classes are visually close, there is no guarantee 
that a distinctive visual word will be obtained. The process that generates bipartite histograms is 
also computationally expensive. 
 

4. EMPIRICAL EVALUATION 
4.1 Datasets 
We evaluate the combination of descriptors and codebook construction techniques on three 
benchmark datasets: PASCAL visual object classes challenge 2007 [8], UIUC texture [16], and 
MPEG-7 Part-B silhouette image [12] datasets. 
  
4.1.1 PASCAL VOC Challenge 2007 
The dataset includes data with all possible viewing conditions such as different viewpoints, 
scales, illumination conditions, occluded/truncated and poor quality. The goal of this challenge is 
to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-
segmented objects).  

There are twenty object classes: person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, 
boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa, and TV/monitor. The 
database contains a total of 9,963 annotated images. The dataset has been split nearly into 50 
percent for training/validation and 50 percent for testing dataset. Figure1 shows the object 
categories that are in the PASCAL VOC 2007 dataset.  
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FIGURE 1: One Image from Each of the Object Categories In PASCAL VOC Challenge 2007 Image 
Dataset. 

 

 

4.1.2 UIUC Texture Dataset 
The dataset contains 25 texture classes with 40 images per class. Each of the images is of size 

640×480 pixels. This dataset has surfaces whose texture is mainly due to albedo variations (e.g. 
wood and marble), 3D shape (e.g. gravel and fur), as well as a mixture of both (e.g. carpet and 
brick). It also has significant viewpoint changes, uncontrolled illumination, arbitrary rotations, and 
scale differences within each class. Figure 2 shows some of the example images of the UIUCTex 
dataset.  
 
4.1.3 Silhouette Images 
The MPEG-7 Part B silhouette database is a popular database for shape matching evaluation 
consisting of 70 shape categories, where each category is represented by 20 different images 
with high intra-class variability. The shapes are defined by a binary mask outlining the objects. 
Figure 3 shows some example images of the dataset. 
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FIGURE 2: Example Images of the UIUCTex Dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3: Example Images of the MPEG-7 Silhouette Dataset. 

 

 

4.2 Vocabulary Construction 
Popular approaches in the literature of codebook models [6, 9, 19, 31] have used K-means 
method with K=1000 to construct a codebook which shown better performance. For this reason 
when comparing the RAC and fast-RNN with K-means, we maintain the codebook size to be 
1000. Moreover, K-means method was run three times with the same number of desired 
representative vectors and different sets of initial cluster centres.   

The hyperparameter r of RAC is set to 0.8 in PASCAL VOC 2007 and 0.89 in silhouette and 
UIUCTex datasets. The choice of the radius r has the same set of difficulties associated with the 
choice of K in K-means. In [26], the approach to setting r is to take a small sample of the data, 
compute all pairwise distances between these samples and set the threshold, so that an 
approximate target codebook size is achieved. 
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When building NN chains in fast-RNN algorithm, we follow the authors [20] experimental setup in 
finding all the points that lie within a slice of the d-dimensional space of width 2ε centred at a 
query point instead of building a hypercube. The ε is set to 0.05. 
 
4.3 Classification 
In classification, we have used the OVA-based linear SVMs. The regularization parameter C was 
tuned with a range of values 324�, 24�, … . 2��, 2��5 . 
 
4.4 Evaluation Criterion 
Average precision is used as performance evaluator for the binary object recognition tasks which 
has been widely used in recent PASCAL VOC challenges. Average precision is a single-valued 
measure that is proportional to the area under a precision-recall curve. 

Recall �
TP

TP 0 FN
                 True positive rate �

TP
TP 0 FN

 

 

Precision �
TP

TP 0 FP
              False positive rate �

FP
FP 0 TN

 

where TP, FP, TN and FN are true positive, false positive, true negative, and false negative 
respectively.  
 
Receiver operating characteristics (ROC) curve shows how the number of correctly classified 
positive examples varies with the number of incorrectly classified negative examples. For multi-
class classification, we report the classification rate as follows: 

rate = 
NCDEFG HI JHGGFJ1KL JKMNN�f�F� �DMPFN

TH1MK RCDEFG HI 1FN1�RP �DMPFN
� 100% 

 
4.5 Testing Results 
Experiments in this work were mainly carried out to compare and contrast the RAC technique 
with traditional K-means method and the speeded-up RNN clustering algorithm in terms of 
classification rate, compactness of codebook, and time for constructing codebook. We have 
tested those algorithms on three benchmark datasets.  Furthermore, we improve the standard 
RAC to yield more compact codebook. 

