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Abstract 
 
This paper proposes an image quality metric that can effectively measure the quality of an image 
that correlates well with human judgment on the appearance of the image. The present work 
adds a new dimension to the structural approach based full-reference image quality assessment 
for gray scale images. The proposed method assigns more weight to the distortions present in the 
visual regions of interest of the reference (original) image than to the distortions present in the 
other regions of the image, referred to as perceptual weights. The perceptual features and their 
weights are computed based on the local energy modeling of the original image. The proposed 
model is validated using the image database provided by LIVE (Laboratory for Image & Video 
Engineering, The University of Texas at Austin) based on the evaluation metrics as suggested in 
the video quality experts group (VQEG) Phase I FR-TV test. 
 
Keywords: Image Quality, HVS, Full-reference Quality Assessment, Perceptual Weights. 

 
 
1. INTRODUCTION 

Any image processing system should be aware of the impacts of processing on the visual quality 
of the resulting image. Numerous algorithms for image quality assessment (IQA) have been 
investigated and developed over the last several decades. The objective image quality 
measurement seeks to measure the quality of images algorithmically. Objective image quality 
metrics can be classified as full-reference in which the algorithm has access to the original 
(considered to be distortion free) image, no-reference in which the algorithm has access only to 
the distorted image and reduced-reference in which the algorithm has partial information 
regarding the original image. A comprehensive review of research and challenges in image 
quality assessment is presented in [1]. 
 
In [2], a number of simple statistical image quality metrics based on numerical errors are 
compared for gray scale image compression. These metrics include average difference, 
maximum difference, absolute error, mean square error (MSE), peak MSE, Laplacian MSE, 
histogram and Hosaka plot. It is observed that although some numerical measures correlate well 
with the human response for a specific compression technique, they are not found to be reliable 
for evaluation across various methods of compression. The most widely adopted statistical 
feature is the Mean Squared Error (MSE). However, MSE and its variants may not correlate well 
with subjective quality measures because human perception of image distortions and artifacts is 
unaccounted for. A detailed discussion on MSE is presented by Girod [3]. 
 
Most HVS based quality assessment metrics share an error-sensitivity based paradigm [4], which 
aims to quantify the strength of the errors between the reference and the distorted signals in a 
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perceptually meaningful way. A well-known method, Visible Differences Predictor (VDP) [5], 
Lubin's algorithm [6], Teo and Heeger's metric [7], a perceptual image quality metric named 
information mean square error (IMSE) proposed by David Tompa et al. [8], a measure of 
perceptual image quality of Westen et al. [9], a comprehensive distortion metric for digital color 
images presented by Stefan Winkler [10], an image quality metric using contrast signal-to-noise 
ratio (CSNR) by Susu Yao et al. [11], image quality metric named visual information fidelity (VIF) 
introduced by Sheikh and Bovik [12] belong to this category. The rest of the paper is organized as 
follows. Section 2 explains structural similarity measure, Section 3 presents local energy model 
for detecting image features, Section 4 explains weighting of structural similarity indices and 
formulation of Perceptual Structural Similarity index. Section 5 presents the results followed by 
conclusions. 

 
2. STRUCTURAL SIMILARITY MEASURE 

One distinct feature that makes natural image signals different from a "typical" image randomly 
picked from the image space is that they are highly structured and the signal samples exhibit 
strong dependencies amongst themselves. These dependencies carry important in-formation 
about the structures of objects in the visual scene. An image quality metric that ignores such 
dependencies may fail to provide effective predictions of image quality. Structural similarity based 
methods [13, 14] of image quality assessment claim to account for such dependencies in 
assessing the image quality. In [14] a more generalized and stable version of the universal quality 
index was proposed named as Structural SIMilarity quality measure (SSIM). 
 

