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Abstract 

 
Studies has been made in this paper, on multistage decision problem, fuzzy dynamic 
programming (DP). Fuzzy dynamic programming is a promising tool for dealing with 
multistage decision making and optimization problems under fuzziness. The cases of 
deterministic, stochastic, and fuzzy state transitions and of the fixed and specified, 
implicity given, fuzzy and infinite times, termination times are analyzed. 
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1. INTRODUCTION 
Multistage decision problems usually arise when decisions are made in the sequential manner over time 
where earlier decisions may affect the feasibility and performance of later decisions. Dynamic 
programming approach is used in such multistage decision problems which are based on Bellman’s 
Principle of Optimality. 
The common elements of dynamic programming models include decision stages, a set of possible states 
in each stage, transitions from states in one stage to states in the next, value functions that measure the 
best possible objective values that can be achieved starting from each state, and finally the recursive 
relationships between value functions and different states.  
A decision made at a given stage, and at a given state, induces a change in the output of the process. 
The performance of the process is measured over some planning horizon, and is expressed by an 
aggregate of partial scores that express the performance of the particular stage decisions. An optimal 
sequence of decisions or controls at the consecutive stages over the planning horizon is then sought. 
Dynamic programming is a powerful formal tool for dealing with a large spectrum of multistage decision 
making and control problems. In mid 1950’s (cf. Bellman, 1957), dynamic programming has become a 
standard tool in many fields including operation research, control theory and engineering, engineering, 
computer science, etc.  
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Dynamic programming has been one of the earliest general techniques to which fuzzy sets theory has 
been applied (cf. Chang, 1969; Bellman and Zadeh 1970, Esogbue and Ramesh, 1970). 
 

2. MULTISTAGE DECISION MAKING PROCESS 
The multistage decision making process can be separated into a number of sequential steps, or stages, 
which is completed in one or more ways. The options for completing stages are known as decisions. The 
condition of the process at a given stage is known as state at that stage; each decision effects a transition 
from the current state to a state associated with the next stage. 
The multistage decision making process is finite if there are only a finite number of stages in the process 
and a finite number of states associated with each stage. Many multistage decision processes have 
returns (cost or benefits) associated with each decision, and these returns may very with both the stage 
and state of the process. The multistage decision process is deterministic if the outcome of each decision 
is known exactly.  
 

Mathematical Program 

The mathematical program 
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 are known (non-linear) functions of a single variable and b  is a non-
negative integer. 
 

2.1. PRINCIPLE OF OPTIMALITY IN DYNAMIC PROGRAMMING 
Dynamic programming is an approach for optimizing multistage decision making processes. It is based on 
Bellman’s principle of optimality. An optimal policy has the property that, “regardless of the decisions 
taken to enter a particular state in a particular stage, the remaining decisions must constitute an optimal 
policy for leaving that state”. This principle, begin with the last stage of an n-stage process and determine 
for each state the best policy for  leaving that state  and completing the process, assuming that all 
preceding stages have been completed. 

Let ≡ u  the state variable, whose values specify the states  

   
( ) ≡um j  optimum return from completing the process beginning at stage 

j
 in state u   

    
( ) ≡ud j  decision taken at stage 

j
 that achieves 

( )um j      

The entries corresponding to the last stage of the process, 
( )um

n  and 
( )ud n  are generally 

straightforward to compute. The remaining entries are obtained recursively; i.e. the entries for 
j

th stage 

( )1,......,2,1 −= nj
 are determined as functions of the entries for the 

( )1+j
th stage.  

