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Abstract

Studies has been made in this paper, on multistage decision problem, fuzzy dynamic
programming (DP). Fuzzy dynamic programming is a promising tool for dealing with
multistage decision making and optimization problems under fuzziness. The cases of
deterministic, stochastic, and fuzzy state transitions and of the fixed and specified,
implicity given, fuzzy and infinite times, termination times are analyzed.

Keywords: Multistage decision process, multistage decision making under fuzziness, multistage
optimization problem under fuzziness, fuzzy dynamic programming.

1. INTRODUCTION

Multistage decision problems usually arise when decisions are made in the sequential manner over time
where earlier decisions may affect the feasibility and performance of later decisions. Dynamic
programming approach is used in such multistage decision problems which are based on Bellman'’s
Principle of Optimality.

The common elements of dynamic programming models include decision stages, a set of possible states
in each stage, transitions from states in one stage to states in the next, value functions that measure the
best possible objective values that can be achieved starting from each state, and finally the recursive
relationships between value functions and different states.

A decision made at a given stage, and at a given state, induces a change in the output of the process.
The performance of the process is measured over some planning horizon, and is expressed by an
aggregate of partial scores that express the performance of the particular stage decisions. An optimal
sequence of decisions or controls at the consecutive stages over the planning horizon is then sought.
Dynamic programming is a powerful formal tool for dealing with a large spectrum of multistage decision
making and control problems. In mid 1950’s (cf. Bellman, 1957), dynamic programming has become a
standard tool in many fields including operation research, control theory and engineering, engineering,
computer science, etc.
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Dynamic programming has been one of the earliest general techniques to which fuzzy sets theory has
been applied (cf. Chang, 1969; Bellman and Zadeh 1970, Esogbue and Ramesh, 1970).

2. MULTISTAGE DECISION MAKING PROCESS

The multistage decision making process can be separated into a number of sequential steps, or stages,
which is completed in one or more ways. The options for completing stages are known as decisions. The
condition of the process at a given stage is known as state at that stage; each decision effects a transition
from the current state to a state associated with the next stage.

The multistage decision making process is finite if there are only a finite number of stages in the process
and a finite number of states associated with each stage. Many multistage decision processes have
returns (cost or benefits) associated with each decision, and these returns may very with both the stage
and state of the process. The multistage decision process is deterministic if the outcome of each decision
is known exactly.

Mathematical Program

The mathematical program

n

optimize  Z=) f,(x,)

i=1

subject to z x; <b
i=1
(1)
xl.ZO, i=12,....n
in whichfi(xi) 1=L2,... >*" are known (non-linear) functions of a single variable and b is a non-

negative integer.

2.1. PRINCIPLE OF OPTIMALITY IN DYNAMIC PROGRAMMING

Dynamic programming is an approach for optimizing multistage decision making processes. It is based on
Bellman’s principle of optimality. An optimal policy has the property that, “regardless of the decisions
taken to enter a particular state in a particular stage, the remaining decisions must constitute an optimal
policy for leaving that state”. This principle, begin with the last stage of an n-stage process and determine
for each state the best policy for leaving that state and completing the process, assuming that all
preceding stages have been completed.

Let U= the state variable, whose values specify the states
f( ) optimum return from completing the process beginning at stage J in state
d u)= . i . m . (u
f( ) decision taken at stage J that achieves =/

The entries corresponding to the last stage of the process, n, (u) and d, (u) are generally
straightforward to compute. The remaining entries are obtained recursively; i.e. the entries for J th stage

(j =12,..... = 1) are determined as functions of the entries for the (J + 1)th stage.
The dynamic programming approach is well suited processes modeled by system Eq.(1) in which each

decision pays off separately, independent of other decisions. For system Eq.(1), the value of , (u) for
u=0,L2,...... b

are given by
m, (u) = optimum {f, (x)}
0<x<u (2)
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The recursion formula is

m; (u) = optimum {fj (x)+ m;,, (1 — x)Jl
0<x<u (3)