Let x  and y  be two discrete non-negative signals where  { |  1,2... }
i

x x i N= =  and 

 { |  1, 2... }
i

y y i N= = are aligned with each other (e.g. two image patches extracted from the 

same spatial location of original image and distorted image being compared). Let 

, , , ,
x y x xy

yµ µ σ σ σ represent mean intensity of signal ,x  mean intensity of signal ,y  standard 

deviation of ,x  standard deviation of ,y  and covariance between x  and y respectively. The 

Structural Similarity measure between the image patches is defined in (1), where 
1

C  and 
2

C  are 

small constants introduced to avoid instability when the denominator is close to zero. 
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Let X  and Y  be the two images being compared. A local moving window approach is followed, 

to compute ( , ).SSIM X Y  The window moves pixel-by-pixel from the top left corner to the bottom 

right corner of the image. In each step, the local statistics and ( , )SSIM x yj j  index are calculated 

using (1) within the local window .j The SSIM index between  X  and Y  is defined in (2) where 

Ns  is the number of local windows in the image, and ( , )W x yj j j  is the weight   given to the j-th 

window of the image. If all the local regions in the image are equally weighted, then 

( , ) 1.W x yj j j =  This results in the mean ( )SSIM MSSIM measure employed in [14]. 
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It may be noted that the MSSIM  algorithm gives equal importance to distortions for all local 

regions of the image. Wang et al. [14] suggest that the performance of SSIM  can be improvised 

by weighting the local SSIM  indices. They also suggest that the prior knowledge about the 
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importance of different regions in the image if available can be converted into a weighting 
function. A variety of such approaches can be found in [15]-[20].   
 
Studies of visual attention and eye movements [6, 21, 22] have shown that humans attend to few 
areas in the image. Even though unlimited viewing time is provided, subjects will continue to 
focus on few areas rather than scan the whole image. These areas are often highly correlated 
amongst different subjects, when viewed in the same context. In order to automatically determine 
the parts of an image that a human is likely to attend to, we need to understand the operation of 
human visual attention and eye movements. In [23], many algorithms for defining Visual regions 
of interest were evaluated in comparison with eye fixations. The present work adopts the local 
energy model to identify feature rich local regions which are normally attended to by humans and 
to define a weighting function that is proportional to feature richness of the region. The weighting 

function is used in (2) to define the Perceptual Structural SIMilarity index ePSSIM proposed in this 

paper. 

 
3. LOCAL ENERGY MODELING FOR FEATURE DETECTION 

The local energy model of feature detection postulates that features are perceived at points of 
maximum phase congruency in an image.  Venkatesh and Owens [24] show that points of 
maximum phase congruency can be calculated equivalently by searching for peaks in the local 
energy function. The calculation of energy from spatial filters in quadrature pairs has been central 
to the models of human visual perception proposed by Heeger [25], Adelson and Bergen [26]. 
Local frequency and, in particular, phase information in signals are of importance in calculating 
local energy. To preserve phase information, linear-phase filters must be used. That is, one must 
use non orthogonal filters that are in symmetric/antisymmetric quadrature pairs. In this work, the 
approach of Morlet et al. [27] is followed with a modification in the usage of filters. Logarithmic 
Gabor functions [28, 29] are used instead of Gabor filters as the maximum bandwidth of a Gabor 
filter is limited to approximately one octave and Gabor filters are not optimal if one needs broad 
spectral information with maximal spatial localization.  
 
Field [28] suggests that natural images are better coded by filters that have Gaussian transfer 
functions when viewed on the logarithmic frequency scale. Firstly, log-Gabor functions, by 
definition, always have no DC component, and secondly, the transfer function of the log Gabor 
function has an extended tail at the high frequency end. Field's studies of the statistics of natural 
images indicate that natural images have amplitude spectra that fall off at approximately inverse 
of the frequency. To encode images having such spectral characteristics one should use filters 
having spectra that are similar. Field suggests that log Gabor functions, having extended tails, 
should be able to encode natural images more efficiently than, say, ordinary Gabor functions, 
which would over-represent the low frequency components and under-represent the high 
frequency components in any encoding. Another point in support of the log Gabor function is that 
it is consistent with measurements on mammalian visual systems which indicate we have cell 
responses that are symmetric on the log frequency scale.  
 
