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Abstract 

 
Unsupervised image classification is the process by which each image in a dataset is identified to 
be a member of one of the inherent categories present in the image collection without the use of 
labelled training samples. Unsupervised categorisation of images relies on unsupervised machine 
learning algorithms for its implementation. This paper identifies clustering algorithms and 
dimension reduction algorithms as the two main classes of unsupervised machine learning 
algorithms needed in unsupervised image categorisation, and then reviews how these algorithms 
are used in some notable implementation of unsupervised image classification algorithms. 
 
Keywords: Image Retrieval, Image Categorisation, Unsupervised Learning, Clustering, 
Dimension Reduction. 

 
 
1. INTRODUCTION 

The advent of computers and the information age has created challenges in the storage, 
organisation and searching of complex data especially when the quantity is massive. Therefore, it 
is not surprising that application of pattern recognition techniques has been found useful in image 
retrieval, where it has been helpful in managing image repositories. Pattern recognition enables 
the learning of important patterns and trends, which can be used in the indexing of the images in 
a repository. The applicable learning approaches can be roughly categorised as either supervised 
or unsupervised [1].The supervised classification of images based on patterns learnt from a set of 
training images has often been treated as a pre-processing step for speeding-up image retrieval 
in large databases and improving accuracy, or for performing automatic image annotation [2]. The 
block diagram of a typical supervised image classification process is shown in Figure 1. This 
training data is manually selected and annotated, which is expensive to obtain and may introduce 
bias information into the training stage [3].  
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FIGURE 1: The Block diagram of a typical supervised Image categorisation process. 

 
Alternatively, unsupervised learning approach can be applied in mining image similarities directly 
from the image collection, hence can identify inherent image categories naturally from the image 
set [3].The block diagram of a typical unsupervised classification process is shown in Figure 2. 
Due to the ability to support classification without the need for training samples, unsupervised 
classifications are a natural fit when handling large, unstructured image repositories such as the 
Web [2], therefore, this study considers the unsupervised classification of images an important 
step in the semantic labelling of the images in a large and unstructured collection because it 
enables grouping of images based on semantic content for the purpose of mass semantic 
annotation. 

 
FIGURE 2: The Block diagram of an unsupervised Image categorisation process. 

 
Due to the ability of unsupervised image categorisation to support classification without the use of 
training samples, it has been identified as a means of improving visualisation and retrieval 
efficiency in image retrieval [2]. It has also been identified as a means of matching low-level 
features to high-level semantics especially in learning based applications [3]. These qualities 
makes unsupervised image categorisation a likely solution for bridging the semantic gap in image 
retrieval [4]. In view of these, this study provides an overview of recently developed unsupervised 
image classification frameworks. 
 
In the remainder of this paper, Section 2 provides a review of image modelling process, and 
analyses some image modelling approaches with some recent attempts at their improvement by 
the research community. Section 3 provides an insight into unsupervised learning algorithms, 
while Section 4 examines some notable implementations of unsupervised image classification. 
Finally, Section 5 suggest the future application of unsupervised image classification in the 
automated image annotation for image retrieval purposes, while Section 6 concludes the paper 
with a brief overview of the reviewed implementations with focus on their suitability in the 
semantic labelling of images. 

 
2. IMAGE MODELLING 
Features of a digital image such as colour, texture, shapes and the locations of these features on 
the image represent characteristics that enable the image to be distinguished from other images. 
As indicated by Figure 1 and Figure2, the first step in any supervised or unsupervised image 
classification is the detection and extraction features present in the image, which is then followed 
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by the development of a description that is based on the features extracted from each image. 
This section examines popular algorithms for achieving these two important image modelling 
functions during unsupervised image categorisation. 
 
2.1. Image Feature Extraction 
For reliable recognition, it is important that the features extracted from images be detectable even 
under changes in image scale, noise and illumination. To satisfy this need, keypoints 
corresponding to high-contrast locations such as object edges and corners on the image are 
typically regarded as good descriptive image features are sought. The features at these keypoints 
are typically described using image feature descriptors. Most popular image feature extraction 
algorithms consist of image feature detection and description components [5, 6]. Some popular 
image feature extraction algorithms mentioned in recent literature are discussed below. 
 
The Shift Invariance Feature Transform (SIFT) is an image feature extraction algorithm that 
ensures the detection of keypoints that are stable and scale invariant [5]. In the SIFT algorithm, 
the keypoints are detected via a DoG (Difference of Gaussian) pyramid created using a Gaussian 
filtered copy of the image. Each of the detected keypoint is then described by a 128-dimensioned 
histogram of the gradients and orientations of pixels within a box centred on the keypoint. 
 