’1. In Eq.(2), the decision variable * (which is denoted Y in Eq.(1)) runs

through integral values, as ¥ =% in Eq.(8). That value of X which yields the optimum in Eq.(2) is

taken as d, (u) and that value of * which yields the optimum in Eq.(3) is taken as 4 (u) If more than
one values of X vyields either optimum, arbitrarily choose one as the optimal decision. The optimal

is Z* :ml(b)

solution to program Eq.(1) the optimal return from completing the process beginning at

*

state? with O units available for allocation. With Z determined, the optimal decisions
are found sequentially from

x;k :dl(b)
% =d;(b-x)
X =dyb-x ~x)

x,i:dn(b—xf—x;— ....... —x, )
(4) 2.2. DYNAMIC PROGRAMMING WITH DISCOUNTING

If money earns interest at the rate of i per period, an amount p(n) due " periods in the future has the
present (or discounted) value

1

p(0)= anp(”), where 1+i (5)
The multistage decision making processes, the stages represent time periods and the objective is to

optimize a monetary quantity. The solution by dynamic programming, the recurrence formula for M (u)

m;,. ()’)
(y)

is discounted to its present value at the

the best return beginning in stage J and state ¥, involves terms of the form , the best return

beginning in the stage Jte (€ time periods after stage j) and state Y . If Mise is multiplied by “C,

m;,. ()’)

beginning of stage J . So mi(u) will be discounted to the beginning of stage 1, which is the start of the
process.

where & is the above-defined discount factor, then

2.3. STOCHASTIC MULTISTAGE DECISION PROCESSES

The multistage decision making process is stochastic if the return associated with at least one decision in
the process is random. This randomness generally two ways: either the states are uniquely determined
by the decisions but the returns associated with one or more states are uncertain or the returns are
uniquely determined by the states arising from one or more decisions are uncertain.

If the probability distributions governing the random events are known and if the number of stages and
the number of states are finite, then the dynamic programming approach is useful for optimizing a
stochastic multistage decision making process. The general procedure is to optimize the expected value
of the return. In those cases, where the randomness occurs exclusively in the returns associated with the
states and not in the states arising from the decisions, this procedure has the effect of transforming a
stochastic process into a deterministic one.
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3. MULTISTAGE DECISION MAKING UNDER FUZZINESS
3.1. DECISION MAKING UNDER FUZZINESS

The basic elements of [19] general approach are: a fuzzy goal G in X , a fuzzy constraint C in X ,
and a fuzzy decision D in X ; X is a (non-fuzzy) space of options. The fuzzy relation

oy (x)= e (X) A 15 (x), ¥V xe X (6)

which expresses the “goodness” of an xe€ X as a solution to the decision making problem. Considered,
1 for definitely good (perfect) to O for definitely bad (unacceptable), through all intermediate values. The

“anb= min(a,b)” operation is commonly used and is assumed throughout this paper though many
other operations are also employed ([11] and [12]).

For an optimal (non-fuzzy) solution, an x€ X such that

8= sup () =supliee ()1 1 () 4

xeX
is a natural (but not the only possible [11]) choice.

The multiple fuzzy constraints and fuzzy goals is defined in different spaces. Suppose that the fuzzy
constraint C is defined as a fuzzy setin X = {x} the fuzzy goal G is defined as a fuzzy setin ¥ = {y}

and a function f:X -7, y=f(x) is known. X and Y may be sets of decisions and their
outcomes, respectively.

Now, the induced fuzzy goal, both G* and C are defined as

U (x)=u,[f(x)] for each xe X (8)
and the (min-type) fuzzy decision is
Hp (X)Z,UG»()C)/\,UC()C)Z,UG [f(x)]/\/uc(x)’ foreach xe X (9)

The n fuzzy constraints defined in X , C,,C,.......,C,, m fuzzy goals definedin Y, G,,G,,.......G

n’

and a function y = f(x), then the (min-type) fuzzy decision is

(%)= phe [F N A cooom pt [F (I A pre () A coa gt (x) - foreach xe X (10)

Now we proceed the multistage decision making case within the above general framework.