The local energy function is computed using log-Gabor filters in 4 scales with center frequencies 
of 1/3 cycles/pixel, 1/6 cycles/pixel, 1/12 cycles/pixel and 1/24 cycles/pixel and 6 orientations at 
0

0
(horizontal), 30

0
, 60

0
, 90

0
(vertical), 120

0
, and 150

0
. The following discussion [29] is made for a 

specific orientation θ of the filter. If ( )I x  denotes the image signal and 
e

M  and 
o

M  denote the 

even-symmetric (cosine) and odd-symmetric (sine) filters at a scale n , the respective responses 

n
e  and 

n
o  of each quadrature pair of filters can be represented by the vector, 

 

( ) ( ) ( ) ( ), * , *
e o

n n n n
e x o x I x M I x M  =   (3) 

 

The amplitude ( )
n

A x  and phase ( )
n

xφ of the transform at any given scale is given by 
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( ) ( ) ( )
2 2

n n n
A x e x o x= +  (4) 

( ) ( ) ( )( )2 ,
n n n

x atan e x o xφ =  (5) 

 
At each point x  in a signal, an array of these response vectors is obtained, one vector for each 

scale of filter of the chosen orientation. These response vectors form the basis of localized 
representation of the signal, and they can be used in calculating the resultant local energy vector 
at point x . The design of the filter bank needs to be such that the transfer function of each filter 

overlaps sufficiently with its neighbors so that the sum of all the transfer functions forms a 
relatively uniform coverage of the spectrum. If the local energy should accurately represent the 
feature strength at point x , then a broad range of frequencies in the signal are to be retained. The 

local energy at point x  of the image ( )E xθ  for a given orientation θ  can be calculated from 

( )F x  which can be formed by summing the even filter convolutions over all scales and ( )H x  

which can be estimated by summing the odd filter convolutions over all scales given by 
 

( ) ( )n

n

F x e x=∑  
(6) 

( ) ( )n

n

H x o x=∑  (7) 

( ) 2 2
( ) ( )FE x H xxθ = +  (8) 

 
Figure 1(a) and Figure 1(b) show the normalized maps of the local energy function of the Lena 
image considering different ranges of frequencies. Figure 1(a) is the result of considering 
frequencies larger than 0.2pixels/cycle. Figure 1(b) is the result of considering the complete set of 
frequencies. One can observe that the latter makes a clear distinction among the significance of 
features than the former. The former shows that the majority of features are equally important 
while the latter shows a broad scale distinction. 
 

  
 

(a)  Energy function considering 2 scales 
 

(b)  Energy function considering 4 scales 

FIGURE 1: Energy function of Lena Image. 

 

At each location in the image, the weighted local oriented energy ( )E xθ  in each orientation is 

calculated, and the sum over all orientations ( )E x  is computed. The following algorithm 

illustrates the above steps. 
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Let ( )I x  be the original image; 

0.5c ← ; 
.0001ε ← ; 
10γ ←

; 

[ ]( )E x ←
; 

for each orientation θ do 

 
[ ]_ ( )sum e x ←

; 

 
[ ]_ ( )sum o x ←

; 

 
[ ]_ ( )sum A xn ←

; 
 for each scale n  do 

  compute ( ), ( )e x o xn n as in (3); 

  compute ( )A xn using as in (4); 

  _ ( ) _ ( ) ( )sum e x sum e x e xn← + ; 

  _ ( ) _ ( ) ( )sum o x sum o x o xn← + ; 

  _ ( ) _ ( ) ( )sum A x sum A x A xn n n← + ; 

  if first scale then 

   ( ) ( )A x A xmax n← ; 

  else 

   ( ) ( ( ), ( ))A x max A x A xmax n max← ; 

  end if 
 end for 

 compute ( )E xθ  as in (8); 

 ( ) ( ) ( )E x E x E xθ← + ; 

end for 
 
Figure 2 shows the perceptual map of Lena image based on local energy. The perceptual 
importance map assigned more weights (more bright) to image features in face, hair, hat and 
background. It can also be observed that the perceptual weights assigned to the features are well 
distributed.   
 