The dynamic programming approach is well suited processes modeled by system Eq.(1) in which each 

decision pays off separately, independent of other decisions. For system Eq.(1), the value of 
( )umn  for 

bu ,......,2,1,0=
 are given by  
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The recursion formula is 

                   
( ) ( ) ( ){ }xumxfoptimumum jj

ux
j −+= +
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                                                                   (3) 

for 
1,.......,2,1 −−= nnj

. In Eq.(2), the decision variable x  (which is denoted nx
 in Eq.(1)) runs 

through integral values, as x  
( )jx≡

 in Eq.(3). That value of x  which yields the optimum in Eq.(2) is 

taken as 
( )ud n  and that value of x  which yields the optimum in Eq.(3) is taken as 

( )ud j . If more than 

one values of x  yields either optimum, arbitrarily choose one as the optimal decision. The optimal 

solution to program Eq.(1) is 
( )bmZ 1

* =
 the optimal return from completing the process beginning at 

state1 with b  units available for allocation. With 
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(4) 2.2. DYNAMIC PROGRAMMING WITH DISCOUNTING 

If money earns interest at the rate of i  per period, an amount 
( )np

 due n  periods in the future has the 
present (or discounted) value 

                    
( ) ( )npp nα=0

,   where  i+
≡

1

1
α

                                                           (5) 
The multistage decision making processes, the stages represent time periods and the objective is to 

optimize a monetary quantity. The solution by dynamic programming, the recurrence formula for 
( )um j , 

the best return beginning in stage 
j

  and state u ,  involves terms of the form 
( )ym cj+ , the best return 

beginning in the stage 
cj +

 (c  time periods after stage 
j

) and state 
y

. If 
( )ym cj+  is multiplied by 

cα , 

where α  is the above-defined discount factor, then 
( )ym cj+  is discounted to its present value at the 

beginning  of stage 
j

. So 
( )um1  will be discounted to the beginning of stage 1, which is the start of the 

process. 
 

2.3. STOCHASTIC MULTISTAGE DECISION PROCESSES 
The multistage decision making process is stochastic if the return associated with at least one decision in 
the process is random. This randomness generally two ways: either the states are uniquely determined 
by the decisions but the returns associated with one or more states are uncertain or the returns are 
uniquely determined by the states arising from one or more decisions are uncertain.  
If the probability distributions governing the random events are known and if the number of stages and 
the number of states are finite, then the dynamic programming approach is useful for optimizing a 
stochastic multistage decision making process. The general procedure is to optimize the expected value 
of the return. In those cases, where the randomness occurs exclusively in the returns associated with the 
states and not in the states arising from the decisions, this procedure has the effect of transforming a 
stochastic process into a deterministic one. 
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3. MULTISTAGE DECISION MAKING UNDER FUZZINESS  

3.1. DECISION MAKING UNDER FUZZINESS  
The basic elements of [19] general approach are: a fuzzy goal G   in X  , a fuzzy constraint C  in X  , 

and a fuzzy decision D  in X ; X  is a (non-fuzzy) space of options. The fuzzy relation  

                               ( ) ( ) ( )xxx GCD µµµ ∧= ,   Xx ∈∀                                                     (6) 

which expresses the “goodness” of an Xx ∈  as a solution to the decision making problem. Considered, 

1 for definitely good (perfect) to 0  for definitely bad (unacceptable), through all intermediate values. The 

“ ( )baba ,min=∧ ” operation is commonly used and is assumed throughout this paper though many 

other operations are also employed ([11] and [12]).  

For an optimal (non-fuzzy) solution, an Xx ∈  such that 

                          ( ) ( ) ( ) ( )( )xxxx
GC

Xx
D

Xx
D

µµµµ ∧==
∈∈

supsup*
                                                (7)                  

is a natural (but  not the only  possible [11]) choice.  

The multiple fuzzy constraints and fuzzy goals is defined in different spaces. Suppose that the fuzzy 

constraint C  is defined as a fuzzy set in { }xX =  the fuzzy goal G  is defined as a fuzzy set in { }yY =  

and a function YXf →: , ( )xfy =  is known. X  and Y  may be sets of decisions and their 

outcomes, respectively.  

Now, the induced fuzzy goal, both G′  and C  are defined as  

                       ( ) ( )[ ]xfx GG µµ =′
  for each Xx ∈                                                              (8) 

and the (min-type) fuzzy decision is  

                  ( ) ( ) ( ) ( )[ ] ( )xxfxxx CGCGD µµµµµ ∧=∧= ′
, for each Xx ∈                                (9) 

The n  fuzzy constraints defined in X , 
n

CCC ,......,, 21 , m  fuzzy goals defined in Y , 
m

GGG ,......,, 21 , 

and a function ( )xfy = , then the (min-type) fuzzy decision is  

        ( ) ( )[ ] ( )[ ] ( ) ( )xxxfxfx
nm CCGD µµµµµ ∧∧∧∧∧= ........