3.2. MULTISTAGE DECISION MAKING (CONTROL) UNDER FUZZINESS

By [11], [12] and [19], we assume, the dynamics of the deterministic dynamic system under control is
described by a state transition equation

X, = f(x,,u,), t=0,1,.......
(11)
where x,,x., € X ={x}=1{s,,5,,.......5, } are the states at time (stage) # and ¢ +1, respectively
and ue U ={ut={c,.cpr...... ., } is the decision (control or input) at 7; X and U, are

assumed finite.
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FIGURE 1: A General Framework For Multistage Decision Making Under Fuzziness

The multistage decision making (control) under fuzziness may be depicted in Fig.1. We start from an
initial state at stage (time) IZO, %0 make a decision %0 attain a state, at time t:1, X1 make a
decision “1,...... Finally, being at ! = N -1 jn *n , we apply Un-1 and attain the final state ™V .

The state transitions are given Eq.(11), the consecutive decision U are subjected to fuzzy constraints C'

1 — —
and on the states ! fuzzy goals G" are imposed, t=0L..... N -1 The multistage decision
making process is evaluated by the fuzzy decision which is assumed a decomposable fuzzy set in
UxXX..... XUXX s

i, g u ... ,uN_1|x0):,uC0(u0)/\,uGl(xl)/\ .......... At () A 1 (xy)
N-1
= A e ) g ()]
(12)
where n is some termination time is fixed. The basic case, the optimal sequence of
decisions u,,u; ,.....,u_,, such that

ES ES £
gy (... ,uN_1|x0)  max Lucn JA g (X)) A e /\ﬂcw—l(“N_l)/\/lGN(xN)]
0-"1 N-1
N-1
= max A [ ) A gy ()]

Ug Uy yeestly_y 1=0

(13)

For simplicity, a fuzzy goal, u_. (x,) is only imposed on the final state x,. Then the
fuzzy decision is

g u ... ,uN_1|x0):,uC0 (o)At (X)) A A () A g (xy)
(14)

and the problem is to find u,,u, ,.....,uy_,, such that
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gy (.. ,u;_1|x0) , max L“cn JA g (X)) A e A () A p (xy )]

(15)

This general problem formulation may be extended, mainly with respect to ([11] and

[12]):

° The type of termination time: fixed and specified in advance, fuzzy implicitly given
infinite.

° The type of the dynamic system: deterministic, stochastic, fuzzy and fuzzy

stochastic.

° The type of objective function: cost minimization, profit/benefit maximization and
fuzzy

criterion set based satisfactory degree maximization, and virtually all cases a
dynamic-

programming-type algorithm can be devised.

4. FUZZY DYNAMIC PROGRAMMING FOR THE CASE OF A FIXED AND
SPECIFIED TERMINATION TIME

The case of a fixed and specified (in advance) termination time is basic, and provides a suitable point of
departure for extensions. Here we discussed a deterministic, stochastic, fuzzy dynamic system, and fuzzy
criterion set dynamic program.

4.1. THE CASE OF A DETERMINISTIC DYNAMIC SYSTEM

A deterministic system is described by its state transition Eq.(11), ie. x,, =f(x,,u,);

X, €X =155 ns, i u, eU=1{c,cp... <, }; t=01....,N—1, x,€ X is the initial
state and N <o is a fixed and specified termination time. The fuzzy constraints are
Mo (uo) .......... Ny (uN_l) and the fuzzy goal is .y (xN). The fuzzy decision is