 
 

FIGURE 2: Perceptual map of Lena image. 
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4. LOCAL ENERGY WEIGHTED STRUCTURAL SIMILARITY 

We assume that the width w  and the height h  of the original image X  and the distorted image 

Y  are exact multiples of 9. If the size does not conform to these dimensions the images are 
cropped on all sides so that minimum amount of details is lost. This requirement comes from the 

fact that SSIM indices are computed in non-overlapping 9 9× regions. These regions in X  and 

Y are referred to as 
ij

x  and 
ij

y  respectively. 

 
The computation of perceptual weights of local regions in the original image begins with the log-
Gabor decomposition of the image. Log-Gabor filters with 4 scales and 6 orientations are used for 

this purpose. The algorithm presented earlier explains the computation of local maxima ( )E x  of 

local energy function at each pixel location x  for the original image X .  Let the matrix ( )E x  be 

divided into non-overlapping blocks of size 9 9× . Each resulting block in corresponds to a non-

overlapping block 
ij

x  of the original image ,X 1 9i m h≤ ≤ =  and 1 9j n w≤ ≤ = . The local 

maxima values present in each such block are summed up to obtain the local maxima for the 

block 
ij

x . The resulting matrix is normalized and these values are proposed as the perceptual 

weights of the corresponding to 9 9×  local regions which will be indicative of the human attention 

the regions call for. Let the resulting matrix be E  of size m n× . 

 

The structural similarity index between corresponding blocks of X  and  Y  of is computed using 

(1) to obtain the matrix SSIM  of size .m n×  The Weighted Structural SIMilarity measure 
e

PSSIM between X and Y  is calculated using (9). 
e

PSSIM  indicates the quality of distorted 

image on a scale of 0 to 1, where a value of 1 indicates that the images are identical. 
  

[ ] [ ]

[ ]

1 1

1 1

m n

i je

m n

i j

E SSIM

PSSIM

E

= =

= =

=

∑∑

∑∑
 (9) 

 
5. RESULTS 

The proposed models are validated using the image database provided by LIVE (Laboratory for 
Image & Video Engineering, The University of Texas at Austin) [30]. The psychometric study for 
the development of the database contained 779 images distorted using five different distortion 
types and more than 25,000 human image quality evaluations.  
 
The distorted image database consists of twenty-nine high resolution 24-bits/pixel RGB color 
images (typically 768 × 512). The distortions include white Gaussian noise, Gaussian blur, 
simulated fast fading Rayleigh (wireless) channel, JPEG compression and JPEG2000 
compression and with each type the perceptual quality covered the entire quality range. 
Observers are asked to provide their perception of quality on a continuous linear scale that was 
divided into five equal regions marked with adjectives "Bad", "Poor", "Fair", "Good", and 
"Excellent". About 20-29 human observers rated each image. The raw scores for each subject 
are converted to difference scores (between test and reference images) and then converted to Z-
scores , scaled back to 1-100 range, and finally a Difference Mean Opinion Score (DMOS) value 
for each distorted image is computed.  
 
The proposed models and other models used for comparison are validated using the LIVE image 
database based on the evaluation metrics as suggested in the video quality expert’s group 
(VQEG) Phase I FR-TV test [31]. A nonlinear regression model is fitted to the DMOS values in 
the database, and calculated image quality metric values (IQ) of the distorted images for each 
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distortion and for each quality assessment model used in comparison. The following 4 parameter 
logistic function is used in the present work. 
 

( )( )( )1 1 *
p

DMOS exp b IQ c d= + − − +  (10) 

 
The nonlinear regression function is used to transform the set of IQ values to a set of predicted 
DMOS values, DMOSp, which are then compared with the actual DMOS values from the 
subjective tests.  The Correlation Coefficient (CC), the Mean Absolute Error (MAE), and the Root 
Mean Squared Error (RMSE) between the subjective scores DMOS and predicted scores 
DMOSp are evaluated as measures of prediction accuracy. The prediction consistency is 
quantified using the Outlier Ratio (OR), which is defined as the percentage of the number of 
predictions outside the range of 2 times the standard deviation of errors between DMOS and 
DMOSp. Finally, the prediction monotonicity is measured using the Spearman Rank-Order-
Correlation Coefficient (ROCC).   
 
