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Abstract 
 
An approach based on principle component analysis (PCA) to filter out multiplicative noise from 
ultrasound images is presented in this paper. An image with speckle noise is segmented into 
small dyadic lengths, depending on the original size of the image, and the global covariance 
matrix is found. A projection matrix is then formed by selecting the maximum eigenvectors of the 
global covariance matrix. This projection matrix is used to filter speckle noise by projecting each 
segment into the signal subspace. The approach is based on the assumption that the signal and 
noise are independent and that the signal subspace is spanned by a subset of few principal 
eigenvectors. When applied on simulated and real ultrasound images, the proposed approach 
has outperformed some popular nonlinear denoising techniques such as 2D wavelets, 2D total 
variation filtering, and 2D anisotropic diffusion filtering in terms of edge preservation and 
maximum cleaning of speckle noise. It has also showed lower sensitivity to outliers resulting from 
the log transformation of the multiplicative noise.  
 
Keywords: Covariance Matrix, Denoising, Despeckling, Principle Component Analysis, 
Ultrasound Imaging. 

 
 
1. INTRODUCTION 

Ultrasound medical imaging is considered to be cost efficient and practically harmless to the 
human body. However, the quality of medical ultrasound images is degraded by the presence of 
speckle noise. Images acquired by pulse-echo ultrasound systems demonstrate the interaction 
between the incident pressure field and the spatial inhomogeneities of the medium [1]. The 
majority of such spatial inhomogeneities in soft tissue is highly concentrated with the dimensions 
much smaller than the wavelength of the incident pressure waves and can be modeled as diffuse 
scatterers, which radiate the incident acoustic energy in all directions. The large concentration of 
small scattering targets with sub-wavelength dimensions gives rise to a characteristic pseudo-
random granular texture in the envelope-detected image known as speckle. Unlike other kinds of 
noise, speckle noise is not strictly random but is rather an intrinsic feature of soft tissue. Multiple 
scans of the same region that are taken in the same position with the same probe and under the 
same conditions will, in the absence of electrical noise, yield exactly the same speckle pattern 
each time [1]. 
 
Despite the negative effect on the quality of ultrasound images, speckle also carries clinically 
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important textural information that can be useful for tissue identification [2]. Therefore, methods 

for image restoration aimed at improving the diagnostic utility of ultrasound images need to 

enhance image resolution and improve image clarity while preserving the textural information 

present in the speckle.  

 

In literature, various speckle noise reduction methods have been proposed [3]–[12]. Averaging 

filters and adaptive weighted median filters [5] are simple and effective noise reduction methods. 

By introducing weight coefficients to the well known median filter and adjusting the smoothing 

characteristics of the filter, it is possible to effectively suppress noise. However, such schemes 

seem to remove fine details being actually filters with a low-pass characteristic [6].  

 

Wavelet denoising is applied for despeckling in medical ultrasound imaging [2], [4], [7], [11], [12]. 

It is based on multiscale decompositions. It consists of three main steps. First, the noisy signals 

are analyzed using a wavelet transform. Then the empirical wavelet coefficients are shrunk. 

Finally, denoised signals are synthesized from these shrunk coefficients through the inverse 

wavelet transform. These methods are generally referred to as wavelet shrinkage techniques [1]. 

It is found to be the best approach among many denoising methods in synthetic aperture radar 

(SAR) images [3]. In [4], logarithmic transformation is used to convert the multiplicative noise to 

an additive noise prior to wavelet denoising. These are referred to as the homomorphic wavelet 

despeckling (HWDS) methods [4]. In [11], a non-Gausian statistical model with an adaptive 

smoothing parameter is used in the wavelet transformed domain. It was shown that the HWDS 

does not improve the signal-to-noise ratio (SNR) [8] because the wavelet transformed speckle 

coefficients are larger than the threshold value, thus not suitable for removing the speckle noise 

in ultrasound images. Moreover, the log transformed multiplicative noise is spiky in nature, 

following Fisher-Tippett distribution [6]. HWDS tends to preserve such spikes unless it is properly 

treated. Two preprocessing stages have been proposed to solve this problem [6]. The first stage 

is to decorrelate the speckle noise samples. This stage requires point spread function estimation 

from the ultrasound envelope image. The second stage applies the median filter to normalize the 

distribution of the log transformed spiky noise. These stages improve the noise distribution to be 

more Gaussian that is suitable for most wavelet denoising schemes. In [7], adaptive decorrelation 

is used for further image enhancement. 

 

Total variation filtering (TVF) [10] and anisotropic diffusion filtering (ADF) [9] are also used for 

despeckling. Similar results can be obtained via replacing the wavelet denoising step proposed in 

[6] by TVF and ADF. TVF is useful for recovering constant signals and it is considered to be 

among the most successful methods for image restoration and edge enhancement. It is mainly 

because of its capability of filtering out the noise without blurring the most universal and crucial 

features of image edges. Adversely, ADF takes advantage of the locality and anisotropy diffusion. 

It is capable of smoothing images with a decreased blur of the boundaries between their 

homogenous regions. ADF was shown to perform well for images corrupted by additive noise. 

However, in cases where images contain speckle noise, ADF enhances that noise instead of 

eliminating it [13]. 