11G
    for each Xx ∈                       (10) 

Now we proceed the multistage decision making case within the above general framework. 

 

3.2. MULTISTAGE DECISION MAKING (CONTROL) UNDER FUZZINESS  
By [11], [12] and [19], we assume, the dynamics of the deterministic dynamic system under control is 
described by a state transition equation  

                    ( )
ttt

uxfx ,1 =+ , ,.......1,0=t                                

(11)  

where { } { }
ntt

sssxXxx ,......,,, 211 ==∈+  are the states at time (stage) t  and 1+t , respectively 

and { } { }
m

cccuUu ,........,, 21==∈  is the decision (control or input) at t ; X  and U , are 

assumed finite. 
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FIGURE 1:  A General Framework For Multistage Decision Making Under Fuzziness 

The multistage decision making (control) under fuzziness may be depicted in Fig.1. We start from an 

initial state at stage (time) 0=t , 0x
 make a decision 0u

 attain a state, at time 1=t ,  1x
 make a 

decision 1u
,…… Finally, being at 1−= Nt  in 1−N

x
, we apply 1−N

u
 and attain the final state N

x
. 

The state transitions are given Eq.(11), the consecutive decision t
u

 are subjected to fuzzy constraints 
tC  

and on the states 1+t
x

 fuzzy goals 
1+tG  are imposed, 

.1,.......,1,0 −= Nt
 The multistage decision 

making process is evaluated by the fuzzy decision which is assumed a decomposable fuzzy set in 

XUXU ×××× ....... , is  

( ) ( ) ( ) ( ) ( )NGNCGCND xuxuxuuu NN µµµµµ ∧∧∧∧= −− − 1100110 110 ..........,.....,,
 

                               
( ) ( )[ ]1

1

0
1 +

−

=
+∧∧=

tGtC

N

t
xu tt µµ

                                                                      
(12) 

where N is some termination time is fixed. The basic case, the optimal sequence of 
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For simplicity, a fuzzy goal, ( )NG
xNµ  is only imposed on the final state 

N
x . Then the 

fuzzy decision is 

( ) ( ) ( ) ( ) ( )NGNCGCND xuxuxuuu NN µµµµµ ∧∧∧∧= −− − 1100110 110 ..........,.....,,                        

(14) 

and the problem is to find *

1

*

1

*

0 ,.....,, −N
uuu , such that 

System 

under 
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S 

System 

under 

control   

S 

System 

under 
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( ) ( ) ( ) ( ) ( )[ ]
NGNCGCuuu

ND
xuxuxuuu NN

N

µµµµµ ∧∧∧∧= −− −

−
110
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0
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0 110
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(15) 

This general problem formulation may be extended, mainly with respect to ([11] and 
[12]): 

● The type of termination time: fixed and specified in advance, fuzzy implicitly given 

            infinite.  

● The type of the dynamic system: deterministic, stochastic, fuzzy and fuzzy 
stochastic.  

● The type of objective function: cost minimization, profit/benefit maximization and 
fuzzy 

            criterion set based satisfactory degree maximization, and virtually all cases a 
dynamic- 

            programming-type algorithm can be devised.  

4. FUZZY DYNAMIC PROGRAMMING FOR THE CASE OF A FIXED AND        
SPECIFIED TERMINATION TIME 

The case of a fixed and specified (in advance) termination time is basic, and provides a suitable point of 
departure for extensions. Here we discussed a deterministic, stochastic, fuzzy dynamic system, and fuzzy 
criterion set dynamic program.  
 

