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Abstract 
 
Polarimetric SAR (POLSAR) and multispectral images provide different characteristics of the 
imaged objects. Multispectral provides information about surface material while POLSAR 
provides information about geometrical and physical properties of the objects. Merging both 
should resolve many of object recognition problems that exist when they are used separately. 
Through this paper, we propose a new scheme for image fusion of full polarization radar image 
(POLSAR) with multispectral optical satellite image (Egyptsat). The proposed scheme is based 
on Non-Subsampled Shearlet Transform (NSST) and multi-channel Pulse Coupled Neural 
Network (m-PCNN). We use NSST to decompose images into low frequency and band-pass sub-
band coefficients. With respect to low frequency coefficients, a fusion rule is proposed based on 
local energy and dispersion index. In respect of sub-band coefficients, m-PCNN is used to guide 
how the fused sub-band coefficients are calculated using image textural information.  
 
The proposed method is applied on three batches of Egyptsat (Red-Green-infra-red) and 
radarsat2 (C-band full-polarimetric HH-HV and VV-polarization) images. The batches are 
selected to react differently with different polarization. Visual assessment of the obtained fused 
image gives excellent information on clarity and delineation of different objects. Quantitative 
evaluations show the proposed method can superior the other data fusion methods.    
 
Keywords: Multi-spectral Data Fusion, POLSAR, NSST, m-PCNN. 

 
 
1. INTRODUCTION 

 Image fusion is a process of incorporating different images originating from different sources to 
create more reliable information than that from individual sources, and recently it has received 
great attention in the remote sensing field.  
 
In the processing of optical images, many land cover types and surface materials are identical in 
their spectral characteristics. This leads to great difficulty in image segmentation, classification 
and feature extraction [1] [2]. Usually, Optical satellites use different sensors (visible, near 
infrared and shortwave infrared) to form images of the earth's surface. Different targets reflect 
and absorb in a different way at different wavelengths. Thus, their spectral signatures can 
characterize the targets. 
 
Synthetic aperture radar (SAR) system hits the objects over the earth with a guided microwave 
[3], then the object either absorb or scatter these waves in all directions. Absorption or scattering 
of incident wave depends mainly on the physical characteristics of the object. The SAR system 
records only part of the scattered wave in the direction of the receiving antenna. Some SAR 
systems transmit and receive waves with different polarization (POLSAR). In this, the system 
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records the polarization of returned waves and measures both the intensity and phase of the 
backscattered waves. It mainly characterizes intrinsic structural and dielectric properties of the 
target [3]. 
 
Therefore, the imaging system for an optical satellite images and radar satellite signals are 
evidently different. The optical images are mainly characterized by spectral resolution, which is a 
measure of its ability to discriminate features in electromagnetic spectrum [4]. Polarimetric Radar 
images provide a tool to identify different features based on dielectric properties and surface 
roughness. Integration of spectral characteristics of an object, devised from multispectral images, 
and physical properties (and surface roughness) originated from Polarimetric SAR images will 
provide a great role in many remote sensing applications.  
 
In this paper, we propose a new scheme for integrating Multispectral optical images (MS) and 
Multi-polarization POLSAR images. Non-Sampled Shearlet Transform (NSST) is used to 
decompose the input images into low and band-pass sub-bands. For low frequency coefficients, 
we introduce an adaptive weight fusion structure based on regional local energy and local image 
texture features. Different textural factors, gradient, entropy, and spatial frequency, are taken as 
multiple stimuli to Multi channel Pulse Coupled Neural Network (m-PCNN) to guide the fusion 
process of band-pass sub-bands. The rest of the paper is organized as follows: Section 2 and 3 
discs in the short-term the theory of the NSST and m-PCNN. Section 3 demonstrates the main 
frame of the proposed scheme and pronounces the fusion algorithm. Experimental results and 
the evaluations are discussed in Section 4. We present the conclusions in the last section. 
 