Although SIFT remains one of the best descriptors in terms of accuracy, the 128-dimensions of 
the descriptor vector makes its feature extraction process relatively computationally expensive 
[7]. Khan et al. [8] explain that compared to the standard SIFT, a smaller size descriptor uses less 
memory and results in faster image classification. The authors [8] propose generating 96D-SIFT, 
64D-SIFT and 32D-SIFT by skipping some orientation values during computation of the 
descriptors. Classification experiments on images from the Caltech dataset revealed that the 32D 
variant achieved 93% accuracy, the 64D and 96D versions recorded 95%, and the 128D 
achieved 97% accuracy [8]. The study reported that 128D, 96D, 64D and 32D recorded 59, 33, 
18 and 11 seconds respectively to complete the classification task [8], which confirms that 
reducing the dimension of the descriptors reduces the amount of computation required for 
classification, thereby improving the speed of the process but leads to reduced accuracy. A 
similar result was also obtain by Ke and Sukthankar [9] when the dimension of the SIFT 
descriptor is reduced using Principal Component Analysis (PCA). 
 
Rather than using DoG and image pyramid for the detection of keypoints as in SIFT, Speeded-Up 
Robust Features(SURF) uses the Hessian matrix in which the convolution of Gaussian second 
order partial derivatives with a desired image are replaced with box filters applied over image 
integrals (sum of grayscale pixel values), thereby reducing computation time [6].  To develop 
feature descriptions for the detected keypoints, each of keypoint is assigned a reproducible 
orientation using Haar wavelet responses in x and y directions for a set of pixels within a radius of 
6σ, where σ refers to the detected keypoint scale [8]. The SURF descriptor is then computed by 
placing a 4 x 4 square window centre on the keypoint to produce a normalised 64D descriptor 
vectors [8]. The use of integral image representation at the keypoint detection stage of SURF 
ensures that the computational cost of applying box filter is independent of the size of the filter. 
This allows SURF to achieve much faster keypoint detection than SIFT by keeping the image size 
the same while varying only the filter size [8]. 
  
Although, SURF’s performance is mostly similar to SIFT, it is unstable to rotation and illumination 
changes [10]. Liu et al. [11] noted that although SURF is capable of representing most image 
patterns, it is not equipped to handle more complicated ones. However, Khan et al [29] 
implemented classification experiments on images from David Nister, Indoor, Hogween and 
Caltech datasets to yield results that confirms that SURF’s performance is as good as that of 
SIFT, with both recording 97% accuracies on Caltech dataset. The study however indicates that 
SURF’s image matching time is higher at 80s compared to SIFT’s 59s. Therefore this research 
finds SURF adequate enough to be considered for the purpose of feature extraction during image 
classification. 
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SIFT and SURF feature extraction algorithms can be regarded as sparse feature extraction 
algorithms because they only detect and describe features at chosen locations on an image. 
Extracting features from locations covering the entire area of an image rather than few selected 
location provides additional information which may improve the accuracy of image retrieval result 
[12].  Dalal and Triggs [13] proposed the Histogram of Oriented gradients (HOG) also known as 
Dense-SIFT which extracts and describes local image features from each of the uniformly spaced 
cells placed on an image. 
  
A HOG description is developed for a cell by counting the occurrence of gradient orientations for 
the pixels within the cell in a manner similar to SIFT[14] The algorithm achieves more accurate 
description than SIFT by using overlapping local contrast normalization to make the result less 
variant to changes in illumination and shadowing [14]. This is achieved by calculating a measure 
of the intensity across a larger region of the image, called a block, and then using the value 
obtained to normalize all cells within the block [14]. Since the HOG descriptor operates on 
localised cells, it is invariant to geometric transformation of the image [14]. HOG was originally 
designed for the problem of pedestrian detection in static images but the use has been extended 
to other applications such as scene and object classification in static imagery [14, 13]. 
Due to recent increase in the use of computer vision application on mobile phones and other low 
power devices, research efforts are heading in the direction of development of feature extraction 
algorithms with minimum computation requirement and low power consumption. Examples of 
such algorithm include Oriented-FAST and Rotation-Aware BRIEF (ORB) [15] and Fast Retina 
Keypoint (FREAK) [16]. 
 
2.2. Image Description 
After the extraction of features present in an image, there is a need for mathematical description 
of the image before supervised or unsupervised classification can be possible. Thus, the 
performance of image annotation is dependent on the reliability of the image feature 
representation (image mathematical model) [17].The most common approaches discussed in 
recent literatures use a normalised histogram or a vector to represent the number of times 
quantised features occurs on an image. The most popular of these methods is the Bag-of-Visual 
words (BOV) image model. 
 
The BOV model is a popular image representation for classification purposes, which uses a 
visual-words histogram to effectively represent an image for image annotations and retrieval 
tasks [18, 19]. An important stage during BOV representation of images is the visual codebook 
development; a process that requires the use of K-means clustering to quantise the vectors 
representing image features into visual-words [17, 19, 20]. The computational requirement of this 
stage is very high and is therefore regarded as the most expensive part of the BOV modelling 
process, and attempts at reducing the computation time often lead to noisy visual-words [19].This 
study considers the limiting of visual-words to the unique vectors available in the set of image 
features extracted as a likely solution to this problem. 
 