 

Principle component analysis (PCA) is applied to reduce speckle noise in SAR images [14], [15] 

PCA is a result from linear algebra [16]. It arises from the eigen decomposition of the covariance 

matrix of the signals. It is used for dimensionality reduction and compression of multidimensional 

data. Unlike many despeckling techniques that trade spatial information for noise reduction, using 

PCA reduces speckle noise with minimal loss of spatial resolution. The first few principal 

components hold significant spatial information, while higher order components are dominated by 

speckle [14]. 

 

In this paper, a PCA-based approach for despeckling medical ultrasound images is explored and 
analyzed in detail. The approach is first introduced in [17]. PCA is applied through overlapped 
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segments of the ultrasound images. After log transformation, a global covariance matrix is formed 
by averaging the corresponding covariance matrices of the segments. A projection matrix is then 
calculated by selecting few principal eigenvectors of the global covariance matrix. This projection 
matrix is used to filter the speckle noise from the ultrasound images. The PCA-based approach is 
applied to simulated and real ultrasound images and the despeckling results are compared to 
those from HWDS, TVF, and ADF approaches in terms of the resolution, edges, and the signal to 
speckle noise ratio. 

 
2. ULTRASOUND SIGNAL MODEL 

A generalized model of a speckle noisy image is given by [18] 
 

  
),(),(),(),( mnξmnumnfmng +=

    
(1) 

 

where g, f, u, and ξ stand for the observed envelope image, original image, and multiplicative and 

additive components of the speckle noise, respectively. The n and m respectively denote the axial 

and lateral indices of the image samples, or alternatively, the angular and radial indices for the 

sector images. This model has been successfully used both in ultrasound and SAR imaging. 

When applied to ultrasound images, this model can be simplified by disregarding the additive 

noise term. This leads to the following model: 

 

),(),(),( mnumnfmng ≈
 

(2) 

 

Consequently, adopting (2) as the basic model, it is assumed that the image g(n, m) is observed 

before the system processing is applied [6]. 

 
2.1 Proposed Algorithm 
In the implementation of the proposed PCA-based approach to despeckle ultrasound envelope 
images, subtracting the mean before despeckling and adding it afterward is avoided. Through 
experimentations, it shows that subtracting the mean can be more beneficial for additive noise 
rather than a log transformed multiplicative noise. The non-linear logarithmic transformation for 
conversion of the multiplicative noise into additive noise is done globally at the beginning rather 
than for each segment (block). This method is found to have a positive impact on the quality of 
the denoised images compared to the method of transforming segments individually.   
 
The following algorithm summarizes the steps implementing the concept of PCA-based approach 
in despeckling ultrasound envelope images. Assuming that the size of the ultrasound envelope 

images is n × m, where n and m are the numbers of pixels in the axial and lateral directions, 
respectively. 
 
Step 1:  Apply logarithmic transformation to the given image. 
 

Step 2:  Segment the image into overlapping segments si, each of q × p size, where i is the index 
of the segment; and q and p are the numbers of pixels in the axial and lateral directions, 
respectively. The segmentation can be done laterally or axially across the 2D image. Segment 
si+1 is shifted by one pixel from segment si.  
 

Step 3:  Reshape si into a column vector vi of q.p × 1 size and find a covariance matrix ci of the 

vector vi, such that ci = vi × vi
T
, where T denotes transposition.  

 
Step 4:  Sum all ci and average them by the number of segments of the image to get the overall 
covariance matrix (R) for the whole image. This method of averaging all covariance matrices of 
the segments serves to represent various speckle developments within the image, thus yielding a 
better estimation of the global (overall) covariance matrix. 
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Step 5:  Calculate the eignevalues and eigenvectors of R. Select k < q.p eigenvectors that 
correspond to the set of largest eigenvalues. The remaining q.p – k eigenvectors are simply 
rejected or ignored. The largest eigenvalues and the corresponding eigenvectors contribute to the 
true signal in the presence of noise. 
 
Step 6:  Form a feature matrix F by sorting the k selected eigenvectors according to their 

corresponding eigenvalues in the descending order. The size of the feature matrix F is now q.p × 
k. This sorting procedure enables the use of the eigenvectors that correspond to the true signal. 
 

Step 7:  Calculate the transformation or the global projection matrix P = F × F
T
. 

 

Step 8:  Calculate a denoised vector di by projecting vi onto the projection matrix P, i.e., di = P × 
vi. 
 

Step 9:  Reshape the denoised vector di back to a segment of the size of q × p. 
 
Step10: Reconstruct the envelope image by averaging all the overlapping denoised segments 
according to their original locations and the number of pixels superimposed on each coordinate, 
and take the exponential. 
  
2.2 Image Quality Measures 

To assess the denoising capabilities, we apply five image quality measures: α, β, SNR, S-SNR, 
and PSNR. These measures are defined as follows. Let Iorg be the noise free original image and 

Iest be the estimated image or the image after denoising. First, the measure α is the ratio of the 

number of pixels of the estimated image’s autocorrelation function (RIest Iest(τn, τm), where τn and 

τm are the lags in n and m indices, respectively) that exceeds 75% of its maximum value to the 

total number of pixels. This α is mostly used to evaluate the resolution in ultrasound imaging [6]. 