2. POLARIMETRIC SYNTACTIC APERTURE RADAR (POLSAR)  
POLSAR images uses that fact that the status of the received scattered signal reflects the 
characteristics of the illuminated objects such as roughness and dielectric constants [5]. 
Accordingly the polarimetric images can be used efficiently to recognize these properties. The 
scattering matrix [S] is a kind of relation between the incident and scattered wave [5,6] and is 
being expressed by:   
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Where  ��� , ��� , ��� , ��� ���  are the received and transmitted electric fields of corresponding 
polarizations respectively, and Smn is the matrix elements and defined as: 

 

	�� = |	��|�  ����                               (2) 
 
The incident and scattered wave are a complex quantity (amplitude and phase) and usually 
expressed in polarization term (the direction of incident / received wave). Four different 
combinations of transmitted and received polarizations are listed below. 
 
HH: horizontal transmission and reception. 
HV: horizontal transmission and vertical reception. 
VV: vertical transmission and vertical reception. 
VH: vertical transmission and horizontal reception.  
 
A SAR system used in this paper (RADARSAT-2) has a single antenna for both transmission and 
reception, the relation SHV = SVH [7] holds for the rest of this paper. 
 
From equation 2, the main parameters that characterized POLSAR data are the amplitudes 
(|SHH|, |SHV |, |SVV |) and the phases (φHV and φVV). The phase values are not absolute values [7], 
it is a relative to a certain phase plan, generally HH-polarization element is chosen as a reference 
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phase. In this paper, we use the first three parameters, |SHH|, |SHV |, |SVV |, to be fused with 
multispectral Egypt-sat data (see app-1). 
 
3. THE NON-SUBSAMPLED SHEARLET TRANSFORM (NSST) 
Multi-resolution analysis tools, Discrete Wavelet Transform (DWT), have been widely applied to 
image fusion [8, 9]. DWT are mainly depends on multi-scale geometric analysis, and has many 
advantages such as localization and direction. On the other hand, the wavelet transform suffers 
from imperfect directionality (directional selectivity is very limited and cannot get optimal detail 
information) moreover; it is not shift-invariant, result in degraded information and bad fusion 
output [10]. In order to get better signal representation researchers introduce new signal analysis 
tools and used extensively in image fusion, including: Curvelet [11], Ridgelet [12], Contourlet 
[10,13], and so on. 
 
Easley et al. proposed Non-Subsampled Shearlet Transform (NSST) [14], which is the mixture of 
non-subsampled Laplacian pyramid transform and different shearing filters. NSST provides a 
multi-scale and multi-directional framework which decomposes into one low-frequency sub-band 
(signifies the approximation component of the source image) and a series of directional band 
pass sub-bands. NSST also satisfies the prerequisite of the shift-invariance property. So it can 
capture more further information on different directional sub bands than that of the wavelet 
transform and contourlet transform. The decomposition of shearlet is close to contourlet 
transform, but it has an advantage over contourlet transform that the number of directions in 
NSST for the shearing filter is non-limited. 
 
Additionally, inverse contourlet requires inverting directional filter banks, instead of a summation 
of the shearing filter in case of inverse shearlet transform.  Consequently the implementation of 
shearlet is more efficient computationally [14].  
 
Through this work, we used NSST to decompose the input images into low and sub-bands 
coefficients, apply a fusion rule followed by the inverse of NSST to construct the fused image.  
 
4. PULSE COUPLED NEURAL NETWORK 
The Pulse Coupled Neural Network “PCNN” is a neural model with single layer architecture. To 
model an image with a PCNN, we consider the following: the input neurons represent image 
pixels, pixel’s information (e.g. Intensity or texture) are represented as an external stimulus 
received by each neuron and the relation between neighbored pixels is represented as internal 
stimuli fed to each neuron. In this model each neuron connects with its surrounded neighbors. 
PCNN uses an internal activation system to accumulate the stimuli until it surpasses a dynamic 
threshold, resulting in a pulse output. Images generated at different iterations indicate the fine 
details of the input image (edges and small objects). The PCNN model is fully described in [15, 
16].  
 