,uD(uo,ul, ..... ,uN_1|x0):,uC0(u0)/\ .......... /\,uCN,l(uN_l)/\,uGN(xN) (16)

and to find uy,u, ,.....,uuy_,, such that

,uD(u;,uf, ..... ,u;71|x0) = max Lu N (779 P A M (”AH)/\,UGN (x, )] (17)

Uy sennsly )

Clearly, the last two terms are 4 ., (MN_1)/\,UG~ (f()cN_l,uN_1 )) depend on u, _,, hence Eq.(17) can
be rewritten as

gy (.. ,u;_1|x0) =, max lLuCO .......... A (g ) A g (xy )]
= ina)u( ] [;UCO (uo )/\ """ AN Mo (MN—2 ) /A max (/UCN—I (MN—I ) AN M x (f (xN—l JUy )))} (18)
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On repeating this backward iteration for u,_,,u,_,,.....,U,, we obtain the set of dynamic programming
recurrence equations

Hen xN - maXLU MN - /\IUGN i+t (XN—1+1 )]
Xy i = f(xN_i,uN_i), i=12,.... N

where 4 v () is afuzzy goal at t = N —i induced by afuzzy goalat r = N —i+1.

An optimal sequence of decisions sought, u,,u, ,.....,iy_, iS given by the successive maximizing values
of u,_, in Eq.(19). It is convenient to represent the solution, u: by an optimal policy a,* :X > U, such

that u: = a,* (x, ) t=01,........ ,N —1, i.e., relating an optimal decision to the current state.

4.2. THE CASE OF A STOCHASTIC DYNAMIC SYSTEM

The stochastic system is assumed to be a Markov chain whose temporal evolution is described by a
conditional probability P( ,+1|x,,u ) such that x,x,, €X= {sl,sz, ...... ,sn},

u, €U ={c,,Cyprrn... ., }; x,€ X is an initial state, =0,1,....,N—1 and N <o is a fixed

t
and specified termination time. Now the following two problem formulations:

t+1

. due to [19]: find an optimal sequence of decisions u,u, ,.....,uy_, to maximize the
probability of attainment of the fuzzy goal, subject to the fuzzy constraints, i.e.

U, (u;,ul*, ..... ,u;_1|x0) max lLu .......... A (g ) A g (xy )] (20)

Ug,u

where the fuzzy goal is viewed to be a fuzzy event in X whose (non-fuzzy) probability is [17],

E:UGN xN ZP(XN|XN 1 UN- 1):” N('XN) (21)
xyeX
. due to [14]: find an optimal sequence of decisions u,u,,.....,uy_, to maximize the

expectation of the fuzzy decisions membership function, i.e.
R T ,u;_l|x0):u max ELu .......... A (g ) A (xN)] (22)

These formulations are clearly not equivalent.

Bellman and Zadeh’s approach [19]
Since in Eq.(20), M v (uN_l)/\ E,uGN [f()cN_l,uN_1 )] depend only on u,_,, the next two right-most

terms depend only on u,_, etc., the structure of Eq.(20) is essentially the same as that of Eq.(18), and
the set of fuzzy dynamic programming recurrence equation is

Hon xN - max|,u uN - /\E;UGN i+l (XN i+l )J

E;UGN i+l (XN z+1 ZP(XN t+l|xN 1> Un- 1) Hon-in (xN—iH); i=12,...,N

xy-i+€X
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. . * . .. * * *
and we consecutively obtain u,_, or optimal policies a,_;, such that uN_i:aN_i(xN_i),

Kacprzyk and Staniewski’s approach [14]

To solve problem Eq.(22), first introduce a sequence of functions hl.:XxXlU—>[0,1] and
=

Jj+l

gj:Xxl)gU—>[0,1];i:0,1.2, ...... N j=12,....,N—1, such that

ho(xo):n}laxé’o(xo’“o)

The consecutive decisions and states are u,u,,........ U and X, Xy ,X;, respectively, then g is

E3 ES E3

the expected value of (4, ( |x0) provided that the next decisions are optimal, i.€. #,;,U 5 ,........ Myt

k
can be shown ([11], [12] and [14]), that there exist functions @), : X X XIU — U , such that
=

Then, an optimal policy sought, a,* ,t=0,12,....... ,N —1 is given by

a; =, (xo)

a;k (xo’x1 ) =0, (xna; (xo ))

It is depends not only on the current state but also on the trajectory.