Lower α usually implies better image resolution. Second, the measure β is used to assess the 
ability of the despeckling methods to preserve sharp details of the images. It is given by [19] as  
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where ∆ is the Laplacians operator; 〈 ⋅ , ⋅ 〉 denotes the standard inner product; E{ . } is the 

expectation; and || . ||F is the Frobenius matrix norm, i.e., 
∑ ∑= n m nmF

amnI
2

),(
. The β closer to 

1 indicates the better despeckling ability in preserving image edges. Third, the SNR is the 

conventional signal to noise ratio which is defined as 
{ }

FestorgForg IIIE −
. Fourth, the S-SNR 

is the speckle signal to noise ratio. It is defined as the mean to the standard deviation of the 
estimated image Iest. S-SNR is an indicator of the degree of contamination of the image by the 
speckle noise. Finally, the PSNR is the peak signal to noise ratio. It is the most commonly used 
measure of quality in image denoising. The PSNR is given by 
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For simulations, the β, SNR, S-SNR, and PSNR are used. Due to the absence of the original 

image in case of real ultrasound data, only α and S-SNR can be applied. The SNR, S-SNR, and 
PSNR can be reported in dB unit by taking 10 log10( . ) of their values. 
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3. RESULTS, CRITICAL DISCUSSION AND COMPARATIVE EVALUATION 
3.1 Simulated Phantom Image 
The Field II Program [20], [21] is used to simulate ultrasound envelope images in this paper. 
Although the Field II program does not account for nonlinear propagation of the ultrasound wave 
with higher harmonics, which in return improve the quality of the image, the simulated image from 
the program is used to compare the despeckling approaches. To test denoising efficiency, sharp 
edges and curves are included within the simulated image as shown in Fig. 1. The image also 
includes low, medium, and high scattering areas, as represented by dark, white, and background 
areas, respectively. We simulate 128 radiofrequency (RF) echo signals using 5625 scatterers per 
cm

2 
with a lateral resolution of 0.156 mm. This number of scatterers

 
is chosen in accordance with 

the simulations made in [20], [22]. The envelopes of the RF echo signals are obtained by taking 
the absolute value of the Hilbert transformation of the RF echo signals [23]. All of the envelopes 
are rearranged side-by-side to form a 2D envelope image. The envelope image is decimated in 

the axial direction from 1024 to 256 to yield a 256 × 128 image, as shown in Fig. 1-a. The 
corresponding speckle noisy version, shown in Fig. 1-b, is created by corrupting the undecimated 
envelope image by noise according to equation 2. 

 

 
 

FIGURE 1: Simulated phantom images: a noise-free envelope image (a), a speckle noisy image (b), and the 
images after despeckling using PCA (c), HWDS (d), TVF (e), and ADF (f) methods. Note that the horizontal 

and vertical axes represent the axial and lateral axes, respectively (the images are transposed). 

 
The PCA-based approach is compared to three nonlinear despeckling schemes, HWDS, TVF, 
and ADF. For HWDS, the WaveLab® package (Department of Statistics, Stanford University) is 
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used. HWDS is applied with four-level wavelet decomposition and Daubechies with four vanishing 
moments. Since the objective in this paper is not to compare various thresholding schemes, the 
original approach in [24] is used. The noise variance is estimated by assuming that most 
empirical wavelet coefficients at the finest level of decomposition are induced by the noise. TVF is 
also used to include the best empirically adjusted parameters for yielding the best visual results 

and for avoiding image blurring. The regularization parameter (λ) controls how much smoothing is 

performed, large noise levels call for large λ. TVF uses 100 iterations and λ = 400. ADF uses 35 

iterations and a conduction coefficient of 25. Speed of diffusion controlled by λ is set to the 

maximum (λ = 0.25). The option of favoring wide regions over smaller ones is chosen for the 

ADF. The proposed PCA-based approach is used with a segment size of 16 × 8 and one 
eigenvector or written in short as (16/8-1). The images after being despeckled using PCA, 
HWDS, TVF, and ADF methods are shown in Fig. 1-c to Fig. 1-f, respectively. According to the 
plots in Fig. 1, the edge preservation and maximum cleaning of the speckle noise can be seen 
through the proposed approach as compared to the other denoising schemes.  
 
The plots in Fig. 2 compare the performance measures averaged over 100 independent trials. As 

can be seen, the proposed PCA-based approach provides higher β, SNR, and PSNR than the 
other methods. However, the S-SNR from the proposed approach comes in the second place 
after that from the HWDS. 
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FIGURE 2: Performance comparison of denoising schemes when applied to the simulated phantom image. 
Vertical axis represents the magnitude in dB for SNR and PSNR while the magnitude is of no unit for Beta 

and S-SNR. 

 
The comparisons of the axial and lateral profiles are shown in Fig. 3 and Fig. 4, respectively. 
These profiles are taken from the centers of the images in Fig. 1. The profiles plotted in Fig. 3 and 
Fig. 4 are from the original (a) and noisy (b) images, and the images after despeckled using the 
PCA (c), HWDS (d), TVF (e), and ADF (f) methods. The profile from the original image in (a) is 
also plotted as dotted lines on the same axes of the profiles from the despeckled images in (c) to 
(f). It is clear from these figures that our PCA-based approach has provided the closest profiles to 
the original ones. In agreement with the results provided in (Yu and Acton 2002), Fig. 3-f and 
Fig.4-f also show that the ADF method is less efficient in removing the speckle noise. Notice a 
remaining spike in the profile around the 70

th
 pixel in Fig. 3-d, a drop-off in the profile around the 

120
th
 pixel in Fig. 3-e, and noisy profiles in Fig. 3-f and Fig. 4-f, compared to a smooth profile that 

follows the original profile closely in Fig. 3-c and Fig. 4-c. From these figures, it implies that the 
PCA-based approach is insensitive to spikes. The insensitivity of the PCA-based approach to the 
log transformed spiky noise is also observed by comparing Fig. 1-c with Fig. 1-d. 
 