Many researchers use PCNN for data fusion for instant Wang and Ma design single PCNN for 
medical image fusion [17, 18]. Miao introduces an adaptive system for image fusion with different 
spatial resolution by the adaptive linking coefficient of PCNN [19]. Others integrate PCNN with 
multi-layer decomposition to get the fused image [20, 21]. 
 
Recently a parallel version of PCNN is introduced in which many PCNNs are working in parallel, 
in this each network operates on a separate channel of the input [17]. We present an image 
fusion method based on dual pulse couple neural network [22]. Wang presented an excellent 
review of application of PCNN [23]. 
 
Our proposed scheme of data fusion is based on m-PCNN that is a modified version of PCNN. 
This model is proposed by Wang and Ma, [17, 18]. m-PCNN can extend the number of inputs that 
depends on practical request. We use some texture information as multiple stimuli of m-PCNN, 
and the output is used as a weight guide for the fusion process. 
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5. GENERAL FRAMEWORK OF MULTISPECTRAL-POLSAR FUSION 

ALGORITHM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Through this paper, we assume that Egyptsat, and POLSAR images have been co-registered, 
and noted by R (x, y), M (x, y) respectively. F (x, y) is the output fused image. Figure-1 
demonstrates the proposed framework of the image fusion process. As a summary, the fusion 
approach is listed in the following steps. 
 

1- POLSAR image has been de-speckled and the Egyptsat image is down-sampled (from 
7.8 to 7 meters) to match the POLSAR spatial resolution.   

2- Low frequency and band-pass sub-bands coefficients of the source images are 
calculated using NSST.  

3- The low-frequency sub-band coefficients and the directional band-pass sub-bands 
coefficients of the source images are merged according to specific rules, the rules will be 
introduced in the next sections. 

4-  Calculate the inverse NSST to get the fused image F (x, y). 
 
5.1  Fusion Rule for Lowpass Coefficients 
As the lowpass sub-band coefficients mainly retain the main energy and represent the 
approximation component of the source images, fusion procedures should be adopted to 
preserve this information.  Many authors process the lowpass sub-band coefficients use direct 
averaging rule [24], which is simple, however, this scheme always results in a low-contrast effect, 
due to fact that both information (3-bands) of POLSAR and multispectral images are 
complementary and both of them are desirable in a fused image. A new average weighted 
formula has been presented to model fusion hierarchy based on regional local energy and local 
image texture features. 
 
It is difficult to know or even estimate, which bands from POLSAR and multispectral should be 
fused together (in our case we have three-bands for multispectral image and three-bands 
represent POLSAR image). Figure 2 shows a schematic diagram of our method to fuse lowpass 
coefficients, and the procedures are summarized as follows:  
 

1- For all bands, the local energy (equation-5) is calculated for each coefficient, using its 
neighborhood (5 x 5 in our case). This is done for the multispectral and POLSAR 
bands.  

Fusion rule 
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FIGURE 1: Block diagram of image fusion based on the NSST. 
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2- Coefficient retains maximum value of energy from POLSAR is fused with a coefficient 
that has the least energy from multispectral (equation-3). This represents the first-
band first-fused coefficient. 

3- To get the second-band first-fused coefficient, next coefficient with maximum energy 
from POLSAR is fused with preceding minimum energy from multispectral coefficient. 

4- Finally, to get the third one, coefficient with minimum energy from POLSAR is fused 
with maximum energy from multispectral images. The mathematical notation of the  
process calculations is described below. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

The coefficient of the fused image at location (x, y) can be calculated by: 
 

��  (�, �) =  �� � (�, �) +  �"�#(�, �)
2               (3) 

 
Where:   
 � (�, �), �#(�, �) , and ��(�, �) denote the lowpass subband coefficient located at(�, �) for 
POLSAR, multispectral and fused images respectively.  
 
The value of � (�, �) is chosen among the coefficients of three POLSAR bands according to the 
following: 
� (�, �) = &('��(')'  (��**, ��*+, ��++))                              (4)                       
 
Where: C (…) is the lowpass suband coefficients. 
 
