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    Abstract 

 
As a result of the increasing limitations and growing complexity of semi-custom synchronous 
design, asynchronous circuits are gaining interest. Asynchronous Systems when combined with the 
local synchronous logic have provoked renewed interest over recent years, as they have the 
potential to combine the benefits of asynchronous and synchronous design paradigms, in this 
paper a new technique using FIFO in order to overcome the limitation on timing imposed by slow 
routing is proposed. FIFOs are often used to safely pass data from one clock domain to another 
asynchronous clock domain. 
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1. INTRODUCTION 

Increasing number of gates and clock speed is the trend of semiconductor industry these days. 
Synchronous designs run by a single clock imply difficulties with clock distribution and excessive 
power consumptions. The field of synchronous- to-asynchronous circuit conversion (a subarea of the 
asynchronous design style) is in the same situation as the whole asynchronous design style. There 
are number of advantages of using asynchronous logic: 

• Absence of clock skews 

• Average-case performance 

• The event-driven nature of asynchronous design leads to circuits with low standby power, 
• A power advantage of some asynchronous design techniques is the application of level-

sensitive latches. 

• Reduced electromagnetic interference 
Numerous    approaches    for    automated    conversion    of synchronous-to asynchronous 
circuits have been proposed in recent years. Each of the existing approaches has its specific 
advantages and drawbacks, but none of them can really generate asynchronous circuits with all the 
so often claimed advantages, totally beating the clocked circuits. In this paper we propose adding 
asynchronous routing to a multiple clock domain FPGAs using Gray code pointers that are 
synchronized into a different clock domain before testing for "FIFO full" or "FIFO empty" conditions. 
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2.  LITERATURE SURVEY 

Most systems (embedded / FPGAs) are designed with one or more global clocks. FPGAs with 
multiple clock domains must provide some mechanism for synchronizing data passing between 
them, which will increase latency and be prone to metastability. One solution is to pipeline the 
routing, as used in [1]. A potential problem of this is that the number of clock cycles allocated to the 
routing must be determined at the routing stage and may impact upon any cycle allocation 
assumed. 

 
2.1 Challenges With Asynchronous Design  
In an asynchronous discipline, however, there is no global clock. Instead, the system may respond 
to input transitions at any time. As a result, any undesired glitch may cause the system to 
malfunction. Because of this sensitivity to glitches, asynchronous designs often suffer from a 
number of problems.  

Correctness: Many existing asynchronous design methods do not guarantee hazard-free 
implementations. 
Flexibility:  Many design methods impose harsh restrictions on the range of behaviors that can be 
handled, to ensure correct operation.  Typically,  designs  are  limited  to  single-  input change only: 
once an input changes, no new input change can occur until the system is stable. This restriction 
aids in the design  of  correct  circuits,  since  techniques  to  eliminate hazards for single-input 
changes are better-known and simpler than those used for more general multiple-input changes 
[24]. However, the resulting circuits are of limited use.  
Compatibility:  Many asynchronous methods are incompatible with ex i st i ng inter-faces, such  as  
sy nc hr onous i n terf aces. Instead, they may require the use of particular protocols, such as 
f o u r -phase hands hak i ng  on l y  ( discussed b e l o w ).  This constraint limits the practicality of 
asynchronous designs for existing interfaces. 
Performance:  Finally, in practice, many asynchronous designs have poor performance. Hazards are 
often eliminated by slowing down circuits by adding delays. This strategy guarantees correct 
operation, but abandons the potential performance benefits of asynchronous design. In the past, 
such difficulties have made asynchronous circuits largely unusable in practical system design 
However, there has been substantial progress in overcoming these obstacles in recent years. 
 
2.2 Testing and Debugging 
Testing for synchronous ASICs is made very efficient by the use of specialized scannable flip-flops, 
advanced tools for automated test-pattern generation, and IEEE test circuit standards such as the 
Joint Test Action Group (JTAG). The basic challenge associated with many asynchronous design 
styles is the presence of loops in the circuit that are not cut by specific latches or flip-flops. Many of 
these loops must be cut with additional circuitry in order to achieve sufficient observability and 
controllability in the circuit for test purposes and, perhaps more importantly, for automated test-
pattern- generation techniques to be applicable. In addition, in comparison with synchronous design, 
asynchronous design can be difficult to debug. In synchronous design, when the circuit fails one can 
lower the clock frequency and investigate the failure. In asynchronous designs, however, there is no 
clock and the circuit operates at the maximum possible speed. The lack of this natural control can 
make debugging more challenging. Further with the use of multi-clock domain the testing of 
asynchronous logic offers lot of difficulties and challenges. Following section discusses few of the 
asynchronous architectures. 
 