To further investigate the number of principle components used in our PCA-based approach, the 
parameters (16/8-1) are changed to (16/8-2), (16/8-3), and (16/8-4). Fig. 5 displays the results. It 
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shows that the higher the number of eigenvectors, the more the speckle noise becoming 
dominant. 
 

  
FIGURE 3: Comparison of the axial profiles of the simulated phantom images taken from the centers of the 
original (a) and noisy (b) images and from the centers of the despeckled images using PCA (c), HWDS (d), 

TVF (e), and ADF (f) methods. The dotted lines in (c) to (f) are the profile in (a). 

 
3.2 Tissue Mimicked Image 
For this simulation, the amplitude profile of the scatterers is weighted by a white Gaussian noise 
field in order to mimic the tissue reflectivity function of the scatterers. The difference between this 
simulation and the previous one is that the multiplicative noise is interred into the image to mimic 
the reflectivity function rather than interred to corrupt the undecimated pure 2D envelope image. 
In addition, a single tumor is also simulated as shown by the circular white region at the center of 
the image of Fig. 6. For this simulation, the Field II Program with a linear array transducer of 3.5 
MHz center frequency and 100 MHz sampling frequency was used. The scatterer map consisted 
of 3750 scatterers per cm

2
. We generate 64 scan lines with a axial resolution of 1024 samples 

per line and a lateral resolution of 0.312 mm. Each scan line is decimated from 1024 to 128 to 

yield a 128 × 64 image, as shown in Fig. 6. Note that the size of the image is different from that in 
the previous simulation. HWDS is used with 8 Daubechies vanishing moments and 8 

decomposition levels. For the TVF, λ is set to 400 and the number of iterations is also set to 300. 

The number of iteration above 300 would blur the image.  For the ADF, λ is set to the maximum 
of 0.25 with the number of iterations set to 50, and the conduction coefficient is set to 30. The 
option of favoring wide regions over small ones is chosen for the ADF. The PCA-based proposed 

approach is used with (16/8-1), denoting a segment size of 16 × 8 with one eigenvector.  
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The noise free phantom image before weighted by the white Gaussian noise and the speckle 
noisy version after weighted are shown in Fig. 6-a and b, respectively. Note that to display the 

image in the correct spatial aspect ratio, the images are interpolated from 128 × 64 to 128 × 256. 
Fig. 6 also demonstrates a visual comparison between the denoising techniques. As can be seen 
from Fig. 6-d, the image after despeckled using the HWDS method still contains speckle noise. 
 
The result from the TVF method in Fig. 6-e shows that the size of the inclusion seems to be 
smaller than the true size, especially in the axial direction (the vertical axis). In contrast to the 
result from the ADF method in Fig. 6-f, the size of the inclusion seems to be larger than the true 
size, especially in the lateral direction (the horizontal axis). Furthermore, the background of the 
despeckled image from the ADF method contain high and elongated hills along the lateral 
direction that usually connected to the inclusion.  
 

  
FIGURE 4: Comparison of the lateral profiles of the simulated phantom images taken from the centers of the 
original (a) and noisy (b) images and from the centers of the despeckled images using PCA (c), HWDS (d), 

TVF (e), and ADF (f) methods. The dotted lines in (c) to (f) are the profile in (a). 

 
Fig. 7 plots a performance comparison between the denoising techniques. The proposed PCA 

method provides higher β, SNR, and PSNR than other methods. However, the S-SNR from the 
proposed approach comes in the third place after that from the TVF and the ADF methods. In 
agreement with the results obtained for the simulated phantom image, through the plots in Fig. 6-
c and Fig. 7, the edge preservation and maximum cleaning of speckle noise obtained can be 
seen through the proposed PCA-based approach as compared to the other denoising schemes.  
 
The comparisons of the axial and lateral profiles are also shown in Fig. 8 and Fig. 9, respectively. 
These profiles are taken from the centers of the original and noisy images in Fig. 6-a and b and 
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from the centers of the despeckled images using PCA, HWDS, TVF, and ADF methods in Fig. 6-c 
to d. The profile from the original image in (a) is also plotted as dotted lines on the same axes of 
the profiles from the despeckled images in (c) to (f). In general, the PCA-based approach has 
provided closer profiles to the original ones except for the lateral profile provided by TVF in Fig. 9-
e where the lateral length of the simulated tumor is better preserved. However, in Fig. 8-c the 
PCA has preserved the axial length of the simulated tumor better than the TVF in Fig. 8-e. In 
agreement with the results provided in [8], Fig. 8-d and Fig. 9-d also show that HWDS is less 
efficient in removing the speckle noise. While the ADF performance looks close to the PCA 
performance in Fig. 8 and in Fig. 9, the calculation of the mean square error of the corresponding 
profiles has showed that PCA profiles are closer to the original ones than the ADF profiles.  
 