��--(���./�) is a parameter used to measure the textural uniformity of an image,  
ℎℎ, ℎ1 2. 11, and calculated as follows: 
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Where C is the lowpass coefficients of  HH, HV or VH,  and n and m are those defined the 
neighborhood areas. 
 
In contrast the value of �#(�, �) is picked from the coefficients of three multispectral bands 
according to the following:  �#(�, �) =&('(�(')' (��:�, ��:", ��:;)  ), again C (…) is the 
lowpass suband coefficients. 
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FIGURE 2: Block Diagram of Image Fusion rules for Low Coefficients. 
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The weights in the equation (3) can be calculated as follows: 
 

�� = '��(')' (��** , ��*+ , ��++)
'(�(')' (��:�, ��:", ��:;)                 (6) 

                                                                                                                       

�" = 1
 ��

                                                                 (7) 

 
In this (> �� > 1: i.e.) maximum energy picked from POLSAR image is greater than the 
minimum energy of multispectral image, the proposed weighting strategy leads to maximize the 
contribution of POLSAR image and minimize that of multispectral image. 
 
On the other hand  (> �� < 1    i.e.) minimum energy picked from multispectral image is greater 
than the maximum energy of POLSAR image, again our strategy leads to maximize the 
contribution of multispectral image and minimize that in POLSAR image. The previous 
procedures are repeated with next maximum and minimum values to obtain 3-bands fused 
image. 
 
In any case, the high-energy contribution is maximized, while the minimum energy contribution 
minimizes through generation of the fused image. This procedure can overcome the low contrast 
drawback of weighting average scheme. 
 
To fine-tune the results of fused coefficients and to obtain better effect than that explained earlier, 
we modified equations (6, 7) taking into account texture information when calculating the weight 
factor. We added a dispersion index “D” which is a normalized degree of dispersion of a 
probability distribution: it is a measure used to enumerate whether a set of observed occurrences 
is clustered or dispersed with respect to a standard statistical model. It is defined as the ratio of 
the variance “B""  to mean “D” and calculated as an average mean for both images. 
 

                                          E =  FG 
H                                                 (8)               

 
Then the new weight    
                                         �J� = �� + KL

KM                                               (9) 

 
Where EO ��� E� are dispersion index of POLSAR and multispectral images. 
 
5.2  Fusion Rule for High Frequency Sub-band Coefficients 
The image edges, corners and other fine details are concentrated in the high-frequency 
components obtained from shearlet transform. Thus, the clarity and distortion of the fused image 
depend mainly on how these components are fused. Voting strategy has been popularly applied 
to composite the high-frequency components. It relies on constructing decision map using 
different parameters to regulate where the fused coefficients are from image ‘A’ or image ‘B’.  
 
In most existing fusion algorithms, usually, some textural information is used to decide from which 
the fused image come from [25]. Features such as the entropy, gradient, variance, and the spatial 
frequency [26, 27] can represent image texture information. Essentially, it can reflect detailed 
information in different ways, and can be used to discriminate sharp and indistinct regions. These 
textural measurements can be used independently [26, 27] or may be joint using some specific 
rules [28]. In our method, we present some texture information (the entropy, gradient and spatial 
frequency) as an indicator of weighting factor in constructing a fusion rule. These different texture 
factors are taken as multiple stimuli of m-PCNN. Then the output determines the fusion weight 
according to the values coming from PCNN that reflect the overall image clarity.  The whole 
process shown in figure 3 and can be summarized as follows: 
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For the current subband, let &PQ,R(�, �) be the band-pass coefficient at a location (�, �) in the S�* 

band at T�* level, � represents HH, HV, VV, b1, b2 or b3.  
 