4.3. THE CASE OF A FUZZY DYNAMIC SYSTEM

In this case the system is fuzzy and its dynamics is governed by a state transitions equation
Xt+1 :F(X,«,U,)s t 20,1,2, ......... (26)
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where X,, X, are fuzzy states at time (stage) t+ and 7#+1, and U, is a fuzzy decision at ¢
characterized by their membership functions 1, (x) My ( ,+1) and 4 (u,) respectively.

t+1

Eq.(26) is equivalent to a conditioned fuzzy set My (x,+1|x,,u,) ([11] and [12]).

Baldwin and Pilsworth [13] proposed a dynamic programming scheme. First, for each
t=012,......... ,N -1 a fuzzy relation x, (u,,x,+1):ﬂc, (u,)/\,uG,+l (x,+1) is constructed. The

degree to which U, and X, satisfy C' and G'*' is

zuT (ut ’luRr (ut ’ xt+1 ) ’ xt+1 ) = n}f}x[(}u ( )/\ lucf )/\ l'IlaX(/U t+1 /\ :UGHI ( t+1 ))} (27)

X4l

The fuzzy decision is

o (UgsennU 1| X o)

and an optimal sequence of fuzzy decisions U,......... U, _,, such that
U serreeU | X)) = max (=)'
Hy, () A e )
= max max (,UUO (uo)/\/lco (uo))/\ ....... A X max n)l(axn}ax(,uXN (ry) A “ (x, )) (29)
Hence the set of dynamic programming recurrence equation is
o (6 ) =maxle, ()t ()
Hon (X )= lglNa{glNa}(# (i ) g (i A (X )} 0

XN—i Uy

ILIXN,M (XN—HI ) maxlimax(/tl MN —i )/\ lllXN it1 (XN t+1|xN —i? MN —i ))jl A lllXNfi (XN—i )

They redefine the problem formulation in terms of the reference fuzzy states and fuzzy decisions to finally
make Eq.(30) solvable ([11], [12] and [13]).

5. FUZZY DYNAMIC PROGRAMMING FOR THE CASE OF A FUZZY TERMINATION
TIME

In many real-world problems it may be more adequate (sufficient) to assume a fuzzy termination time as
more or less 5 years, a couple of days, ten years or so [7].
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Let R={01,.....k =1Lk, k+1,....... ,N} be the set of decision making states. At each 7€ R, a fuzzy
constraint ,uc,(u,), and a fuzzy goal 4 ., (xv), ve R is imposed on the final state. The fuzzy

termination time is given by (v) ve R, which is a termination time V.

The fuzzy decision

M)y (uo,ul, ..... UL x0)= Mo (uo)/\ .......... AM (uv_1 )/\ 7 (v).,qu (xv) (31)

_ xo): max L“cn (uo)/\ .......... A (uv_l)/\ My (v).,qu (xv )] (32)

Ugy Uy ey Uy

5.1. THE CASE OF A DETERMINISTIC DYNAMIC SYSTEM
Eq.(32) was formulated and solved by Kacprzyk ([7] and [8]). Then, Stein [23] presented a
computationally more efficient model and solution.