  
FIGURE 5: Comparison of the despeckled images using the PCA method with different numbers of principle 

components: ev = 2 (a), 3 (b), and 4 (c). The segment size is 16 × 8. Note that the horizontal and vertical 
axes represent the axial and lateral axes, respectively (the images are transposed). 

 
The effective number of the principle components used in our PCA method is also investigated 
for the tissue mimicked image. The number of principle eigenvectors is changed to 2, 3, and 4 

eigenvectors. The size of the segment is 16 × 8, similar to the previous experiment. The images 
after despeckling are shown in Fig. 10. In agreement with the results obtained for the simulated 
phantom image, the higher the number of eigenvectors the more dominant the speckle noise 
becomes. More spatial information is provided by the fewer number of eigenvectors. 
  
To show the effect of our PCA-based approach parameters (q/p-ev) on the image quality 

measures (α, β, S-SNR, SNR, and PSNR), the simulated tissue mimicking image is despeckled 
with every possible combination of the parameters (q/p-ev), where q = {8, 16, 32}, p = {8, 16, 32}, 

and ev = {1, 2, 3}.  The image size of 128 × 64 as used in the previous experiment is chosen. 
 
Table I lists the PCA-based approach parameters versus the image quality measures. The ranks 
are also shown in the parentheses following the image quality measures. The summations of 
these ranks are also calculated and put in the last column with their rank in ascending order in the 

parentheses. Better α values (or lower number), which indicate higher resolution, seem to come 
from the parameters that have smaller segment sizes and more principle eigenvectors used (as 
shown in the second column of Table 1).  
 

For β values, where a larger β indicates a better edge preservation of the denoising method, the 
segment size, both q and p parameters, seems to affect this quality measure. Larger segment 

sizes in the axial direction seem to provide better β. In contrast, smaller segment sizes in the 
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lateral direction seem to provide better β. This can be seen from the results of the parameters 

(32/8-1) that rank 4
th
 in β from 27 sets of the parameters and the parameters (8/32-1) that rank 

23
rd

. Using one principle eigenvectors seems to provide better β if the segment size is set as 
recommended above. This can be seen from the results of the parameters (32/8-1), (32/8-2), and 
(32/8-3) have rank 4

th
, 12

th
, and 9

th
. 

 

  
FIGURE 6: Tissue mimicking images: a noise-free envelope image (a), a speckle noisy image (b), and the 
images after despeckling using PCA (c), HWDS (d), TVF (e), and ADF (f) methods. Note that the horizontal 
and vertical axes represent the lateral and axial axes, respectively, and their representations are different 

from those in Fig. 1. 
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FIGURE 7: Performance comparison of denoising schemes when applied to the tissue mimicked image. 

Vertical axis represents the magnitude in dB for SNR and PSNR while the magnitude is of no unit for Beta 
and S-SNR. 

 
 

  
FIGURE 8: Comparison of the axial profiles of the tissue mimicking images taken from the centers of the 

original (a) and noisy (b) images and from the centers of the despeckled images using PCA (c), HWDS (d), 
TVF (e), and ADF (f) methods. The dotted lines in (c) to (f) are the profile in (a). 

 
For S-SNR, larger segment sizes and smaller number of principle components used seem to 
provide better S-SNR values, as can be seen from the results of the parameters (32/32-1), 
(32/32-2), and (32/32-3), that rank 1

st
, 7

th
, and 11

th
, respectively. 
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For SNR and PSNR, the effects of the despeckling parameters on these image quality measures 
seem to be the same. The ranks 1

st
, 2

nd
, and 3

rd
 for each measure are from the same parameters 

(16/32-3), (16/16-2), and (16/8-1), respectively. The large segment sizes in the lateral direction 
need more principle eigenvectors to obtain better SNR and PSNR. The segment size of 16 pixels 
in the axial direction (q = 16) seem to optimize these image quality measures.  
 
The tissue mimicking images after despeckling using the proposed PCA method with some sets 
of parameters in Table I are shown in Fig. 11. As shown, the despeckled images from the 
parameter (16/32-3), (16/16-2), and (16/8-1), in the middle row of the images in Fig. 11 are the 
best in cleaning the speckles and also in preserving the edge of the inclusion. 

 
3.3 Experimental Results 
Real RF data is obtained for the experimental scanner RASMUS (Department of Electrical 
Engineering, Technical University of Denmark) -- also described in [22] -- at the time of peak 
systole of a carotid artery for a healthy 30 year old male. The imaging protocol used to collect the 
human data was approved by the Ethics committee on Biomedical Experiments for Copenhagen 
and the subject provided informed consent. The transducer is a B-K 8812 linear array transducer 
with 6.2 MHz linear array probe, 40 MHz sampling frequency and 5 MHz center frequency. The 
RF data are composed of 64 RF lines with 1024 samples per line. For displaying in a correct 
spatial aspect ratio, the image is decimated in the axial direction and is interpolated in the lateral 

direction to yield a 256 × 256 image size as shown in Fig. 12. 
 