Currently, there are no proven methods for determining the number of visual-words to quantise 
image feature vectors into, during codebook development. Tsai [17] explained that although most 
implementations of the BOV modelling are based on 1000 visual-words, the number of visual-
words is dependent on the dataset. Bosch et al. [12] used an arbitrary value of 1500 as the 
number of visual-words developed from SIFT features vectors of sample images in all 
experimentation involving BOV, while Verbeek and Triggs [21] quantise the SIFT descriptors 
used in their work into 1000 bins. The use of these approaches exposes the classification 
process to limited distinctiveness due to a small number of visual-words in the codebook, and 
high processing overhead when a codebook with too many visual-words is used [18]. Therefore, 
a research into the determination of the number of visual-words needed during BOV modelling 
will provide a means of eliminating some unnecessary computation overhead. 
  
Another problem with BOV modelling of images is the loss of classification accuracy due to the 
disregard for the spatial location of the visual words during the modelling process [21, 20, 22]. 
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Verbeek et al. [21] used Random Field theory to provide spatial information along with the BOV 
models for Probabilistic Latent Semantic Analysis (PLSA) classification of image regions, the 
same approach was also adopted by Xu et al. [38] for image classification via Latent Dirichlet 
Allocation (LDA). Zhang et al. [20] proposed the Geometry-preserving visual phrase that encodes 
more spatial information into the BOV models at the searching step of a retrieval system, thereby 
representing local and long-range spatial interactions between the visual words. However, this 
approach only seeks to improve search results by providing additional information to the image 
BOV models but does not improve the BOV modelling therefore may not be suitable for semantic-
based image retrieval purposes. Lazebnik et al. [22] proposed the Spatial Pyramid in which 
histograms are computed for multi-level regions of an image, and then concatenated to form a 
single spatial histogram. This method achieved 64.6% during the classification of images from 
Caltech-101 [22].While this study considers the work of Lazebnik et al. [22] as an intuitive attempt 
at solving the spatial coherency problem in BOV modelling especially for semantic purposes; it 
however suggests that the classification accuracy needs to be improved further. 
 
Bosch et al. [23] extend the concept of spatial pyramid to the development of an image signature 
known as Pyramid Histogram of Oriented Gradient (PHOG). This image representation combines 
pyramid representation with HOG and has been found to be effective in object classification [24], 
facial emotion recognition [25], and facial component based bag of words [26]. How some of the 
techniques discussed in this Section have been used in recent works on unsupervised image 
classification is examined in Section 4. 
 

3. UNSUPERVISED LEARNING 
This section reviews existing literatures in which unsupervised learning approaches have been 
successfully applied to image categorisation. In general, unsupervised learning attempts to base 
grouping decisions directly on the properties of the given set of samples without the use of 
training samples. Although Datta et al. [2] identified three main categories of unsupervised 
classification algorithms: clustering based on overall minimisation of objective function, pairwise 
distance clustering, and statistical modelling; such classification has limited the scope of 
unsupervised learning to clustering algorithms. Therefore, based on the extensive list of 
unsupervised learning algorithms provided by Hastie et al. [1], this paper recognises Dimension 
reduction algorithms and clustering algorithms as the two main unsupervised machine learning 
algorithms needed in unsupervised image categorisation. The recognition of these groups of 
algorithms provides a reasonable lead way into the diverse world of the application of 
unsupervised machine learning to image classification. 
 
3.1. Dimension Reduction Algorithms 
It is often necessary to reduce the dimension of samples in a dataset before the patterns can be 
recognised. For example, the application of BOV modelling may produce 1000 dimensioned 
image representations which can make the categorisation of a set image BOV representation 
computational inefficient especially when handling a large collection (1000 samples and above). 
This challenge can be minimised by estimating a rather crude global models that characterise the 
samples in the collection using descriptive statistics [1]. These descriptive statistics reduces the 
data dimensions by using a new set of variables based on properties observed at regions of high 
probability density on the sample space. Common unsupervised learning methods by which a 
descriptive statistics can be obtained include Principal Component Analysis (PCA), Non-negative 
matrix factorisation, and Independent component analysis (ICA) [1]. These are linear approaches 
which are not desirable as  the means of achieving dimension reduction of images because 
image data possesses complicated structures  which may not be conveniently represented in a 
linear subspace [27], therefore mapping them to a linear low dimensioned features space may 
incur significant loss of categorisation accuracy. 
 
Several methods have been recently proposed for nonlinear dimension reduction. These methods 
are all based on the idea that the data lie close to an intrinsically low-dimensional nonlinear 
feature space embedded in a high-dimensional space [1]. Scholkopf et al. [28] proposed Kernel 
PCA as a mean of achieving non-linear dimension reduction [28]. Using non-linear functions, 
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Kernel PCA generates a kernel matrix for a given dataset, and then identifies a chosen number 
column on the kernel matrix with the largest eigenvalues [1]. Other popular non-linear dimension 
reduction methods include Isometric Feature Mapping (ISOMAP), Local Linear Embedding, and 
Local Multi-Dimensional Scaling (Local MDS) [1]. In general, these methods produce low-
dimensional model of each sample in a collection by describing the sample in the terms of its 
approximate distances from a chosen number of nearest neighbours [1]. 
 