Kacprzyk’s approach
In  Kacprzyk’'s ([7] and [9]) formulation the set of possible termination times s

{veR:,uT(v)>0}:{k,k+1, ....... ,N}C R, hence an optimal sequence of decisions is

Uy Uy seeeees Uy Uy seestt, The part uy Uy ,.....u . is determined by solving

lLlGV*i ('xv—[ ° v) = n‘}?x |ILlCV*i (uv—[ )/\ lLlGV"”rl ('xv—i+l ’ V)J

Xpivt = f(xv—i’uv—[) (33)

where £, (xv,v)z,uT (v).,qu (xv). An optimal termination time v’ , then found by the maximizing
Vin

H i (xk—l ) = max H ;. (xk—l ’V) (34)
The part u,u, ,.....,1,_, is then determined by solving

IUG“*"“ (xk—i+1 ) = l;tllflf( Luckfm (uk—i—l )/\ ;qu—i (xk—i )]
Xi—i = f(xk—i_l’uk_i_l); i= 1,2, ....... ,k -1
(35)

Stein’s approach
Stein [23] presented a computationally more efficient dynamic programming approach. At ¢ = N -1,
ie 1,2, N -1}, and attain

/151\'—1' (XN—,' ) = MUy (N - i)' ;UGN—f (XN—,') or apply Uy_; and attain ;UCN—f (MN—i )/\ IUGN#H (xN—i+1 )

The set of recurrence equation is therefore
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H i (xN—i ) =H5, . (XN—i )I}}%X LucN—f (MN—i )/\ Hvin (xN—i+1 )] (36)
Xy i = f(xN_i,uN_i); i=12,.... N

and an optimal termination time is such a r = ¥ —i at which terminating decision u’._, occurs, i.e.

when
M- (XN—i ) > T%X |IUCN—f (MN—i ) AN Hnia (XN—i+1 )J

(37)

5.2. THE CASE OF A STOCHASTIC DYNAMIC SYSTEM

This stochastic dynamic system was first formulated and solved in Kacprzyk ([8] and [9]) by combining the
section 4.2 and 5.1. An optimal termination time v' and an optimal sequence of decisions
Uyl 5....slt,_, SUCh that

. Xo): max . L“co (uo)/\ .......... A Mo (uv_l)/\ Eu ., (xv )] (38)

where 4, (xv):,uT(v).,qu (xv); and {v:,uT(v)>0}:{k,k+1, ...... ,N}. As in section 4.2, we

determine vV and u;_,,u,,....,u . , by solving

Hger () =maxlu e, ) A Eptgn (v, )
Eftgn (%, 11) Z‘éf( ol Xt () i= 12, N (39)
and Vv s given by the maximizing V in
Hoo (x )= max g (e, 0v) (40)
The remaining part u,_,,u, ,,.....,it, is obtained by solving
Hgrr () = maxlue ) Bt (v, )
(41)

Eu.. (x,)= zp(xk—i|xk—l—i U1 )X M (i i =12, k=1

X _€X
In the later Stein’s [23], formulation the problem is solved by the following set of recurrence equations

Hov-i (XN—i ) = ;UE . (XN—i ) A maXLUCN,,. (“N—i ) NEU (XN—i+1 )I

. 42
Eu l(xN ,+1 ZP(XN i+1 |xN iUy ,)X:UGN l(f(xN—i’uN—i )), i=12,...... N 2
xy_i€X
where V* occurs when
Moy (XN—,' ) > anE{X |,UCN,,~ (MN—i ) A E:UGN—M (xN—i+1 )J (43)
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5.3. THE CASE OF A FUZZY DYNAMIC SYSTEM

In this case, fix some (finite and relatively small) number of reference fuzzy states (and possibly
decisions), and obtain an auxiliary approximate system whose state transitions are of deterministic
system type ([12] and [16]). Then, Stein’s [23] approach can be employed.

6. MULTISTAGE DECISION MAKING (CONTROL) WITH AN IMPLICIT SPECIFIED

TERMINATION TIME
Now the process terminates when the state enters for the first time a termination set of states
W = {sp+1,sp+2, ...... , sn}c X . We determine an optimal sequence of decisions
Ug ol e , u%i1 , such that
pp g ) oy ws |x,) = max [,uc(u0|x0)/\ .......... /\,UC(MN_I‘XN_I)/\,UGN(XN)] (44)
U U 5oy Uy
where x . x .., x; € X \W,and xz e W

The solution of Eq.(44) may proceed by using:

° Bellman and Zadeh'’s [19] iterative approach,
° Komolov’s et al. [22] graph theoretic approach and
° Kacprzyk’s ([5] and [8]) branch and bound approach.