In order to investigate the denoising efficiency of the proposed approach, as well as to show the 
effect of decimation in removing parts of the noise and consequently its effect on the performance 

of the denoising schemes, 3 different image sizes of 512 × 64, 256 × 64, and 128 × 64, resulting 
from decimation by factors of 2, 4, and 8 in the axial directions, are despeckled using the PCA, 
HWDS, TVF, and ADF methods. Their parameters are shown in Table II. The visual performance 
of these despeckling methods is shown in Fig. 13. Note that for the displaying purpose, the image 

lateral dimensions are interpolated to match their axial dimensions, i.e., 512 × 512, 256 × 256, 

and 128 × 128 image sizes. The plots in Fig. 14 show the numerical performance of these 
despeckling methods. 
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FIGURE 9: Comparison of the lateral profiles of the tissue mimicking images taken from the centers of the 
original (a) and noisy (b) images and from the centers of the despeckled images using PCA (c), HWDS (d), 

TVF (e), and ADF (f) methods. The dotted lines in (c) to (f) are the profile in (a). 

 
Through these different decimation examples, it can be clearly observed how the decimation of 
the ultrasound image has a direct impact on the performance of the denoising scheme. Effect of 
decimation on the performance of the HWDS, TVF and ADF methods can be visually compared 

in Fig. 13. It can also be noticed in Fig. 14 in terms of the increasing values of α while increasing 
the decimation factors from 2 to 8. This implies that higher decimation factors generally reduce 
the despeckled image resolution. In contrast, the S-SNR values are very similar for these image 
sizes, except for the HWDS that the S-SNR is gradually increasing. Therefore, the decimation 
factor does not impact the S-SNR of the images despeckled using the PCA, TVF, and ADF 
method; however, higher decimation factors help the HWDS method to improve the S-SNR 
results. 
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FIGURE 10: Comparison of the despeckled images using the PCA method with different numbers of 

principle components: ev = 2 (a), 3 (b), and 4 (c). The segment size is 16 × 8. Note that the horizontal and 
vertical axes represent the lateral and axial axes, respectively. 

 

 
FIGURE 11: The denoising performance of the PCA-based approach for different parameters (q/p-ev), 

where q is the segment size in the axial direction, p is the segment size in the lateral direction, and ev is the 
number of the principle eigenvectors used. 
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q/p-ev αααα ββββ S-SNR SNR PSNR Sum Rank 

8/8-1 0.3400 (10) 0.1091 (19) 1.4339 (16) 13.7227 (6) 21.0744 (5) 56 (9) 

8/8-2 0.0831 (2) 0.1230 (18) 1.1923 (26) 6.8194 (22) 15.4807 (22) 90 (22) 

8/8-3 0.0587 (1) 0.0939 (22) 1.1385 (27) 6.0404 (24) 14.7488 (24) 98 (25) 

8/16-1 0.7478 (22) 0.1055 (20) 1.9680 (6) 10.4405 (15) 18.3838 (15) 78 (17) 

8/16-2 0.2902 (8) 0.1306 (16) 1.3468 (20) 13.2858 (10) 20.6813 (9) 63 (12) 

8/16-3 0.1217 (4) 0.1353 (15) 1.2243 (24) 8.5016 (19) 16.8057 (19) 81 (18) 

8/32-1 0.6240 (16) 0.0554 (23) 2.9884 (3) 0.5456 (27) 8.7126 (25) 94 (24) 

8/32-2 0.9285 (24) 0.0970 (21) 1.6538 (10) 10.9291 (13) 18.8886 (14) 82 (19) 

8/32-3 0.4368 (13) 0.1967 (7) 1.3598 (19) 12.5929 (11) 20.4564 (10) 60 (10) 

16/8-1 0.5542 (15) 0.2504 (6) 1.5137 (13) 15.5510 (3) 22.6982 (3) 40 (1) 

16/8-2 0.1613 (5) 0.1674 (11) 1.2872 (22) 9.1980 (17) 17.5949 (17) 72 (15) 

16/8-3 0.1207 (3) 0.1245 (17) 1.2114 (25) 7.5921 (20) 16.1847 (20) 85 (20) 

16/16-1 0.9581 (25) 0.3465 (2) 2.0599 (5) 8.5137 (18) 17.0704 (18) 68 (14) 

16/16-2 0.5110 (14) 0.2670 (5) 1.4173 (18) 16.2386 (2) 23.0961 (2) 41 (3) 

16/16-3 0.2233 (6) 0.1800 (10) 1.3099 (21) 11.0315 (12) 19.0029 (12) 61 (11) 

16/32-1 0.6902 (21) 0.0000 (25) 3.1351 (2) 1.6217 (26) 7.6727 (26) 100 (26) 

16/32-2 1.0000 (26) 0.0448 (24) 1.7101 (8) 9.2392 (16) 17.7663 (16) 90 (22) 

16/32-3 0.6472 (18) 0.3054 (3) 1.4263 (17) 16.5988 (1) 23.3503 (1) 40 (1) 

32/8-1 0.6589 (19) 0.2673 (4) 1.6698 (9) 13.4351 (9) 20.4327 (11) 52 (5) 

32/8-2 0.2911 (9) 0.1569 (12) 1.4372 (15) 13.4930 (8) 20.8241 (8) 52 (5) 

32/8-3 0.2272 (7) 0.1879 (9) 1.2816 (23) 10.7855 (14) 18.8960 (13) 66 (13) 

32/16-1 0.9260 (23) 0.6001 (1) 2.2816 (4) 6.7772 (23) 15.1996 (23) 74 (16) 

32/16-2 0.6294 (17) 0.1419 (14) 1.5588 (12) 13.8496 (5) 21.1800 (4) 52 (5) 

32/16-3 0.3795 (12) 0.1507 (13) 1.4617 (14) 13.6787 (7) 21.0017 (7) 53 (8) 

32/32-1 0.3737 (11) 0.0000 (25) 3.8110 (1) 1.8763 (25) 7.3329 (27) 89 (21) 

32/32-2 1.0000 (26) 0.0000 (25) 1.8563 (7) 7.5074 (21) 15.8430 (21) 100 (26) 

32/32-3 0.6812 (20) 0.1948 (8) 1.5710 (11) 14.0827 (4) 21.0244 (6) 49 (4) 

 
TABLE 1: Performance of PCA-based approach when applied to the simulated tissue mimicked image. Note: 
The numbers in the parentheses are the rank in the descending order, except for the first and the last column 

in the ascending order. 
 