4.1. THE CASE OF A DETERMINISTIC DYNAMIC SYSTEM 

A deterministic system is described by its state transition Eq.(11), i.e. ( )
ttt

uxfx ,1 =+ ; 

{ }
ntt

sssXxx ,......,,, 211 =∈+ ; { }
mt

cccUu ,........,, 21=∈ ; 1,......,1,0 −= Nt , Xx ∈0  is the initial 

state, and ∞<N  is a fixed and specified termination time. The fuzzy constraints are 

( ) ( )10 10 .,,......... −− NCC
uu Nµµ  and the fuzzy goal is ( )NG

xNµ . The fuzzy decision is  

             ( ) ( ) ( ) ( )NGNCCND xuuxuuu NN µµµµ ∧∧∧= −− − 100110 10 ..........  ,.....,,                      (16) 

and to find 
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Clearly, the last two terms are ( ) ( )( )111 ,1 −−− ∧− NNGNC
uxfu NN µµ  depend on 1−N

u , hence Eq.(17) can 

be rewritten as  
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On repeating this backward iteration for 021 ,.....,, uuu
NN −− , we obtain the set of dynamic programming 

recurrence  equations  

                     
( ) ( ) ( )[ ]
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
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11µµµ
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where ( )⋅−iN
G

µ  is a fuzzy goal at iNt −=  induced by a fuzzy goal at 1+−= iNt . 

An optimal sequence of decisions sought, 
*

1

*

1

*

0 ,.....,, −N
uuu  is given by the successive maximizing values 

of 
iN

u −  in Eq.(19). It is convenient to represent the solution, 
*

t
u , by an optimal policy UXa

t
→:*

, such 

that ( )
ttt

xau ** = , 1,........,1,0 −= Nt , i.e., relating an optimal decision to the current state.  

4.2. THE CASE OF A STOCHASTIC DYNAMIC SYSTEM 
The stochastic system is assumed to be a Markov chain whose temporal evolution is described by a 

conditional probability  ( )ttt uxxP ,1+  such that { }
ntt

sssXxx ,......,,, 211 =∈+ , 

{ }
mt

cccUu ,........,, 21=∈ ; Xx ∈0  is an initial state, 1,......,1,0 −= Nt  and ∞<N  is a fixed 

and specified termination time. Now the following two problem formulations: 

● due to [19]: find an optimal sequence of decisions 
*

1

*

1

*

0 ,.....,, −N
uuu  to  maximize the  

probability of attainment of the fuzzy goal, subject to the fuzzy constraints, i.e.  
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where the fuzzy goal is viewed to be a fuzzy event in X  whose (non-fuzzy) probability is [17], 

               ( ) ( ) ( )∑
∈
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● due to [14]: find an optimal sequence of decisions 
*

1

*

1

*

0 ,.....,, −N
uuu  to maximize the 

expectation of the fuzzy decisions membership function, i.e. 
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These formulations are clearly not equivalent. 

 

Bellman and Zadeh’s approach [19]  

Since in Eq.(20), ( ) ( )[ ]111 ,1 −−− ∧− NNGNC
uxfEu NN µµ  depend only on 1−N

u , the next two right-most 

terms depend only on 2−N
u  etc., the structure of Eq.(20) is essentially the same as that of Eq.(18), and 

the set of fuzzy dynamic programming recurrence equation is 
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and we consecutively obtain 
*

iN
u −  or optimal policies 

*

iN
a − , such that ( )

iNiNiN
xau −−− = **

, 

Ni ,.......,2,1= . 

Kacprzyk and Staniewski’s approach [14] 

To solve problem Eq.(22), first introduce a sequence of functions [ ]1,0  :
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The consecutive decisions and states are juuu ,........,, 10  and jxxx ,........,, 10 , respectively, then jg  is 

the expected value of ( )0xD ⋅µ  provided that the next decisions are optimal, i.e. 
*

1

*

2

*

1 ,........,, −++ Njj uuu . It 

can be shown ([11], [12] and [14]), that there exist functions UUXX
k

j
k

→×
=1

:ω , such that  

                 ( ) ( )( )101010 ,........,,,,........,,,........,, −−− =
kkkkkkkkk

uuxuxguuxh ωω . 

Then, an optimal policy sought, 
*

t
a  , 1,.......,2,1,0 −= Nt  is given by  
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It is depends not only on the current state but also on the trajectory. 