2.3 DLAP – Doubly-Latched Asynchronous Pipeline 
A Doubly-Latched Asynchronous Pipeline approach (DLAP) has been first proposed by R. Kol and 
R. Ginosar [1] ,[2], where they claim that no single and complete methodology and a tool set have 
been demonstrated yet as for the design of large scale asynchronous systems. A design approach 
was proposed which avoids any explicit dependence on the clock . The circuit is synthesized by a 
commercial synchronous tool into a synchronous structure but, subsequently, it is converted into an 
asynchronous one. Kol and Ginosar replace each register by a pair of latches and the corresponding 
asynchronous controller, according to the DLAP design. The controllers are interconnected by 
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request and acknowledge handshake signals. Matched-delay lines are inserted on the request signal 
lines. While the conversion replaces the clocked registers by other types of latches, it retains (with 
possible minimal changes) the combinational logic that was automatically synthesized. In [1], the 
authors have developed algorithms for converting synchronous circuits into asynchronous ones, thus, 
exploiting some advantages of asynchronous circuits while retaining investments in synchronous 
designs and tools. They considered synchronous logic specified in VHDL, which is subsequently 
synthesized into netlists according to the common architecture of “register-and-cloud” pipelines [3], 
where “clouds” of combinational logic are separated by clocked registers. The authors  also  try  to  
identify  the  best  target  asynchronous pipeline – a Doubly-Latched Asynchronous Pipeline (DLAP), 
which operates similarly to synchronous pipelines, and it is most  suitable  for  synchronous-to-
asynchronous  conversion and, in certain important cases, it outperforms previous synchronous 
design. Doubly-Latched Asynchronous Pipeline is shown in Figure 1. It is designed for a single rail, 4-
phase communication protocol between the stages. 
 

 
 

FIGURE 1:  A Doubly-Latched Asynchronous Pipeline (DLAP). 
 
By decoupling the pipeline stages, the authors of DLAP achieved the same operation as a 
synchronous master-slave pipeline does. If the delays of such a pipeline are balanced, DLAP 
operates with almost the same speed as a synchronous pipeline. Since all pipeline stages finish 
their computation at the same time, they can all latch the values concurrently into the master part 
of the registers (rewriting the bubbles), while the slave latches keep stored the values of the 
previous computation cycle. In the next computation cycle, all values stored in the master latches 
are simultaneously transferred to the slave latches. DLAP, like other asynchronous pipelines, takes 
advantage of variable delays. DLAP is truly decoupled – thanks to double latching, where a stage 
that has completed early can start processing the next data even if the following stage is still 
occupied. However the drawback of DLAP is area overhead of various DLAP converted circuits 
with the resulting area growth 
 
2.4 De-Synchronization 
De-synchronization approach to synchronous-to-asynchronous conversion proposed by J. 
Cortadella et al. in 2003, and has been addressed in various papers [5], [6], [7], [8], [9], [10]. 
Although the fundamental   idea behind desynchronization is the same as DLAP [8] [1] and [11]. 
The de-synchronization involves three steps [8]: 

1. Conversion of the flip-flop-based synchronous circuit into a latch-based Figure 2. D flip-flops 
are conceptually composed of master-slave latches. 
 

 
 

FIGURE 2 : Synchronous circuit and its de-synchronized equivalent  
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2. Generation of matched-delays for the combinational logic (denoted by rounded rectangles). Each 
matched-delay must be greater than or equal to the delay of the critical path of the corresponding   
combinational   block.   Each   matched-delay serves as a completion detector for the corresponding 
combinational block. 
3. Implementation of the local controllers. 
 
The main problem is with the area overhead of around 28%, which is quite unprofitable [14],[15]. 
 