For the PASCAL VOC 2007 dataset, we extracted features within the provided bounding box 
information from the combination of training and validation (trainval) set.  Truncated objects were 
also included when extracting features. For evaluation purpose we have selected ten binary 
classes from PASCAL VOC 2007 image set (in Table 1). The classification results are shown (in 
Tables 1 and 2) as means of average precision and standard deviation. 

In the UIUCTex dataset, we used ten-fold cross-validation. The dataset was split into ten 
partitions each containing four images from each of the 25 classes. Ten rounds of training and 
testing were performed in which nine partitions were used for training and the remaining partition 
was used for testing. According to [27], 2500 � ���V SIFT and e-SURF keypoints were randomly 
selected from each image of the training set and were individually clustered by K-means, RAC 
and fast-RNN techniques in order to form a locally merged global codebook. The random 
selection of a subset of SIFT and e-SURF descriptors was due to our previous experience of the 
prohibitive memory requirement by the traditional K-means in such a large number of keypoints 
(approx. 5000 keypoints per image). The K-means method in constructing 40 clusters per class 
was fed with a total of 36�2500� ���V SIFT and e-SURF descriptors. The resulting histogram of 
an image was of size 1000 in K-means method. The classification results are shown (in Tables 1 
and 2) as means of average precision and standard deviation, over the ten runs.  
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In the Silhouette dataset, we used two-fold cross-validation. The Silhouette dataset was split into 
two partitions each containing ten images from each of the 25 classes. Two rounds of training 
and testing are performed in which one partition is used for training and the other was used for 
testing. We report the mean classification rate in Tables 1 and 2, together with the standard 
deviation, over the two runs.  

All of our experiments were implemented in Matlab and executed on a desktop computer with an 
Intel Core 2 running at 2.4 GHz and 8GB of RAM.  
 
4.5.1 Classification Rate 
Table 1 details the classification rate of three independent runs of the proposed experiment using 
K-means, RAC and fast-RNN with SIFT descriptors respectively, whereas Table 2 details the rate 
for using SURF descriptors. Based on our testing results, when using SIFT descriptors, K-means 
performs better in three binary tasks, whereas RAC performs better in six binary tasks of the 
PASCAL VOC 2007 imageset. Fast-RNN performs better in only one task which can be observed 
in Table 1.  

 

TABLE 1: Classification Rate as Mean Average Precision With Standard Deviation When Using SIFT 
Descriptors. 

 
In the case of SURF descriptors, K-means performs better in eight binary tasks, whereas RAC 
performs better in three binary tasks of the PASCAL VOC 2007 imageset and fast-RNN performs 
better in only one task which can be observed in Table 2.  

We carried out F-tests (one-way ANOVA) to compare the classification rates of  
K-means, RAC and fast-RNN techniques when applied on the PASCAL VOC 2007 imageset 
using SIFT and SURF descriptors. We may conclude that those three techniques are equally 
comparable in classification rates for the SIFT and SURF descriptors with the p-values 0.71 and 
0.94, respectively. 

Even though K-means slightly outperforms RAC in classification rate when applied on UIUCTex 
and silhouette image classification tasks, the negligible increase in performance was achieved at 
a huge computational time which can be observed in Table 3. Fast-RNN not only shows less 
classification rate compared to RAC but also higher codebook construction time to RAC. Even 

Dataset 
SIFT 

K-means RAC fast-RNN 

P
A

S
C

A
L
 V

O
C

 2
0

0
7

 

Bird vs Aeroplane 81.86 Y 1.27 [\. ]^ Y ^. [^ 75.29 Y 1.24 

Aeroplane vs Horse `]. a] Y \. a^ 87.82 Y 0.83 88.04 Y 0.09 

Bicycle vs Motorbike cc. a^ Y ^. ^a 76.10 Y 0.60 74.53 Y 0.99 

Bus vs Train c`. [^ Y ^. dd 76.00 Y 0.60 74.31 Y 0.69 

Dog vs Cat 68.22 Y 1.51 70.73 Y 0.65 c]. ]^ Y ]. a^ 

Cow vs Sheep 67.77 Y 1.20 c]. ]^ Y ]. a^ 70.89 Y 0.78 

Pottedplant vs Dining table 72.97 Y 0.53 ce. ^^ Y ]. ]` 74.00 Y 1.60 

Bottle vs Potted plant 59.69 Y 2.15 ec. c\ Y ^. f] 62.54 Y 1.30 

Boat vs TV/monitor 74.85 Y 1.20 []. \^ Y ]. [^ 79.91 Y 1.10 

Aeroplane vs Boat 80.00 Y 0.90 [c. [^ Y ^. [^ 80.16 Y 0.81 

UIUCTex `[. cc Y ^. `c 98.10 Y 0.99 95.12 Y 0.65 

MPEG 7 Part B (Silhouette) cc. e^ Y \. \e 77.20 Y 3.39 75.19 Y 0.40 
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though fast-RNN has some demerits to RAC it still constructs more compact codebooks than the 
other approaches.  