 

4.3. THE CASE OF A FUZZY DYNAMIC SYSTEM 
In this case the system is fuzzy and its dynamics is governed by a state transitions equation  

                   ( )
ttt

UXFX ,1 =+ ,    ,.........2,1,0=t                                                       (26) 
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where 
t

X , 1+t
X  are fuzzy states at time (stage) t  and 1+t , and 

t
U  is a fuzzy decision at t  

characterized by their membership functions ( )tX x
t

µ , ( )11 ++ tX x
t

µ  and ( )tU u
t

µ , respectively. 

Eq.(26) is equivalent to a conditioned fuzzy set ( )tttX uxx
t

,11 ++
µ  ([11] and [12]).  

Baldwin and Pilsworth [13] proposed a dynamic programming scheme. First, for each 

1,,.........2,1,0 −= Nt  a fuzzy relation ( ) ( ) ( )11 1, ++ +∧= tGtCttR
xuxu ttt µµµ  is constructed. The 

degree to which 
t

U  and 1+t
X  satisfy 

tC  and 
1+tG  is 
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The fuzzy decision is   
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and an optimal sequence of fuzzy decisions 
*

1

*

0 ,........, −N
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N
N

NN

N
N
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1
1
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0
0
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  (29) 

Hence the set of dynamic programming recurrence equation is 
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iNiNiN
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N
N

N

N

µµµµ

µµµµ

µµµ

           (30)  

They redefine the problem formulation in terms of the reference fuzzy states and fuzzy decisions to finally 
make Eq.(30) solvable ([11], [12] and [13]). 

5. FUZZY DYNAMIC PROGRAMMING FOR THE CASE OF A FUZZY TERMINATION 
TIME 

In many real-world problems it may be more adequate (sufficient) to assume a fuzzy termination time as 
more or less 5 years, a couple of days, ten years or so [7]. 
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Let { }NkkkR ,.......,1,,1,......,1,0 +−=  be the set of decision making states. At each Rt ∈ , a fuzzy 

constraint ( )tC
utµ , and a fuzzy goal ( )vG

xvµ , Rv ∈  is imposed on the final state. The fuzzy 

termination time is given by ( )v
T

µ , Rv ∈ , which is a termination time  v . 

The fuzzy decision 

            ( ) ( ) ( ) ( ) ( )vGTvCCvD xvuuxuuu vv µµµµµ ...........,.....,, 100110 10 ∧∧∧= −− −                   (31) 

and to find an optimal termination time 
*

v  and an optimal sequence of decisions 
*

1

*

1

*

0 ,.....,, −v
uuu  such that          

             ( ) ( ) ( ) ( ) ( )[ ]
vGTvCCuuu

vD
xvuuxuuu vv

N

µµµµµ ...........max,.....,, 10
,...,,

0

*

1

*

1

*

0 10

110

∧∧∧= −− −

−

          (32) 

5.1. THE CASE OF A DETERMINISTIC DYNAMIC SYSTEM  
Eq.(32) was formulated and solved by Kacprzyk ([7] and [8]). Then, Stein [23] presented a 
computationally more efficient model and solution. 
 

Kacprzyk’s approach 
In Kacprzyk’s ([7] and [9]) formulation the set of possible termination times is 

( ){ } { } RNkkvRv
T

⊆+=>∈ ,.......,1,0: µ , hence an optimal sequence of decisions is 

*

1

**

1

*

1

*

0 ,....,,,.....,, −− vkk
uuuuu . The part 

*

1

**

1 *,....,,
−− vkk uuu  is determined by solving  
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
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1

11

Nkkvivi

uxfx
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iviviv

ivGivCV
ivG

iviv

iv

iv µµµ

                                                       (33) 

where ( ) ( ) ( )vGTvG
xvvx vv µµµ  . , = . An optimal termination time 

*
v , then found by the maximizing 

v in  

                    ( ) ( )vxx kGv
kG kk ,max 11 11 −− −− = µµ                                                                                 (34) 

The part 
*

2

*

1

*

0 ,.....,, −Kuuu  is then determined by solving  

               
( ) ( ) ( )[ ]
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

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−==

∧=

−−−−−

−−−+− −−−

−−
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11

11 1

1

1

kiuxfx

xux

ikikik

ikGikCu
ikG ikik

ik

ik µµµ
                                                        

(35) 

Stein’s approach 
Stein [23] presented a computationally more efficient dynamic programming approach. At 1−= Nt ,  

{ }1,......,2,1 −∈ Ni , and attain 

( ) ( ) ( )iNGTiNG
xiNx iNiN −− −− −= µµµ  .  or apply 

iN
u −

 and attain ( ) ( )11 +−− +−− ∧ iNGiNC
xu iNiN µµ . 