For the same subband, calculate the maximum gradient(UVWXY), entropy (�ZWXY), and spatial 
frequency (	>WXY) values among all bands. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

UVWXY = '��(')' ( UV(&PQ,R(�, �))     ∀(�)              (10) 

�ZWXY = '��(')' ( �Z(&PQ,R(�, �))     ∀(�)              (11) 

	\WXY = '��(')' ( 	\(&PQ,R(�, �))     ∀(�)                   (12) 

 
Where:  UV(&PQ,R(�, �)) is the gradient of the high-pass coefficient at location  (�, �) in the S�* 
subband at T�* level. Similarly  �Z(&PQ,R(�, �))  ���  ]>(&PQ,R(�, �))  are the largest value of entropy 
and spatial frequency respectively of the high-pass coefficients. 
 
Maximum gradient, entropy, and spatial frequency will be used as different features of image to 
motivate dual-channel m-PCNN. The fusion will be done between the three winner bands (bands 
that have maximum gradient, entropy and spatial frequency). We should keep track which bands 
got those maxima. The coefficient of the fused image at location (x, y) can be calculated by: 
 
&��  (�, �) =    ^

 ; ∑ �̀;̀6� (�, �)                                                                        (13) 

 
Where:   
 �̀ (�, �) Denote the high-pass subband coefficient located at(�, �) with a maximum value of 
gradient, entropy, and spatial frequency. W is the weight factor outputs from m-PCNN.  
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5.3  Assessment Criteria 
The visual contrast between the fused images and original images are conducted. Furthermore, 
quantitative analysis is also applied to the results of different fusion algorithms in terms of 
correlation coefficients, entropy, average gradient [29] and the Qcd/e[30]. The clarifications of 
these measures are discussed below. 
 
The correlation reflects the amount of similarity of two images. The average gradient mirrors the 
difference between image structure (sharper image normally has a greater average gradient), the 
entropy specifies the overall randomness level in the image (higher value of entropy, more 
detailed information will be contained in the image), While fgh/�   measures the amount of edge 
information transferred from the source images to the fused image using a Sobel edge detector, 
its larger value, imply better fusion result is. 
 
In the two images f(x,y) and B(x,y) of size M x N, the correlation coefficient of each band is 
defined as: 
 

&2..�S�i2� j2�>>(j(��i = ∑ ∑ �( k>(�, �) − �g k )  ×  (n(�, �) − �h k )
∀o ∀-

p∑ ∑ q( k>(�, �) − (�r k )" k 
   × ∑  ∑  ∀o∀- �( kn(�, �) − (�h k )" s∀o ∀-
     (14)    

 
Where Ef and EB are the mean of two images, respectively. 

�1�.�/� /.��(��i =  �
(#7�)(t7�) ∑ ∑ p�

" �ukv(r(-,o)
v- w" + xv(r(-,o)

vo
k"y�∀t∀#                                                (15)           

 
                                   ��i.2z� =  − ∑ z(S) ln z(S)∀Q                                                                 (16) 
 
Where z(S) means the probability of the gray value  (S) appearing in the image. 
 

                   fgh/�=
∑ ∑ (|}~(�,�)�}(�,�)�|�~(�,�)��(�,�))�M������

∑ ∑ (�}(�,�)���(�,�))�M������
                                                    (17) 

 

Where Qce(n, m) = Q�ce(n, m)Q�ce(n, m); Q�ce(n, m) and  Q�ce(n, m) are the edge strength and 
orientation preservation values respectively; n, m represent the image location; and N ,M are the 
size of images. Qde(n, m) is similar to Qce(n, m). Wc(n, m) and Wd(n, m) reflect the importance of 

Qce(n, m) and Qde(n, m) ,respectively. The dynamic range of  Q��
�  is [0 1], and it should be as 

close to 1 as possible. 
 