The increasing value of α can also imply less speckle noise remained after despeckling. This is 
clearly seen by comparing the despeckled images using the HWDS method in the 2

nd
 column of 

Fig. 13 and their α values on the bar graphs in Fig. 14. As can be seen in the 2
nd

 column of Fig. 

13, the speckle noise is diminishing from the images while the α values are increasing. Therefore, 

higher α values could imply lower image resolution and less speckle noise remaining after 
despeckling.   
 
From Fig. 13 and Fig. 14, the results from the PCA method can be compared to those from other 

methods in terms of image visual quality, α values, and S-SNR values. For the image visual 
quality, the results from the PCA method are comparable to those from the TVF and ADF 
methods. The TVF method seems to provide better edges of the carotid artery for the images of 

512 × 64 and 256 × 64 image sizes. However, some speckle artifacts are left on the top border of 

the artery on the image of 128 × 64 image size (as shown in the 3
rd

 row and the 3
rd

 column of Fig. 
13).   
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FIGURE 12: A carotid artery image before despeckling. Note that the horizontal and vertical axes are the 

lateral and axial directions, respectively. 

 

  
FIGURE 13: Comparison of despeckled carotid artery images using the PCA, HWDS, TVF, and ADF 

methods (respectively shown in 1st to 4th columns) applied on the images after decimation in the axial 

dimension to the sizes of 512 × 64, 256 × 64 and 128 × 64 (respectively shown in the 1st to 3rd rows). Note 
that for displaying purpose the images are interpolated in the lateral dimensions to match their axial 

dimensions. The horizontal and vertical axes are the lateral and axial directions, respectively. 
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Method Parameters 
Image size 

512 ×××× 64 

Image size 

256 ×××× 64 

Image size 

128 ×××× 64 

PCA Segment size 32 × 8 16 × 8 8 × 8 

 Eigenvector used 1 1 1 

HWDS Wavelet function Daubechies Daubechies Daubechies 

 Vanishing moment 8 8 4 

 Decomposition level 8 8 4 

TVF λ 500 500 400 

 Iteration number 300 300 150 

ADF λ 0.25 0.25 0.25 

 Iteration number 60 50 30 

 
Conduction 

Coefficient 
30 25 25 

 Favoring region Wide Wide Wide 

 
TABLE 2: Despeckling parameters used in the carotid artery images with different image sizes. 
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FIGURE 14: The bar graphs of the alpha and S-SNR values measured on carotid artery images of 512 × 64, 

256 × 64, and 128 × 64 image sizes (respectively from a to c) before despeckling (REF) and after 
despeckling using the PCA, HWDS, TVF, and ADF methods. Vertical axis represents the magnitude. 

 
The image visual quality of the results from the PCA, TVF, and ADF methods is far better than 
that from the HWDS method. For the S-SNR values, the despeckled images from the PCA 
method have better S-SNR values than most of those from the other methods, except for the S-

SNR value from the ADF method applied on the image of 128 × 64 image size is better than 

those from the PCA method. For the α values, the despeckled images from the PCA method 

have higher α values than the other methods. The α  parameter can be improved (lower α)  by 
using more than one principle component per block but that will be on the account of the S-SNR. 
However, unlike the other denoising methods in this paper which provide better resolution 
accompanying reduction in the despeckling efficiency when they are applied to larger image 
sizes, the proposed PCA method improves the resolution while maintaining the superiority of 

speckle removal. Improving α  while maintaining high S-SNR is observed for the PCA when 
moving from small to larger image sizes; from c to a in Fig. 14, or more clearly by comparing the 

despeckling performance of the methods for the 256 × 64 image size with the 512 × 64 image 
size. In general, the PCA method is a powerful speckle removing scheme regardless of the 
decimation factor or image size. Once the proper denoising block size is selected, the PCA-based 
approach provides high quality denoising results. 
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To further investigate the effective number of the principle components used in the PCA method 

on real ultrasound data, the carotid artery image of 256 × 64 image size is despeckled using the 

segment size of 16 × 8 and 2, 3, and 4 principle components, i.e., the parameters of (16/8-2), 
(16/8-3), and (16/8-4). The despeckled images are shown in Fig. 15. As expected, the higher 
number of principle components used, the more speckle noise becoming dominant. These results 
are in accordance with the simulation results previously shown. 
 