The set of recurrence equation is therefore  
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( ) ( ) ( ) ( )[ ]
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max

1

11µµµµ
                                       (36) 

and an optimal termination time is such a iNt −=  at which terminating decision *

1* −v
u , occurs, i.e. 

when 

                  ( ) ( ) ( )[ ]11max +−−− +−−

−

− ∧> iNGiNCu
iNG

xux iNiN

iN

iN µµµ                                                           

(37) 

5.2. THE CASE OF A STOCHASTIC DYNAMIC SYSTEM 
This stochastic dynamic system was first formulated and solved in Kacprzyk ([8] and [9]) by combining the 

section 4.2 and 5.1. An optimal termination time 
*

v  and an optimal sequence of decisions 
*

1

*

1

*

0 ,.....,, −vuuu  such that 

          ( ) ( ) ( ) ( )[ ]vGvCCuuuv
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v
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,...,,,
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*

0 10
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..........max,.....,,                    (38) 

where ( ) ( ) ( )vGTvG
xvx vv µµµ  . = ; and ( ){ } { }Nkkvv T ,......,1,0: +=>µ . As in section 4.2, we 

determine 
*

v and 
*

1
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1 *,....,,
−− vkk uuu  by solving  
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                        (39) 

and   
*

v  is given by the maximizing  v  in  

               ( ) ( )vxx kGv
kG kk ,max 11 11 −− −− = µµ                                                         (40) 

The remaining part 
*

0

*

3

*

2 ,.....,, uuu kk −−   is obtained by solving  
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                  (41) 

In the later Stein’s [23], formulation the problem is solved by the following set of recurrence equations 
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where 
*

v  occurs when  

                ( ) ( ) ( )[ ]11max +−−− +−−

−

− ∧> iNGiNCu
iNG

xEux iNiN

iN

iN µµµ                                                          (43) 
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5.3. THE CASE OF A FUZZY DYNAMIC SYSTEM 

In this case, fix some (finite and relatively small) number of reference fuzzy states (and possibly 
decisions), and obtain an auxiliary approximate system whose state transitions are of deterministic 
system type ([12] and [16]). Then, Stein’s [23] approach can be employed.  

 
6. MULTISTAGE DECISION MAKING (CONTROL) WITH AN IMPLICIT SPECIFIED 

TERMINATION TIME  
Now the process terminates when the state enters for the first time a termination set of states 

{ } XsssW npp ⊂= ++ ,......,, 21 . We determine an optimal sequence of decisions 

*

1

*

1

*

0 ,........,,
−N

uuu  , such that  

( )0

*

1

*

1

*

0 ,........,, xuuu
ND −

µ  ( ) ( ) ( )]..........[max
1100

,...,, 110
NGNNCC

uuu
xxuxu N

N

µµµ ∧∧∧=
−−

−

                  (44) 

where Xxxx
N

∈
−110 ,.....,, \W , and Wx

N
∈                 

The solution of Eq.(44) may proceed by using: 

● Bellman and Zadeh’s [19] iterative approach,  

● Komolov’s et al. [22] graph theoretic approach and  

● Kacprzyk’s ([5] and [8]) branch and bound approach. 

 

7. MULTISTAGE DECISION MAKING (CONTROL) WITH AN INFINITE 
TERMINATION TIME 

In all the problems considered the solution process required some iteration over consecutive stages. This 
may be justified the number of stages is not too high, and when the process itself exhibits a sufficient 
variability over time. In the fuzzy setting, the multistage decision making (control) problem with an infinite 
termination time was first formulated and solved by Kacprzyk and Staniewski ([15] and [16]).  