2.5 Theseus Logic’s Approach 
Theseus Logic, a company which developed  a design flow for conversion of synchronous designs, 
specified in VHDL [22], into NCL-based asynchronous ones. The design flow and off- the-shelf 
simulation and synthesis components are depicted in Figure  3.  The  flow  executes  in  two  
synthesis  steps,  as described in [22]. Theseus Logic’s approach is different from the two previous 
approaches (DLAP and de-synchronization), since it starts at the register-transfer level, whereas 
they both start from the synthesized netlist. This requires the designer to have a proper RTL 
description of the design without any behavioural constructs. To synthesize and simulate an NCL 
circuit  at the RTL using commercial tools,  the tools  must handle the NULL value and hysteresis 
behavior of threshold gates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3 : RTL design flow for NCL 

 
2.6. Phased Logic 
Phased logic [25], [26]   proposed by D. H. Linder and J. C. Harden is a delay-insensitive design 
methodology that seeks to restore the separation between logical and physical design by eliminating 
the need to distribute low skew clock signals and carefully   balance   propagation   delays.   
However,   unlike previous   methodologies t h a t    avoid   clocks,   phased   logic supports the 
cyclic, deterministic behavior of the synchronous design  paradigm.  However,  the  phased logic’s  
approach  to synchronous-to    asynchronous        conversion    is    not    as straight forward and 
easy to understand as for example DLAP or de-synchronization. Papers  [25],  [26]  describe  phased  
logic using  dual-rail  approach  named  Level-Encoded  two-phase Dual-Rail (LEDR) scheme but 
the authors mention that other dual-rail approaches are also possible to use (e.g. four-phase 
encoding, transition signaling, etc.).Figure 4 illustrates the key concept of  LEDR  encoding. The  two  
sub signals  are  given subscripts v for “value” and t for “timing”. A feature of the LEDR encoding that 
makes interfacing to phased logic easy is that the v sub signal always carries the logical value of the 
LEDR signal. When the value does not change but a timing transition is needed, the code word 
representing the current value in the opposite phase is transmitted. This creates a transition on the t 
sub signal. 
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FIGURE 4: LEDR code word relationships (left) and waveforms (right) 
 

3. ASYNCHRONOUS SYSTEMS 
The term "Asynchronous" refers to circuits designed without clocks, also known as Self-Timed 
circuits, where the clock is replaced by handshaking signals. In a synchronous system, all blocks are 
assumed to have finished computation when a clock edge arrives. The blocks in Self-timed systems 
independently indicate completion by sending out a request and only proceed when that request 
has been acknowledged.  Blocks only operate as needed, there is little redundant processing. 
Also, a self-timed system is very composable as blocks can be individually optimized and timing of 
one block does not affect another. We wish to exploit this feature for our FPGA architecture. 
Asynchronous designs require some circuit components which are rarely used for synchronous 
design. Ebergen [34] showed many of the circuit elements required to build delay insensitive 
circuits. Asynchronous FPGAs are not widely used. They are fraught with problems with hazards, 
critical races and metastability. Asynchronous circuits are hard to design and tools have only recently 
begun to reach maturity. Asynchronous buses are difficult to construct [35].It is also found that the 
additional completion detection circuitry required  takes  considerable area  and  power  and  slows 
the circuit down. Hence use of  a Globally Asynchronous Locally Synchronous FPGA as a 
compromise between synchronous and asynchronous styles. We propose adding asynchronous 
routing to a synchronous FPGA using a new scheme. 
 