3.2. Clustering Algorithms 
Clustering algorithms groups the samples of a set such that two samples in the same cluster are 
more similar to one another than two samples from different clusters, Clustering methods can be 
categorised into two broad classes: non-parametric and parametric methods. Non-parametric 
clustering involves finding natural groupings (clusters) in a dataset using an assessment of the 
degree of difference (such as Euclidean distance) between the samples of the dataset. It requires 
the defining a measure of (dis)similarity between samples, defining a criterion function for 
clustering, and defining an algorithm to minimise (or maximise) the criterion function. Popular 
non-parametric clustering algorithms include k-means, Hierarchical clustering algorithms and 
Spectral clustering. 
 
3.2.1. Non-Parametric Clustering 
K-mean clustering is the most widely used nonparametric technique for data clustering [2]. It 
represents each category in a given dataset with a centre obtained after repeated optimisation of 
an overall measure of cluster quality known as the objective function. The result of K-means 
clustering algorithm is sensitive to the initial centres used in the clustering process [29]. For 
example, randomly picking the initial centres may lead to accidentally picking too many centres 
that attracts few or no members while most of the samples allocated to a few of the centres. El 
Agha and Ashour [29] demonstrated that classification results can be improved when the overall 
shape of the dataset is considered during the initialisation phase of the K-means algorithm. 
 
The K-means algorithm is very similar to the unsupervised Artificial Neural Network Algorithm 
known as Self Organising Map (SOM). The ability of all ANNs to process complex or high 
dimensional data at high speed makes SOM desirable for image classification [30]. In a SOM, the 
hidden layer consists of a matrix or a vector of neurons arranged in a grid, hexagonal or random 
pattern. In response to an input pattern, the neurons compete to be activated and the neuron 
whose weight has the smallest Euclidean distance from the input pattern is selected. The network 
updates the weight of the chosen neuron and its neighbours using Kohenen learning rule pattern 
and re-arranged its topology such that it correlates with the input vector space, thereby ensuring 
the same neuron will be chosen in response to subsequent input pattern similar to the current 
input [31].  Hastie et al. [1] considers SOM to be a constrained version of K-means algorithm in 
which the performance depends on the learning rate and the distance threshold, and stated under 
the same condition, SOM will outperform K-means clustering, if the constraints are adequate [1]. 
Therefore the determination of these constraints and the number of clusters are important for 
maximum accuracy to be achieved when using SOM for data clustering. Decision trees and 
Associative rules also provide simple rules by which each samples of an image dataset can be 
labelled. 
  
Although the K-mean algorithm is very effective when the centres are positioned to capture the 
distribution of the category [1] and for the process to be credible, the number of clusters specified 
at the beginning of the process must closely match the number of categories present in the 
dataset. In contrast, hierarchical clustering methods do not require such specifications, but 
requires the user to specify a measure of dissimilarity between (disjoint) groups of observations. 
Hierarchical clustering creates a nested sequence of partitions in which the entire dataset is 
considered to be a single, all inclusive cluster at the highest level of the hierarchy, while each 
cluster at the lowest level contains a single sample. Hierarchical clustering can be implemented 
using either Agglomerative or Divisive approach in grouping samples into clusters [1]. 
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In the Agglomerative approach, the clustering process starts at the lowest level and proceeds to 
the top, merging any two clusters whose members are considered to be similar. In the Divisive 
approach, the process starts from the all-inclusive clusters and repeatedly splits the dataset into 
smaller groups until the process attains a level where the members of each cluster are 
considered to be different from any other [1]. Hierarchical clustering based on the Agglomerative 
approach determines the affinity between samples using either single linkage, complete linkage 
or average linkage [1, 32]. Zhang et al. [32] explained that the Agglomerative approach is 
susceptible to noise and outliers because in calculating the link between two clusters to be 
merged, it does not consider the global similarities of the entire dataset, therefore it is not 
adequate for high-dimensional data such as images [32]. 
  
The use of K-means and hierarchical clustering in the unsupervised learning from an image 
dataset is often faced with the high dimensionality of the samples. Spectral clustering is a popular 
non-parametric [33] algorithm that achieves clustering through a combination of non-linear 
dimension reduction and K-means clustering, therefore it is preferred when the clusters are non-
convex [1]. It achieves non-linear dimension reduction through the use of an undirected similarity 
graph to represent the pairwise distances between each sample and every other sample in the 
dataset, from which the normalised eigenvectors of each dimension is obtained and the desired 
number of columns is chosen based on their eigenvalues. The dataset samples represented by 
the normalised eigenvectors are then clustered using the k-means algorithm [12]. 

3.2.2. Parametric Clustering Methods 
While on-parametric methods infer the underlying pattern structure from the dataset, parametric 
approaches impose a structure on the dataset. Parametric learning assumes the samples of the 
dataset can be represented by a probability function made up of several components [1].In 
parametric clustering methods, each sample in a set is described as a combination of a finite 
number of functions and samples with similar combinations as assumed to be in the same 
cluster. The use of probabilistic parametric clustering method such as Gaussian Mixture Model 
(GMM) [2] and Topic-based model [34] has been shown to be successful in a wide variety of 
applications concerning the analysis of continuous and discrete data, respectively [33]. 
 