 

TABLE 2: Classification Rate as Mean Average Precision With Standard Deviation Using SURF 

Descriptors. 

The classification performance for K-means, RAC and fast-RNN clustering techniques with SIFT 
and e-SURF descriptors is also represented using ROC curves. Figure 4 illustrates some 
example of the ROC curves which are randomly selected from our results. The ROC curve details 
how the number of correctly classified positive examples varies with the number of incorrectly 
classified negative examples. In these figures, Fig. 4(a), (d) and (e) lie in the upper-left-hand 
corner representing a good classification result and SIFT + RAC performs better than other 
combinations.  

In addition to this, we carried out limited experiments to see the influence of the order of 
presentation of data to RAC. Based on the limited experiments, we found that RAC is slightly 
sensitive to the order of presentation of data, similar to the random initial selection of cluster 
centres in the K-means method.   

  

Dataset 
e-SURF 

K-means RAC fast-RNN 

P
A

S
C

A
L
 V

O
C

 2
0

0
7

 

Bird vs Aeroplane 86.22 Y 0.21 [e. a[ Y ]. ^\ 85.36 Y 0.21 

Aeroplane vs Horse `]. f` Y ^. \[ 85.36 Y 0.85 85.58 Y 0.42 

Bicycle vs Motorbike []. [^ Y ^. \\ 79.47 Y 0.32 75.98 Y 0.79 

Bus vs Train 69.74 Y  1.66 c`. e] Y \. \d 76.13 Y 1.38 

Dog vs Cat c^. f] Y ^. `\ 68.83 Y 0.80 64.70 Y 0.12 

Cow vs Sheep ec. \e Y ^. `c 65.06 Y 1.65 66.24 Y 1.81 

Pottedplant vs Dining table ca. ^e Y ^. f] 72.18 Y 1.53 70.32 Y 0.41 

Bottle vs Potted plant 60.92 Y 0.67 e]. ^a Y ]. ed 60.04 Y 2.41 

Boat vs TV/monitor 56.82 Y 1.51 71.96 Y 3.12 cf. ad Y ]. fc 

Aeroplane vs Boat cd. \c Y ]. [^ 71.20 Y 2.04 69.13 Y 1.30 

UIUCTex `c. [[ Y ^. `\ 97.05 Y 1.47 94.52 Y 0.03 

MPEG 7 Part B (Silhouette) cd. ^f Y ^. ^d 74.00 Y 0.56 70.71 Y 0.23 
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TABLE 3: Estimated Time for Codebook Construction Using SIFT and SURF Descriptor. 
 

4.5.2 Compactness of Codebook  
A compact codebook may be achieved directly by reducing the codebook size or by carefully 
selecting the codebook elements. RAC sizes are slightly greater than others. Table 4 indicates 
average size of the codebooks by using K-means, RAC and fast-RNN with SIFT and e-SURF 
descriptors in that order. As shown in Table 4 the size of the codebook obtained by e-SURF with 
fast-RNN yields codebooks of an average size of 131 while SIFT with fast-RNN produces 
codebooks of an average of 280.  
 
4.5.3 Time For Constructing Codebook  
The construction of a visual codebook is often performed from thousands of images and each 
image contains hundreds or even one thousands of patch based interest points described in a 
higher dimensional space, in order to capture sufficient information for efficient classification.  

The time complexity of the traditional K-means method is O
NdKm�, whereas for the fast-RNN 
technique it is O
N log N� where, N -number of descriptors, d-dimensionality of features, K-number 
of desired clusters and m-number of iterations of the expectation-maximization (EM) algorithm. 
The time complexity of RAC depends on the size of the candidate cluster set C, i.e., it compares 
each newly seen pattern to all existing clusters. Thus, RAC has far lower computational cost than 
K-means and fast-RNN clustering techniques. 