For the deterministic dynamic system Eq.(11), the fuzzy decision is 

       ( ) ( ) ( ) ( ) ( ) ..........,......., 211100010 ∧∧∧∧= xxuxxuxuu GCGCD µµµµµ  

                               ( ) ( )[ ]1
0

lim +
=∞→

∧∧= tGttC

N

tN
xxu µµ                                                 (45) 

and to find an optimal stationary strategy ( ),.........,
***

aaa =∞
, such that 

           ( ) ( )00

*
max xaxa D

a
D ∞∞

∞

= µµ    

                         ( )( ) ( )[ ]1
0

limmax +
=∞→

∧∧=
∞

tGttC

N

tNa
xxxa µµ                                             (46)  

Eq.(46) may be solved in a finite number of steps by using a policy iteration algorithm whose essence is a 
step-by-step improvement of stationary policies. A policy iteration type algorithm was also proposed for 
the stochastic system by [16].  
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8. COMPUTATIONAL COMPLEXITY 
The development of efficient algorithms for processing various aspects of fuzzy dynamic programs is an 
important research area in dynamic programming. In this section, we will summarize main results of the 
computational complexity analysis provided by (1997). Esogbue [2] using two algorithms of Kacprzyk [7] 
and Stein [23] for the fuzzy termination time discussed.  
Esogbue showed that the dynamic programming approach presented by Kacprzyk requires ( ) 2/1+NN  

iterations while the one proposed by Stein [23] requires only N  and it is computationally more efficient. 

Let, the time and space complexity analysis for both.  

Here, consisting of n  equations and 
1−N

u  controls each assuming m values, and time 

kNt ,.......,1−= , the total number of operations involved is 

          ( ) ( ) ( ) ( )12 .  . 11222 −−++−++−−− mnkkNnktmmkmtn                                 (47) 

Let tkm == , then Eq.(47) is of order ( )3
2 kO . 

The basic dynamic programming formulation of the problem proposed by Stein [23] is the same expect for 
the structure of the recurrence equations that require N  only iterations of the optimizing process as 

opposed to ( ) 2/1+NN  required is Kacprzyk’s  algorithm.  

The space and the time complexities are of order ( )nO  and ( )mnO , respectively. Essentially, the time 

complexity is of order ( )( )( )kNmO −−  12 . This is of order ( )2
kO . The total storage demand is 

( ) ( ) ( )122/2 1 −+++−+− knnkNkNn . This is order ( )kO . It was pointed out, the difference 

between the earliest and the latest possible termination times is an important factor in the computationally 
burden of this optimization process.  

So, the model proposed by Stein [23] is computationally  more efficient, taking ( )kO  memory spaces in 

( )2
kO  operations, as opposed to ( )2

kO  memory spaces in ( )3
kO  operations in Kacprzyk’s (1977) 

model. The superiority is exhibited both from the space and time complexity considerations.  

The case of stochastic system, it was shown that the computational burden and storage requirements are 
identical for both algorithms. If in the dynamic programming formulation, the objective is to maximize the 
probability of attainment of the fuzzy goal G subject to non fuzzy constraints.  

9. CONCLUSION 
We have presented a brief exposition of main aspects of fuzzy dynamic programming, including main 
problem classes and major applications in a variety of fields. We have studied dynamic programming 
problems in fuzzy environments. Some basic problems have been studied and development of fuzzy 
dynamic programming is given. It is shown that the fuzzy dynamic programming may be a promising tool 
for dealing with multistage decision making and optimization problems under fuzziness. For other surveys 
of fuzzy dynamic programming and its applications, we refer the reader to [1] and then the fundamental 
presentation by [6] and [11]. 

 

REFERENCE 
[1] A.O. Esogbue and R.E. Bellman. “Fuzzy dynamic programming and its extensions”. TIMS/ 

Studies in the Management Sciences, 20, 147-167, 1984. 
 

[2] A.O. Esogbue and V. Ramesh. “Dynamic Programming and fuzzy allocation  processes”. 
Technical Memo No. 202, Dept. of Operation Research Case Western University, Cleveland, 
OH., (1970). 