4. PROPOSED SCHEME 
Attempting to synchronize multiple changing signals from one clock domain into a new clock 
domain and insuring that all changing signals are synchronized to the same clock cycle in the new 
clock domain has been shown to be problematic [36]. FIFOs are used in designs to safely pass 
multi-bit data words from one clock domain to another. Data words are placed into a FIFO buffer 
memory array by control signals in one clock domain, and the data words are removed from another 
port of the same FIFO buffer memory array by control signals from a second clock domain. 
Conceptually, the task of designing a FIFO with these assumptions seems to be easy. The difficulty 
associated with doing FIFO design is related to generating the FIFO pointers and finding a reliable 
way to determine full and empty status on the FIFO. Early work on CLOCKLESS systems ([37] and 
[38]) introduced clock stretching or pausing. When data enters a synchronous system from an 
asynchronous environment, registers at the input are prone to metastability. To avoid this, the arrival 
of data is indicated by an asynchronous handshaking protocol. When data arrives, the locally 
generated clock is paused: in practice the rising edge of the clock is delayed. Once data has safely 
arrived, the clock can be released so data is latched with zero probability of metastability   on 
the datapath.  [14] used ME elements to arbitrate between the clock and incoming requests, 
which helped to eliminate metastability. Asynchronous wrappers, [39]were introduced 
,standard components which can be placed around synchronous modules to provide the 
handshake signals  and  make  them CLOCKLESS  modules.  The  local clock generator in the 
proposed system is constructed from and  inverter  and  a  delay line,  similar  to  an  inverter  ring 
oscillator as shown in figure 5. The problem with using inverters alone as a delay line is that it is 
difficult to accurately tune the clock period as process variations and temperature affect the delay. 
Hence accurate delay lines have been developed which are capable of maintaining a stable clock 
frequency. To make the cross domain communication, FIFO element is added to the ring as shown 
in figure 5. This arbitrates between the rising edge  of  the  clock  and  an incoming request. Hence 
the clock is prevented from rising as the input registers are being enabled by the request and 
metastability is prevented. For  each bundle of data a  port controller, request and FIFO element 
is required. Only when all of the FIFO elements have been locked out by the clock is the rising 
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clock edge permitted to occur. This further avoids the problem of clock buffering as well which 
was there with the use of clock pausing technique using ME. 

 

 
FIGURE 5: The basic architecture. 

 
5.   PROPOSED SYSTEM ARCHITECTURE 
We propose converting a conventional, synchronous FPGA into a CLOCKLESS system. To do this 
we partition the FPGA into smaller blocks of FPGA cells. This may be done using either partial flow 
by XILINX, there are many methods exist in past. Within one of these blocks, the local connections 
are synchronous to a local clock for that block and hence the block resembles the original 
FPGA. However, longer communication channels between blocks become asynchronous.  
 

 
FIGURE 6: Proposed architecture 

 
Figure 6 shows the proposed architecture in place around a block of FPGA cells.  Note in particular 
the dividing line between the synchronous and asynchronous domains. All of the FPGA cells are 
in an isolated block above the line in the synchronous domain. Internally, the FPGA block could 
resemble any synchronous FPGA as it is hidden from the rest of the system.  Below the line there 
is an asynchronous wrapper. Outside the asynchronous wrapper blocks are connected together 
using asynchronous routing. All of these blocks are explained in detail in the following section. 
 
5.1   Asynchronous Wrapper 
The asynchronous wrapper shown in figure 5 is formed of 2 components:  

• Local clock generator  
• Port controllers (FIFO). 
The interface between the synchronous and asynchronous domains is facilitated by making the 
synchronous signals differential, so an event is created whenever a signal changes. Port controllers 
have been designed under the assumption that the synchronous block produces these differential 
signals and so they are a requirement of the circuit mapped to the FPGA block. Note that we 
require a separate clock tree for each locally synchronous block. Clearly using the global trees 
featured in current FPGAs would be wasteful; hence it is preferable to use a dedicated FIFO. 
Further, to prevent the size and delay of the FIFO from becoming too large, a limit of the size of the 
FPGA blocks within each wrapper is imposed. 
 
5.2 Asynchronous Routing: the Routing Scheme 
When data arrives at a register, that register must be disabled so it will not go metastable if the 
rising edge of the clock arrives at the same instant. Once the register has the c o n t r o l  of the 
FIFO element ahead of the clock, the register can be enabled and the FIFO released. Transfer of 
data is facilitated by inserting FIFO into the routing. Unidirectional wires have been used exclusively 
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to make point-to-point connections rather than using buses. The configuration in the routing is 
greatly simplified and in particular if FIFO stages are used, they need only t o  operate in a 
single direction.  The overall  routing scheme is shown in figure 7. Instead, all long connections are 
made through a series of block-to-block connections. Each wire entering the FPGA block can either 
be routed to an input port or bypass the block completely. A connection between any two modules 
must pass through at least one FIFO, which helps reduce the time each module remains paused 
and eliminate deadlock 

 
 

 
 
 
 
 
 
 

FIGURE 7: Routing Scheme 
 
 
6.  CONCLUSION  
An extension to existing FPGA architecture has been presented in this work. However, the solution is 
not without its drawbacks. To address some of these problems, some alternative architecture may be 
required. 
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