In our experiments codebook construction time is quantified in two cases: SIFT and e-SURF and 
have been tested with those three algorithms. In all cases, e-SURF is faster than SIFT based on 
the outcomes of the results reported in Table 4 and as found by [2]. When commenting on the 
performance of descriptors, we conclude that SIFT performs better than SURF descriptors, which 
has also been proved by [13]. 

 

Dataset 
SIFT e-SURF 

K-means RAC fast-RNN K-means RAC fast-RNN 
P

A
S

C
A

L
 V

O
C

 2
0

0
7

 
Aeroplane 34712 495 34735 1845 12 1664.8 

Bird 89538 780 74695 6540 12 2117 

Bottle 17824 66 14097 536 2 124 

Boat 12652 123 11202 2670 6 709 

Bus 27657 489 27657 5927 12 2092 

Bicycle 34906 270 31140 10269 14 2951 

Cat 248810 334 173563 3809 14 2588 

Cow 27999 116 22440 1800 5 583 

Dining table 35544 252 33263 5338 10 1490 

Dog 271695 452 265264 7380 21 5027 

Horse 86639 793 79988 5587 18 3622 

Motorbike 80002 619 83496 10172 23 6236 

Potted plant 32137 195 27274 8398 9 1481 

Sheep 10489 50 9256 900 2 264 

Train 78621 969 75324 16497 22 5629 

TV/Monitor 7608 69 24023 466 2 172 

UIUCTex 70585 10050 40100 60141 79 57125 

MPEG 7 Part B (Silhouette) 11597 20 10200 6135 4 5135 
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                                           (a)                                                                                          (b) 

                                               (c)  (d) 

                                             (e)                                                                                     (f) 

                                                                                                                                                                                                                  
FIGURE 4:  Classification of the Test Set in PASCAL VOC 2007 Represented Using the ROC Curves for 

Binary Classes. 
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Since the total number of interest points detected by e
descriptors as shown in Figure 5, K
computational time to construct a codebook, RAC seems particularly suitable for the codebook 
construction due to its speed than other methods compared in this p

TABLE 4: Average S
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Since the total number of interest points detected by e-SURF is much less than that of SIFT 
descriptors as shown in Figure 5, K-means contradicts with fast-RNN in both cases. Based on our 
computational time to construct a codebook, RAC seems particularly suitable for the codebook 
construction due to its speed than other methods compared in this paper. 

Size of the Codebook Using SIFT and e-SURF Descriptors

 

umber of Interest Points Detected in PASCAL VOC 2007 D
 

SIFT e-SURF

means RAC fast-RNN K-means RAC 

1000 

1325 342 

1000 

526 

1165 291 461 

945 220 321 

1032 251 383 

1233 286 492 

1148 265 423 

1167 260 506 

932 210 369 

1219 302 452 

1305 268 540 

1297 303 541 

1399 316 510 

1074 245 376 

711 174 277 

1410 347 531 

943 248 358 

1524 375 1491 

1242 340 1370 

45 

SURF is much less than that of SIFT 
RNN in both cases. Based on our 

computational time to construct a codebook, RAC seems particularly suitable for the codebook 

escriptors. 

Dataset. 

SURF 

fast-RNN 

140 

120 

97 

109 

135 

105 

260 

100 

111 

120 

119 

120 

103 

75 

147 

129 

245 

125 
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4.6 Further Improvement 
Based on our testing results, we can easily conclude that RAC outperforms to the traditional  
K-means and fast-RNN but the codebook sizes constructed by RAC are slightly greater than 
others. To overcome this issue, we have reduced the codebook sizes of RAC by removing 
hyperspheres that contain less number of members. That is if any visual word in codebook 
contains very small number of local descriptors (i.e., n $ 10) that hypersphere is removed from 
the codebook. We refer this method as compact RAC. 

Table 5 details the classification rate of three independent runs of the proposed experiment using 
Compact-RAC that is compared with the standard RAC. Recognition results are shown as means 
of average precision with standard deviation.  

TABLE 5: RAC vs Compact-RAC: Recognition Results as Mean Average Precision With Standard 

Deviation. 
 

Figure 6 shows the average size of the codebook by using Compact-RAC. Based on the results 
of Table 5 and Figure 6, recognition results using Compact-RAC are reduced or increased by one 
percentage compared with RAC. But the size of the codebook is significantly compact when using 
Compact-RAC. 