6. EXPERIMENTAL RESULTS 
 
Data fusion algorithms in literatures take advantage of the complementary spatial/spectral 
resolution characteristics of multi-spectral and panchromatic data for producing spatially 
enhanced multi-spectral observations. In our instance, spatial resolution is almost the same while 
the complementary information resides in spectral bands. We seek to integrate information from 
Red, Green and infrared bands (exist in Egyptsat images) with other information originated from 
POLSAR data that represent geometric and physical characteristics of objects 
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The proposed scheme is used to merge multispectral, Egyptsat, image (Band 1, Band 2 and 
Band 3-see-App1), with scattering matrix of POLSAR with HH, HV and VH polarization taking into 
account that HV=VH. The POLSAR data set used is C-band Radarsat-2 (RS-2) data in a full 
parametric mode. Spatial resolution of POLSAR is 7 m; while Egyptsat is 7.8 m., Speckles of 
POLSAR are reduced using enhanced LEE filter [31], while the spatial resolution of Egypt sat is 
down-sampled to match that of POLSAR. The data set has been accurately co-registered. To 
illuminate the results, three batches (pat-1, pat-2 and pat-3) of images are used as shown in 
figure 4. The batches are carefully chosen to be sensitive to radar-objects interaction (i.e. vertical 
and horizontal polarized). Comparing the proposed scheme with traditional methods [32] used in 
remote sensing such as principal component, brovey, IHS… is not appropriate in our case, since 
these techniques aim to merge multispectral with PAN SAR images. 
 
In order to evaluate the proposed method we had made a comparison with three fusion methods, 
SIST-based [33], PCNN-based [22], and Contourlet-based [13]. In these methods, the fusion 
process is performed separately with respect to 	��  ,	�� and 	�� , then the fused results are 
displayed in RGB. Moreover, the proposed scheme is compared with that proposed by Lei Wang 
that has the ability to fuse two multispectral images [34]; he used Hidden Markov Tree (HMT) in 
SIST domain to perform fusion process. 
 
 
 
 
 
 

FIGURE 4: Three Input batches a-b-c: Multispectral images (in RGB color composite). b,d,f: C-band 
raw polarimetric SAR image (R=HH,G=HV,B=VV), copyright (MDA) 

          (a)                                      (b)           (c)                                 (d)         

          (e)                              (f) 
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(c) (d) 



Gh. S. El-Tawel & A. K. Helmy 

International Journal of Image Processing (IJIP), Volume (8) : Issue (6) : 2014 507 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows the source images used in this research. We use three batches of images in the 
fusion experiment; the images are selected to react differently with different POLSAR 
polarization.  One group focuses on a hilly area, second emphasis flat region and the last one 
contain both of them. Figure 5 shows the fusion results of batch-1. Generally, although all 
methods inject fair information of the source images into the fused image, but they fail to achieve 
acceptable transfer of information, specifically that related to low frequency regions, from input 
images to the fused image.  To clarify the visual assessment, figure 6 shows closer look of these 
images. 
 
Closer looks at these results disclose the following: 
 
As can be seen in figures 5 and 6, the fused image, which is obtained by HMT-based, presents 
low contrast and vague attendance; Moreover,  it showed a loss of edge information and mixing 
of color in low frequency sub-bands, this  due to only use of intensity component in the fusion 
process [34].  
 
The fused image, SIST-based Method, lost information to some extent in low frequency 
subbands. In addition, edges suffer from over smoothness.  
 
The fused images outs from Contourlet-based appear noticeable noise at high frequency regions 
(the edges), as it does not have shift-invariant, which leads humble visual effects.  
 
PCNN method shows an improvement in visual effects, although it suffers from overall haziness 
appearance. The proposed methods introduced significant migration of information from input 
images to the fused one in both low and sub-bands frequency. 
 
 
 
 
 

FIGURE 5: The fusion results: of  Fig. 4 (a) and (b): (a)–(e) fused images using the proposed method, 
SIST-based, Contourlet-based, HMT-based and PCNN-based, respectively. 

 

(e) 
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According to the quantitative evaluation, table-1 lists different metric measures used through this 
study, best values achieved by the proposed model regarding the amount of information, 
transferred from input images to the output, and the strength of the edges.  Zoomed areas of the 
second and third batches of the image are shown in figures 7, 8. Tables 2, 3 show the 
quantitative measures of fused images. 
 
 
TABLE 2: Comparison of fusion results with different fusion methods (batch-2, the radar image is sensitive   

to horizontal polarization, it is almost flat region). 
 