Given a dataset, GMM fits a single probability density function to the entire set [35]. This function 
is assumed to be a mixture of a finite number of Gaussian functions as shown by Equation 1 and 
Equation 2[36]: 

 

                                             ……….1 

Where 

 

                                                          ……….2 

In Equation 1, Pk is the mixing probability for the Gaussian density function k in the mixture, while 
mk and σ_k are its mean and standard deviation respectively. These parameters are estimated 
through model fitting using Expectation-Maximisation (EM) process [36]. 
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In GMM, knowledge of the probability density function parameters for a dataset enables the 
representation of each of its samples with a vector whose dimension is the same as the number 
of Gaussians in the mixture. While K-means clustering is regarded as hard clustering model 
because it exclusively maps each sample to a cluster, the GMM is considered a soft clustering 
method because it does not exclusively place a sample into any of the available clusters but 
describes the probability of its membership of each of the clusters. 
 
Since each data sample is represented with a vector at the end of a GMM process, it is possible 
to represent these vectors in a multi-dimensional Euclidean space. Liu et al. [35] explained that 
this representation may reveal naturally occurring data patterns on, or close to subgroups within 
the data set and proposed the Locally Consistent Gaussian Mixture Model (LCGMM) which 
exploit these patterns to improve the learning performance of GMM. Experimentation conducted 
by the authors on Yale face and Breast cancer datasets revealed accuracies of 54.3 % and 
95.5% respectively which is better than the 29.1% and 94.7% recorded by the conventional GMM 
[35]. 
 
Topic-based models such as PLSA and LDA are soft clustering techniques that are similar to 
GMM. Hoffman [34] presented the PLSA (also known as the Aspect model) for categorising 
collections of textual documents. Given D = d1..... dN is a set of BOV representations of images 
and a corresponding W = w1 ...... wV, a set of visual vocabularies. In the PLSA modelling a joint 
probability model over D X W with a set of unobserved variables Z = z1 ...... zk is defined by the 
mixture in Equation 3 and Equation 4[34, 12]: 
 

 

                                                                                            ……….3 

Where 

 

                                           ………. 4 

P(w|z) and P(z|d) are the topic specific distributions for the entire set and topic mixtures for each 
image respectively. The model is parameterised as shown in Equation 5[34]. 
 

 

                                                  ………. 5 

Similar to GMM, the model parameters are estimated using the EM algorithm, at the end of which 
each image in the dataset is represented by the topic mixture P(z|d) and images with similar topic 
mixtures are considered to belong to the same cluster. The advantage of PLSA lies in its use of 
generative models obtained from the BOV representation of images for image modelling, rather 
than directly using the BOV representations; a step which enables the discovery of latent topics 
from the image data [37]. Since a group of related words is mapped to one latent topic at the end 
of Topic-based modelling, the resulting image representation has a reduced dimension compared 
to the BOV representation [34, 38]. 
 
Blei et al. [37] noted that PLSA does not provide a proper probabilistic model at the document 
level because the number of latent topics used to model each document grows linearly with the 
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size of the dataset which may lead to over-fitting. The authors therefore proposed Latent Dirichlet 
Analysis (LDA) which provides additional regularisation by encouraging the topic mixtures to be 
sparse [37]. Verbeek et al. [21] noted that LDA only outperforms PLSA when classifying small 
number of documents with many topics, therefore, considered PLSA to be computationally more 
efficient than LDA [21]. 
 
In general, Parametric models are advantageous since they provide principled ways to address 
issues like the number of clusters, missing feature values etc.[33]. They also combine dimension 
reduction capability with soft clustering [34, 12, 37, 38]. The unfortunate drawback is that they are 
only effective when the underlying distribution of the data is either known, or can be closely 
approximated by the distribution assumed by the model [33]. However similar shortcomings can 
be attributed to squared error based clustering algorithms such as K-means[33]. 
 

4. COMPARISON OF RELATED WORK 
Unsupervised image classification is useful in the annotation of images in a large repository. In 
such a scenario, it can enable images to be grouped into a manageable number of clusters such 
that semantic labelling can be applied conveniently and efficiently. This section review literatures 
in which unsupervised machine learning have been applied to image categorisation. 
 

Work Year Feature 
extraction 

Image Model Unsupervised 
learning 

approach 

Xu et al. [23] 2013 SIFT BOV LDA /  Markov 
Random Field / 
Bayesian 
Information 
criterion (BIC) 

Zhang et al. [33] 2012 LBP, pixel 
intensity 

Image Feature 
Histograms 

Hierarchical 
clustering (GDL-
U, AGDL)  

Huang et al. [3] 2011 Dense SURF / 
PHOG 

KNN/Hyper-graph Spectral 
clustering 

Mole and 
Ganesan [39] 

2010 Local Binary 
Pattern 

Texture histogram K-Means 

Duong et al. [40] 2008 HSV and Canny 
Edge 
Orientation 
histogram 

Hierarchical tree Tree matching 

 

Kim et al. [41] 2007 Harris-Affine 
detector / SIFT 
descriptor 

Page-Rank/Visual 
Similarity Network 

Spectral 
clustering 

Bosch et al. [12] 2006 SIFT / HOG BOV PLSA / KNN 

Graum and 
Darrell [42] 

2006 SIFT Multi-resolution 
histogram/Similarity 
Graph 

Spectral 
clustering 

Todorovic and 
Ahuja [43] 

2006 Pixel gray levels Multiscale 
segmentation tree 

Decision trees 
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Lee and Lewicki 
[44] 

2002 Image texture Pixel patches ICA 

Le Saux and 
Boujemaa [45] 

2002 Pixel gray level, 
Fourier power 
spectrum and 
edge orientation 

Feature histogram PCA / Adaptive 
Robust 
Competition 
Clustering 

 
TABLE 1: A comparison of some notable implementations of unsupervised image categorisation. 