 

Dataset SIFT e-SURF 

RAC Compact RAC RAC Compact RAC 

P
A

S
C

A
L
 V

O
C

 2
0

0
7

 

Bird vs Aeroplane [\. ]^ Y ^. [^ 81.12 Y 0.42 86.48 Y 1.02 [c. \^ Y ^. d^ 

Aeroplane vs Horse 87.82 Y 0.83 [c. ^^ Y ^. ^a [d. fe Y ^. [d 85.18 Y 1.79 

Bicycle vs 
Motorbike 

76.10 Y 0.60 cc. fc Y ^. `d c`. ac Y ^. f\ 79.27 Y 2.12 

Bus vs Train 76.00 Y 0.60 c[. `] Y ^. ]e 79.61 Y 2.25 c`. e] Y \. fe 

Dog vs Cat 70.73 Y 0.65 69.65 Y 1.42 68.83 Y ^. [^ 68.28 Y 2.04 

Cow vs Sheep 71.10 Y 1.40 c]. ff Y ^. c\ ed. ^e Y ]. ed ed. \c Y ^. \] 

Potted plant vs 
Dining table 

ce. ^^ Y ]. ]` 75.62 Y 0.97 72.18 Y 1.53 c]. a[ Y ^. `` 

Bottle vs  
Potted plant 

ec. c\ Y ^. f] 63.37 Y 2.13 e]. ^a Y ]. ed 60.64 Y 0.88 

Boat vs TV/monitor []. \0 Y 1.80 76.37 Y 3.70 71.96 Y 3.12 ca. ^f Y \. `` 

Aeroplane vs Boat [c. [^ Y ^. [^ 73.19 Y 2.80 71.20 Y 2.04 c]. fa Y ]. c^ 

UIUCTex `[. ]^ Y ^. `` 97.04 Y 0.96 `c. ^d Y ]. ac 96.00 Y 2.67 

MPEG 7 Part B cc. \^ Y f. f` 73.80 Y 0.84 ca. ^^ Y ^. de 74.00 Y 1.13 
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FIGURE 6: Average Size of the Codebook for Compact-RAC Using SIFT and e-SURF Descriptors. 

5. DISCUSSION AND CONCLUSION  
This paper mainly focuses on the evaluation of codebook construction techniques: K-means,  
fast-RNN and RAC algorithms that are used in patch-based visual object recognition. Our work 
suggests the need for an online codebook construction technique such as RAC in constructing 
discriminant and compact codebooks at a drastically reduced time. We also compare the well 
known patch-based descriptors SIFT and SURF in classification rate. In practice, the construction 
of a visual codebook is often performed from thousands of images and each image on average 
contains hundreds or even one thousand of patch-based interest points described in a higher 
dimensional space of one hundred, in order to capture sufficient information for efficient 
classification. While clustering algorithms and their performance characteristics have been 
studied extensively over recent years, a major bottleneck lies in handling the massive scale of the 
datasets. The Caltech and PASCAL VOC Challenge image datasets are becoming gold standard 
for measuring recognition performance in recent vision papers but the size of these datasets 
nearly grows exponentially over the years. The size of the codebooks that have been used in the 
literature ranges from 102 to 104, resulting in very high-dimensional histograms. A larger size of 
codebook increases the computational needs in terms of memory usage, storage requirements, 
and the computational time to construct the codebook and to train a classifier. On the other hand, 
a smaller size of codebook lacks good representation of true distribution of features. Thus, the 
choice of the size of a codebook should be balanced between the recognition rate and 
computational needs.  

Based on our testing results the fast-RNN method constructs codebooks that are more compact 
but shows less classification rate than K-means and RAC algorithms. Even though K-means 
slightly performs better than RAC, it requires more computational resources such as memory, 
disk space and huge time in constructing a codebook. In contrast, RAC sequentially processes 
large number of descriptors in a higher dimensional feature space to constructing compact 
codebooks for reliable object categorisation performance at drastically reduced computational 
needs. 

SIFT and SURF descriptors are invariant to common image transformations, such as scale 
changes, image rotation, and small changes in illumination. These descriptors are also invariant 
to translations as from the use of local features. SURF features can be extracted faster than SIFT 
using the gain of integral images and yield a lower dimensional feature descriptor resulting in 
faster matching and less storage space. SIFT descriptors have been found highly distinctive in 
performance evaluation [23] which has also been proved in our experiments. 
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The RAC discussed in this paper seems particularly suitable for the codebook construction owing 
to its simplicity, speed and performance and its one-pass strategy that requires relatively little 
memory. RAC is also fundamentally different from traditional approaches where it is not the 
density of detected patches one needs to retain in the codebook but the coverage across the 
feature space. We have demonstrated RAC with a computationally much simplified algorithm 
compared to what others have achieved. 
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