 Proposed 
Model 

SIST-based Contourlet -
Based 

HMT-Based PCNN-Based 

Correlation 0.88 0.81 0.78 0.7 0.785 
Average-gradient 6.192 6.1 5.87 5.4 5.7 

Entropy 7.069 7 7.1 6.5 6.9 
���/� 0.75 0.7 0.66 0.711 0.74 

 

TABLE 1: Comparison of fusion results with different fusion methods (batch-1, the radar image is sensitive   
to vertical polarization, it is a steep region) 

 

 Proposed 
Model 

SIST-Based   Contourlet-
Based 

HMT-Based 
 

PCNN-Based 
 

Correlation  0.88 0.85 0.83 0.8 0.83 
Average-gradient 8.644 8.1 8.8 7.8 8.4 
Entropy 8.457 8.2 8.5 7.38 8.1 

���/� 0.792 0.77 0.73 0.61 0.69 

FIGURE 6: Zoomed shot of the fusion results: (a) and (b): Multispectral and POLSAR input images. (c)– (g): 
zoomed area of fused images using the proposed method, NSST-based, Contourlet-based, HMT-based and 

PCNN-based respectively. 
 

(a) (b) (c) (d) 

(e) (f) 

 
(g) 
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Figure 7, 8 give same indication, some high frequency components eliminated from fusion 
results; it was pointed by the yellow arrow in figure 7.  In Figure 8, it is found that the valley 
structures are fully preserved in the proposed method, while the color information is variegated 
between multispectral and POLSAR images. 
 
 
TABLE 3: Comparison of fusion results with different fusion methods (batch-3, the radar image is sensitive 

to both horizontal and vertical polarization). 
 
 Proposed 

Model 
SIST Contourlet -

Based 
HMT-Based PCNN-Based 

Correlation 0.91  0.91 0.88 0.73 0.86 
Average-
gradient 

7.2  6.87 6.99 7.04 5.9 

Entropy 8.15 7.59  8.1 7.9 6.5 
���/� 0.68 0.679  0.523 0.61 0.59 

 
 
 
 
 
 
 
 
 
 

(a) (b) (c) 

(d) (e) (f) 

(g) 

FIGURE 7: Zoomed area of the second batch of images: (a) and (b): Multispectral and POLSAR input 
images. (c)– (g): fused images using the proposed method, NSST-based, Contourlet-based, HMT-based 

and PCNN-based respectively. 
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7. CONCLUSION  
This research investigates the fusion process of full polarimetric POSAR data, RS2, with 
Multispectral optical imagery (Egyptsat).  By applying the fusion process, we obtain a new image 
that can be considered neither optical nor POLSAR. It is a synthesized image that is produced for 
better image understanding. To meet this requirement, we propose a new weighting average 
scheme based on NSST and m-PCNN. Firstly, input images are transformed into low and band-
pass sub-bands.  Low frequencies of both images are fused to each other by relating maximum 
and minimum energy of both images-bands with a reciprocal way, in addition, the fusion process 
takes into account a texture distribution by adding a dispersion index to the fused coefficients. 
Secondly, m-PCNN is used to guide the fusion process of band-pass sub-bands by incorporating 
edge information measurements. The experimental results indicate that the fused image has 
strengthened object structure detail. 
 
 
 
 

FIGURE 8: Zoomed area of the third batch of images: (a) and (b): Multispectral and POLSAR input images. 
(c)– (g): fused images using the proposed method, NSST-based, Contourlet-based, HMT-based and PCNN-

based respectively. 
 

(a) (b) (c) (d) 

(e) (f) (g) 
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Appendix 1. The spectral resolutions of the Egyptsat-1 data 
  
Bands Description Wavelength 

(μm) 
Resolution 
(m) 

Band 1 Green 0.51-0.59 7.80 
Band 2 Red 0.61-0.68 7.80 
Band 3 Near infrared 0.80-0.89 7.80 
Band 4 Panchromatic 0.50-0.89 7.80 
Band 5 Mid infrared 1.10-1.70 39.5 
 
 
 
 
 