 
4.1. Methodology of Image Modelling 
From Table 1, it can be observed that SIFT and SIFT-based algorithms are the most popular 
image feature extraction algorithm for the implementation of unsupervised image classification, 
while images are mostly described in terms of feature histograms. Bosch et al. [12]shows that 
dense descriptors (HOG) outperform the sparse ones, especially in the classification of images of 
scenes, where they enable the capturing more information than sparse features, and produce 
improved classification accuracy when image colour information is captured during feature 
extraction. This superiority was confirmed in the supervised classification by Verbeek et al. [21] 
the average accuracy of 61.3 % recorded by HOG descriptors was improved to 75.2 % by 
combining HOG with colour descriptors. 
  
Table 1 also reveals that unsupervised image classification is yet to exploit the advantage of BOV 
modelling, especially it’s potential in supporting Semantic-Based image retrieval. The work of 
Huang et al. [3] is of particular interest in this study not only because of its use of the combination 
of PHOG and Dense SURF features to develop representation for each image, but mainly 
because of its the use of Regions of Interest (ROI) of each image rather than the entire image, an 
approach with the potential to capture spatial information when applied along with BOV 
modelling. 
 
4.2. Unsupervised Learning 
As mentioned in the last section, the use of non-parametric clustering such as K-means, 
Hierarchical or SOM on high dimensional data samples such as histograms representing images 
is often a computationally inefficient process. This is perhaps the reason why none of these 
methods is popular as the unsupervised learning approach on Table 1. In Le Saux and Boujemaa 
[45], reduction of image signature dimensions was achieved using Principal Component Analysis 
(PCA). However, the use of PCA in the reduction of the dimensionality of image representations 
may lead to significant loss of pattern information due to its linear approach which may be 
inadequate for images [27].Zhang et al. [32]also proposed an improved hierarchical clustering: 
Graph Degree Linkage (GDL), which replaces the high dimensioned representation of each 
image with a K-Nearest Neighbour (KNN) graph developed by analysing the analysing the 
indegree and outdegree affinity between clusters using thus achieving non-linear dimension 
reduction before the Agglomerative clustering [32]. 
 
In the works of Kim et al. [41] and Huang et al. [3] spectral clustering was adopted as a means of 
providing the non-linear dimension reduction needed in the categorisation of images. While Kim 
et al. achieved non-linear dimension reduction via simple graph partition and link analysis, Huang 
et al. [3] introduced the application of hyper-graph partitioning to representing both local and 
global similarities among unlabelled images before the application of spectral clustering. Although 
spectral clustering method is capable of categorising any given image set irrespective of the 
complexity of the image signature, it favour compact and coherent groups over heterogeneous 
data collections and produce highly intricate clusters, which do not delineate separation between 
clusters [2]. It also require the calculation of an n2 order Pair-wise distances (where n is the size 
of the dataset) making the computation required for the procedure very high [2], which can make 
its application in the classification of a large image dataset set difficult. Another problem is its 
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reliance on the K-means algorithm, which also means that there is the need for prior knowledge 
of the number of categories present in the dataset. 
 
Alternatively, Topic-based model can be used for the same purpose. Recently, the application of 
Topic-based model in semantic labelling has been generating some research interest due to its 
ability to capture image semantic contents while achieving dimension reduction [38, 46]. Although 
Topic-based model clustering is rated above centre-based techniques such as K-means 
clustering for unsupervised image categorisation [3], its classification accuracy is affected by the 
use of order-less BOV image representation [19, 21, 38, 22]. Topic-model based clustering can 
be improved through the inclusion of spatial information of visual words during BOV modelling [3, 
21, 38]. Verbeek et al. [21] improved PLSA classification accuracy from 78.5% to 80.2% using 
local Markov Random Field (MRF). The same approach was used by Xu et al. in the 
unsupervised image classification using LDA. The spatial pyramid by Lazebnik [22] is another 
alternative for the reduction of spatial incoherency during the use of Topic modelling for image 
categorisation. 
  
In general, all Mixture modelling clustering approaches are memory-based methods, the model is 
often built using the entire dataset, and the fitting is done at evaluation or prediction time, which 
makes this unsupervised approach naturally unsuitable for many real-time applications [33]. The 
PLSA/KNN approach of Bosch et al. [12]  in which the authors built a PLSA Simplex using a 
fraction of the image collection as training images, after which any image to be classified is fitted 
to the simplex using Kullback-Leibler divergence is a likely solution to this drawback of mixture 
models. However, a disadvantage of this approach is that its use of KNN approach introduces the 
need for labelled training samples. 
 