 



P.K.Parida, S.K.Sahoo, K.C.Sahoo  

International Journal of Logic and Computation (IJLP), Volume (1): Issue (1)                                                       65 

[3] G. Conrnuejds and R. Tutuncu. “Optimization Methods in Finance”. Cambride University Press, 
(2007). 

 

[4] H.-J. Zimmermann. “Fuzzy Sets, Decision Makings, and Experts Systems”. Kluwer, Dordrecht 
(1987). 

 

[5] J. Kacprzyk. “A branch-and-bound algorithm for the multistage control of  a non fuzzy system in a 
fuzzy environment”. Control and Cybernetices, 7, 51-64, 1978b. 

 
[6] J. Kacprzyk. “A generalization of fuzzy multistage decision making and control via linguistic 

quantifiers”. Int. J. of Control, 38, 1249-1270, 1978b. 
 

[7] J. Kacprzyk. “Control of non-fuzzy system in a fuzzy environment with fuzzy termination time”. 
Systems Sciences, 3, 325-341, 1977. 

 

[8] J. Kacprzyk. “Control of a stochastic system in a fuzzy enviroment with fuzzy termination time”. 
Systems Science, 4, 291-300, 1978b.    

 

[9] J. Kacprzyk. “Decision making in a fuzzy environment with fuzzy termination time”.  Fuzzy Sets 
and Systems, 1, 169-179, 1978b.  

 

[10] J. Kacprzyk. “Fuzzy dynamic programming: A new quality through fuzzy sets”. In Da Ruan (Ed). 
Fuzzy Sets Theory and Advanced Mathematical applications, Kluwer, Dordrecht, 137-154, 1996. 

 

[11] J. Kacprzyk. “Multistage control: A model based approach to control and decision making”. Wiley, 
Chichester (1997). 

 

[12] J. Kacprzyk. “Multistage decision making under fuzziness”. Verlag TUV, Rheinland, Cologne 
(1978b). 

 

[13] J.F. Baldwin and B.W. Pilsworth. “Dynamic programming for fuzzy systems with fuzzy 
environment”. J. Math. Anal. and Apples., 85, 1-23, 1982. 

 

[14] J. Kacprzyk and P. Staniewski. “A new approach to the control of stochastic systems in a fuzzy 
environment”. Arch. Automat, Telemech, XXV, 443-444, 1980. 

 

[15] J. Kacprzyk and P. Staniewski. “Control of a deterministic system in a fuzzy environment over an 
infinite planning horizon”. J. of Fuzzy Sets and Systems 10, 291-298, 1983.  

 

[16] J. Kacprzyk and P. Staniewski. “Long-term inventory policy-making through fuzzy decision-
making models”. J. of Fuzzy Sets and Systems, 8, 117-132, 1982. 

 

[17] L.A. Zadeh. “Probability measures of fuzzy events”. J. of math. Anal. And Appls., 23, 421-427, 
1968. 

 

[18] R.E. Bellman. “Dynamic programming”. Princeton Univ. Press, Princeton, NJ. 



P.K.Parida, S.K.Sahoo, K.C.Sahoo  

International Journal of Logic and Computation (IJLP), Volume (1): Issue (1)                                                       66 

[19] R.E. Bellman and L.A. Zadeh. “Decision-making in a fuzzy environment”. Management Sci., 17, 
141-164, 1970. 

 

[20] R. Brorson and G. Naadimuthu. “Theory and Problems of Operations Research”. (2006). 

 

[21] S.S.L. Chang. “Fuzzy dynamic programming and the decision making process”. Proc. 3
rd

 
Princeton Conf. of Inf. Sci. and Syst. (Princeton, NJ, USA), 200-203, 1969. 

 

[22] S.V. Komolov et al. “On the problem of optimal control of a finite automaton with fuzzy constraints 
and fuzzy goal (in Russian)”. Kybernetika (Kiev), 6, 30-34, 1979.  

 

[23] W.E. Stain. “Optimal stopping in a fuzzy environment”. J. of Fuzzy Sets and Systems, 3, 252-259, 
1968.  

 

[24] Y. Yoshida. “Dynamical Aspects in Fuzzy Decision Making”.  pp.1-25, (2001). 

 

 

 