7. MULTISTAGE DECISION MAKING (CONTROL) WITH AN INFINITE
TERMINATION TIME

In all the problems considered the solution process required some iteration over consecutive stages. This
may be justified the number of stages is not too high, and when the process itself exhibits a sufficient
variability over time. In the fuzzy setting, the multistage decision making (control) problem with an infinite
termination time was first formulated and solved by Kacprzyk and Staniewski ([15] and [16]).

For the deterministic dynamic system Eq.(11), the fuzzy decision is

iy (g sttyo 10) = e G )t (o)A tte s ) g (52 ) A s
= tim A e (e lx ) po (5,0 (45)
and to find an optimal stationary strategy a” = (a*,a*, ......... ) such that
oy lallx,)= max tpla|x,)
= fim Al (ol e ) g (5, (40

Eq.(46) may be solved in a finite number of steps by using a policy iteration algorithm whose essence is a
step-by-step improvement of stationary policies. A policy iteration type algorithm was also proposed for
the stochastic system by [16].
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8. COMPUTATIONAL COMPLEXITY

The development of efficient algorithms for processing various aspects of fuzzy dynamic programs is an
important research area in dynamic programming. In this section, we will summarize main results of the
computational complexity analysis provided by (1997). Esogbue [2] using two algorithms of Kacprzyk [7]
and Stein [23] for the fuzzy termination time discussed.

Esogbue showed that the dynamic programming approach presented by Kacprzyk requires N (N +1)/2
iterations while the one proposed by Stein [23] requires only § and it is computationally more efficient.
Let, the time and space complexity analysis for both.

Here, consisting of » equations and 4, , controls each assuming m values, and time
t=N —1,...., k , the total number of operations involved is

n@mt —2mk —2m —t+k)+n(N =k +1)+(k -1).n.2m -1) (47)
Let m = k = ¢, then Eq.(47) is of order 0 (2k*).

The basic dynamic programming formulation of the problem proposed by Stein [23] is the same expect for
the structure of the recurrence equations that require N only iterations of the optimizing process as
opposed to N (N +1)/2 required is Kacprzyk’s algorithm.

The space and the time complexities are of order 0 (n) and o (mn ), respectively. Essentially, the time
complexity is of order o ((2m —1)(N - k)). This is of order o (k). The total storage demand is

n(N=k+1)(N =k +2)/2+2n+n(k —1). This is order O (k). It was pointed out, the difference

between the earliest and the latest possible termination times is an important factor in the computationally
burden of this optimization process.

So, the model proposed by Stein [23] is computationally more efficient, taking o (k) memory spaces in
0 (k*) operations, as opposed to 0 (k>) memory spaces in 0 (k*) operations in Kacprzyk's (1977)
model. The superiority is exhibited both from the space and time complexity considerations.

The case of stochastic system, it was shown that the computational burden and storage requirements are
identical for both algorithms. If in the dynamic programming formulation, the objective is to maximize the
probability of attainment of the fuzzy goal G subject to non fuzzy constraints.

9. CONCLUSION

We have presented a brief exposition of main aspects of fuzzy dynamic programming, including main
problem classes and major applications in a variety of fields. We have studied dynamic programming
problems in fuzzy environments. Some basic problems have been studied and development of fuzzy
dynamic programming is given. It is shown that the fuzzy dynamic programming may be a promising tool
for dealing with multistage decision making and optimization problems under fuzziness. For other surveys
of fuzzy dynamic programming and its applications, we refer the reader to [1] and then the fundamental
presentation by [6] and [11].
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