In general, the applicability of topic modelling to unsupervised classification can be further 
enhanced through the development of a method for determining the number of latent topics 
required for an efficient implementation, and the establishment of the relationship between latent 
topics and semantic contents (objects and locations). 
 
4.3. Experimentation Protocol / Results 
The accuracy of a typical unsupervised classification is determined by counting the number of 
image classification that matches the ground truth [3]. The performance of an unsupervised 
image categorisation process can also be displayed in details using a confusion table, where the 
overall performance is determined by the average value of the diagonal entries of the confusion 
table [3, 12, 41].In general, the main goal of an unsupervised image categorisation process is the 
allocation of each image of a dataset to one of a number of categories. However, Datta et al. [2] 
identified the unknown number of categories and the unknown nature of the categories in an 
image collection to be the two main challenges to the implementation of unsupervised image 
classification [2]. This sub-section examines how various implementations of unsupervised 
classifications have responded to these challenges. 
 
Kim et al. [41] adopted the experimental protocol developed by Graum and Darrell [42] in 
evaluating their proposed unsupervised image categorisation. The experiment involves running 
ten iteration of the proposed algorithm on six object classes from Caltech101 (Airplanes, Cars, 
Faces, Motorbikes, Watches and Ketches) and three object classes from TUD/ETHZ (Giraffes, 
Motorbikes, Cars).The samples of images in the 6-chosen Caltech-101 classes are shown in 
Figure 3. For each iteration, the algorithm randomly picked 100 and 75 images from each object 
category in the Caltech101 and TUD/ETHZ datasets respectively. The experiment recorded an 
average of 98.55%, 97.30% and 95.42% for 4, 5 and 6 object Caltech101classes respectively, 
and recorded 95.47% over the TUD/ETHZ dataset. In a comparative experiment, Huang et al. [3] 
recorded 98.55%, 97.38%, and 96.05% under similar condition, which confirms the superiority of 
the ROI/hyper-graph partitioning technique over the simple graph partitioning. 
  
Huang et al. [3] extended their experiment to 4, 8, and 12 randomly selected object classes from 
the entire caltech101 and caltech256 dataset. 100 iterations over Caltech101 revealed 95.8%, 
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86.2% and 71.5%, while in the case of caltech256 87.7%, 77.1% and 64.3% were recorded. 
While this result confirms the superiority of the proposed hypergraph based algorithm over 
chosen baseline unsupervised image classification based on affinity propagation, normalised cut, 
and K-centre, it also demonstrates a reduction in classification accuracy as the size of the dataset 
increases, and the increase in complexity of the images in the collection. Although Huang et al. 
[3]experimented further using PASCAL VOC2008 which recorded 81.3%, 77.2% and 69.3%, a 
result similar to what was recorded with caltech256 [3], this study recognises the increasing 
popularity of Caltech-101 and Caltech-256 datasets, and considers them to be a means of 
providing adequate challenge to all object recognition based experiments. 

 
FIGURE 3: Sample images from the 6-categories chosen from Caltech-101 by Kim et al. [41] for the 

evaluation of the proposed unsupervised classification framework. 
 
Zhang et al. [32] experimented with the proposed algorithm on object image databases (COIL-20 
and COIL-100), hand-written digit databases (MNIST and USPS), and facial image databases 
(Extended Yale-B, FRGC ver2.0), and compared the GDL’s performance to k-medoids (k-med), 
average linkage (Link), graph-based average linkage (GLink), normalized cuts (NCuts), NJW 
spectral clustering (NJW-SC), directed graph spectral clustering (DGSC), self-tuning spectral 
clustering (STSC) and Zell. The proposed algorithm demonstrated better robustness to noise and 
higher speed than the other algorithms. It also successfully implements unsupervised 
classification without the need for prior knowledge of the number of inherent categories while 
basing its categorisation on object matching thus accounting for the nature of each cluster [32]. 
This paper uses Figure 4 to illustrate the result of an evaluation of GDL carried out as part of its 
study. Although the average accuracy is approximately 85%, the graph indicates that the 
accuracy of the algorithm’s classification reduces as the size of the experimental dataset 
increases, which may discourage its application to large image datasets. This paper considers 
further experiments on the object matching capability of GDL (and AGDL) using Caltech-101 and 
Caltech-256 to be necessary so as to establish a common evaluation environment with other 
recent works. 
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FIGURE 4: A summary of GDL classification accuracy showing variation in accuracy with the size of 
dataset. 

 
Bosch et al. [12] evaluated their classification algorithm on three different datasets used in the 
supervised classification of Vogel and Schiele [47] and Oliva and Torralba [48], and the 
semisupervised classification of FeiFei and Perona [49]. The image collection used by Oliva and 
Torralba (OT) [48] has 8 categories, Vogel and Schiele (VS) [47] has 6 categories, while FeiFei 
and Perona (FP) [49] has 13 categories. Using 100 randomly selected images from the OT 
dataset, the authors determined that the optimum parameters for the experimentation are V = 
1500, Z = 25, K=10 and M = 10, (where V= number of visual words Z= the number of topics, K= 
the number of neighbours for KNN and M = the number of pixels between cell locations during 
Dense-SIFT extraction), and the mean accuracy and standard deviation on the OT dataset 
(images of Natural and Man-made scenes) are of 84.78% and 1.93% respectively when dense 
colour SIFT was used as the feature descriptor. 
 