The choice for the q × p denoising block size in this paper is based by default on the image size 

itself and the size of the speckle noise clusters. It follows M⋅√n8 × √m8 rule, where M is equal 

to 1 for small noise clusters and equal to 2 for large noise clusters; √⋅8 means the square root 
value is floored to the nearest multiple of eight; and n and m are the number of pixels in the axial 

and lateral dimensions of the image. For example, for the simulated phantom image of 256 × 128 
image size in Fig. 1-b showing small noise clusters, therefore, the denoising block size is set to 

16 × 8 (M = 1). For the simulated tissue mimicking image in Fig. 6-b after decimating its size to 

128 × 64, the image shows large noise clusters; therefore, the block size is set to 16 × 8 (M = 2). 

For the carotid artery image in Fig. 12 after decimating its size to 128 × 64, the image shows 

small noise clusters; therefore, the block size is set to 8 × 8 (M = 1). 
 
The complexity of these despeckling methods can be compared as follows. For the PCA method, 
there are three main stages. The first stage is to find N covariance matrices of vectors of q.p 

length, where N is the number of image pixels and q × p is the segment size. Finding a 
covariance matrix of a vector requires the complexity of L

2
, where L is the length of the vector. 

The complexity of the first stage is Nq
2
p

2
. From the rule to select the block size described above, 

q
2
p

2
 ≈ nm = N. Therefore the complexity of the first stage is N

2
. The second stage is to find the 

maximum eigenvector of the averaged covariance matrix. This requires the use of an eigen 
decomposition procedure and a sorting procedure. The eigen decomposition procedure is 
dominant and its complexity is M

3
, where M is the number of elements in the matrix [25]. 

Therefore, the complexity of the second stage is (q
2
p

2
)
3
 ≈ N

3
. Finally, the third stage is to 

projecting or filtering N vectors of q.p length by a projection matrix of q
2
p

2
 size. This third stage 

requires a complexity of NNq.p ≈ N
5/2

. From these complexity approximations showing that the 
second stage is dominant, the complexity of the PCA method is N

3
 and it is depending on the 

eigen decomposition procedure. 
  
The complexity of the HWDS, TVF, and ADF methods can be approximated as follows. HWDS, 
wavelet decomposition and reconstruction require a complexity of N log N [26]. The TVF and ADF 
require a complexity of N for each iteration [27]. Note that the number of iteration is small 
compared to N. To enhance the performance of HWDS, TVF, and ADF there are two main 
preprocessing stages [6], which are point spread function estimation and outlier shrinkage stage. 
Point spread function estimation requires a complexity of N log N [28], while the outlier shrinkage 
stage requires a complexity of N. Note that the median filter size used in the outlier shrinkage is 
small compared to N. Therefore, the complexity of these despeckling methods including 
preprocessing is N log N, which is lower than N

3
 of the PCA method. However, the complexity of 

the PCA method could be reduced if we despeckled the image in the axial and lateral directions 
separately. Since the length of the vector for the covariance calculation is reduced to q or p for 
each direction. Therefore, the complexity could be reduced to N

3/2
 and it is because of the 

domination of the eigen decomposition procedure. Nevertheless, this number is still larger than N 
log N. 
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FIGURE 15: Comparison of the despeckled images using the PCA method with different numbers of 

principle components: ev = 2 (a), 3 (b), and 4 (c). The image size before despeckling is 256 × 64 and the 

segment size is 16 × 8. Note that the horizontal and vertical axes are the lateral and axial directions, 
respectively. 

 

4. CONCLUSIONS 
A PCA-based approach to filter out multiplicative noise from ultrasound images has been 
presented in this paper. It segments the envelope image into small overlapping blocks, finds a 
subspace representation of these blocks via principle component analysis, projects them back to 
the subspace, and averages the projections. The size of the block is dependent on the original 
size of the image and the size of the noise cluster found in the image. The proposed PCA-based 
approach outperforms many existing denoising approaches such as the homomorphic wavelet 
despeckling [4], the total variation filtering [10], and the anisotropic diffusion filtering [9] in both 

simulation and real ultrasound data. In terms of image resolution (α ) the PCA-based approach 
lags the other denoising schemes. However, the S-SNR from PCA is the best for higher 
resolution (less decimated) images. It has been verified that, per segment size, very few principle 
components (in most cases the first or the first and the second principle components) are needed 
to represent the true signal. The proposed method depends solely on the size of the image and 
the number of the principle components used, while many parameters need to be adjusted for the 
other methods in order to obtain acceptable denoising results. Moreover, no preprocessing is 
needed for the proposed method, while the other methods need many preprocessing stages, 
such as decorrelating the speckle noise samples and then removing the outliers from the log 
transformed speckle noise [6]. It has been shown that the prior decimation factors performed on 
the noisy images have no effect on the despeckling quality of the results. In contrast to the 
homomorphic wavelet despeckling needs high decimation factors to improve the results. 
However, our approach needs to be optimized to improve the computational time and reduce the 
complexity of the algorithm.  
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5. FUTURE RESEARCH DIRECTIONS 
Optical Coherence Tomography (OCT) is similar to the principle of ultrasound in the sense that 
OCT images are formed from the envelope of the measured interference signal. It has been 
shown that computation of the absolute magnitude of the signal for measurement of the envelope 
is a nonlinear process that destroys phase information. Processing the partially coherent OCT 
signals in the complex domain has provided the opportunity to correct phase aberrations 
responsible for speckle noise in OCT images. One of the future research directions for developing 
additional models for ultrasound image despeckling is to investigate the phase and spectra of the 
received ultrasound echo signals that are usually ignored when the magnitudes of the complex 
signals are being solely considered. 
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