Table 1 shows the results for the proposed method to estimate the image quality index PSSIM

e
 in 

comparison with the three image quality assessment models PSNR (Peak Signal-to-Noise Ratio) 
and the Structural SIMilarity quality measure SSIM [14]. The Correlation Coefficient (CC), the 
Mean Absolute Error (MAE), and the Root Mean Squared Error (RMSE) values for the three 
assessment models considered prove that the prediction accuracy of the proposed model is 
superior to the others. The values of the Spearman Rank-Order-Correlation Coefficient (ROCC) 
indicate that the proposed model correlates well with the human judgment. However, the values 
of Outlier Ratio (OR) are inferior marginally when compared with the other two models. This can 
be attributed to the fact that the human judgment is impulsive in case of images with higher levels 
of distortion in contrast to the computational algorithms for image quality assessment.   
 
Figure 4 shows the scatter plots for different distortions in which each data point represents true 
mean opinion score (DMOS) versus the predicted score of one test image by the proposed 
method after the nonlinear mapping. 
 

Model CC ROCC MAE RMSE OR 

White Noise 
PSNR 0.922 0.938 4.524 6.165 0.055 
SSIM 0.94 0.914 4.475 5.459 0.027 

PSSIM
e 

0.967 0.958 3.344 4.073 0.034 

Gaussian Blur 
PSNR 0.744 0.725 8.395 10.501 0.034 
SSIM 0.947 0.940 3.992 5.027 0.034 

PSSIM
e 

0.971 0.966 3.02 3.711 0.041 

Fast Fading 
PSNR 0.857 0.859 6.383 8.476 0.068 
SSIM 0.956 0.945 3.806 4.799 0.055 

PSSIM
e 

0.965 0.964 3.471 4.315 0.041 

JPEG Compression 
PSNR 0.842 0.828 6.636 8.622 0.062 
SSIM 0.891 0.863 5.386 7.236 0.057 

PSSIM
e 

0.916 0.888 4.727 6.393 0.062 

JPEG2000 Compression 
PSNR 0.859 0.851 6.454 8.269 0.059 
SSIM 0.899 0.894 5.687 7.077 0.023 

PSSIM
e 

0.931 0.926 4.754 5.876 0.041 

.  
TABLE 1: Performance comparison of image quality assessment models. 
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6. CONCLUSION 
In this paper, we proposed a full-reference perceptual image quality metric for gray scale images 
based on structural approaches unified with perceptual regions humans attend to in a natural 
image. The local energy model was used to indentify feature rich regions in natural images and to 
formulate a weighting function for distortions a given image. 
 
 

 
 

FIGURE 3:  Scatter plots between DMOS and PSSIM
e
 for different image distortions. 
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The proposed models and other models used for comparison are validated using the metrics 
suggested by VQEG. The results prove that the performance of the metric is close to the human 
(subjective) judgment. The metrics are also found to be superior in performance in comparison 
with the other models of quality assessment considered. The metrics are generic and they are 
applicable to a wide variety of image distortions like white noise, Gaussian blur, fast fading, and 
different compression artifacts. 

 
7. FUTURE RESEARCH 
The present work formulated a framework for the image quality assessment is evolved in which 
the model of identifying perceptual regions and the process of computing the image distortions 
are independent. Such a frame work facilitates a modular approach so that the individual models 
can be modified and optimized independently. As the framework for formulating perceptual quality 
metric is flexible, different combinations of distortion modeling and perceptual region modeling 
can be explored. In the present work, the notion of perceptual regions is used in image quality 
assessment. It can be extended to other possible areas of image processing like face recognition 
and watermarking. 
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