The authors used the same parameters values on the OT, VS and FP datasets. For the OT 
dataset, they used approximately 200 images per category for both training and testing. In the 
case of the VS, they used 350 images per category for both training and testing, while a total of 
1344 images were used for the FP dataset for training [12]. Despite the fact that Bosch et al. 
[12]training is unsupervised, the proposed algorithm outperforms all of the previous methods with 
85.7% (against the previously recorded 74.1%) and 73.4% (against the previously recorded 
65.2%) accuracies over VS and FP respectively, with the best classified scenes being highway 
and forest with 95.61% and 94.86% respectively. 
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FIGURE 5: A summary of PLSA/KNN classification accuracy showing variation in accuracy with the size of 
dataset. 

 
Bosch et al. [12] attributes the improved performance to the use of better features during scene 
categorisation, especially those features representing objects. This study recognises the ability of 
the combination of PLSA/KNN to implement unsupervised classification without prior knowledge 
of the number of inherent semantic group. This study also uses Figure 5 to demonstrate that the 
accuracies recorded through the use of PLSA/KNN combination in the unsupervised classification 
of images may not be responsive to the size of the dataset, making it a more suitable option than 
GDL for the categorisation of a large image collection (1000 and above). However, Figure 4 and 
Figure 5 do not offer a conclusive proof of the PLSA/KNN’s superiority over GDL, therefore, there 
is a need to compare the two algorithms using Caltech-101 and Caltech-256 datasets, with 
emphasis on object recognition based unsupervised classification. This study also suggests an 
investigation into the effect of spatial incoherency (due to BOV modelling) on the PLSA/KNN 
combination. 

 
5. FUTURE WORKS 
The unsupervised classification of images offers a variety of opportunities as a solution to some 
problems in artificial intelligence. One of these problems is the elimination of the semantic gap 
present in CBIR via automatic annotation of images of a collection [2, 4, 50]. Wang et al. [4] 
explained that image retrieval researches are currently moving towards semantic-based image 
retrieval due to this presence of semantic gap in CBIR which has rendered its performance 
unsatisfactory. 
  
Jeon et al. [51] proposed an automatic approach for the annotation of images with the aim of 
achieving convenient content based image retrieval. This approach depends on a supervised 
learning process which involves identifying common blobs from a set of labelled training images. 
However, like all categorisation based on supervised learning, obtaining adequate quality and 
quantity of labelled training images is a major challenge for this approach [51]. Therefore there is 
the need to look in the direction of unsupervised image categorisation. 
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The categorisation technique proposed by Bosch et al. [24] present a viable option for automated 
image annotation with the aim of eliminating semantic gap from an image retrieval process due to 
its use of PLSA which attempts to identify latent topics. However, the use of this technique 
requires labelled training samples due to the inclusion of KNN in the model, therefore there is a 
need for a research into a completely unsupervised but related technique. There is also a need 
for a research that clearly establishes the relationship between PLSA latent topics and semantic 
objects present in the image collection, these researches will enhance the use of unsupervised 
categorisation technique based on PLSA in the elimination of semantic gap from image retrieval 
processes.  
 

6. CONCLUSION 
Until recently, most research attention in image retrieval has been focused on feature extraction 
and similarity computation [2]. More recently, the need to minimise or totally eradicate the 
semantic gap from image retrieval systems has directed research efforts towards Semantic 
Image Retrieval in which the semantic gap is minimised through semantic labelling [4].Due to its 
ability to categorise images without the need for training samples, unsupervised image 
categorisation has the potential to facilitate convenient annotation of images in a large collection. 
Although, non-parametric clustering techniques are simple and intuitive, their direct application to 
a large image database is limited because they are not very suitable for clustering high-
dimensional data [1, 33].  
 
The use of image descriptive statistics via parametric clustering enables the capturing of 
important information about a given dataset [1]. This is especially so for the Topic-based model 
such as PLSA, that captures the relationship between visual-words and the frequency of their 
appearance on images. Hence it can be instrumental in matching low-level features to high-level 
semantics; thereby supporting Semantic labelling of images. This paper also recognises the 
ability of PLSA/KNN combination proposed by Bosch et al. [12] and the hierarchical clustering-
based GDL proposed by Zhang et al. [33] to implement unsupervised image categorisation based 
on the nature of inherent groups within the image collection without the need for prior knowledge 
of the number of categories within the collection, therefore recommends a detailed investigation 
and comparison of their object recognition-based categorisation abilities using the increasingly 
popularCaltech-101 and Caltech-256 datasets. Such research may provide a more suitable 
means of mapping low-level features to high level semantics than existing methods for the 
elimination of the semantic gap in image retrieval processes. 
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