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Abstract 

 
The Automated Education Propositional Logic Tool (AEPLT) is envisaged. The AEPLT is an 
automated tool that simplifies and aids in the calculation of the propositional logics of compound 
propositions of conjuction, disjunction, conditional, and bi-conditional. The AEPLT has an 
architecture where the user simply enters the propositional variables and the system maps them 
with the right connectives to form compound proposition or formulas that are calculated to give 
the desired solutions. The automation of the system gives a guarantee of coming up with correct 
solutions rather than the human mind going through all the possible theorems, axioms and 
statements, and due to fatigue one would bound to miss some steps. In addition the AEPL Tool 
has a user friendly interface that guides the user in executing operations of deriving solutions.  
 
Keywords: Compound proposition, propositional variables, propositional logic, truth table, 

connective and SEMINT specific parser. 

 

 
1. INTRODUCTION 

This work envisages a solution of automating the calculation of the propositional logic which is 
user friendly. This paper introduces the Automated Education Propositional Logic Tool (AEPLT) 
designed for the stated task. The AEPLT automatically calculates the propositional logics of 
compound propositions of conjuction, disjunction, conditional, and bi-conditional. The AEPLT 
architecture is composed of the following components: Proposition Process (PP), Operator, 
SEMINT Specific Parser, Assumption Statements, T/F and Truth Table. Once the user activates 
the system, the SEMINT Specific Parser automatically extracts the propositional variables from 
the PP and connectives from Operator. The SEMINT Specific Parser has the ability of forwarding 
the compound propositions or formulas to the right Assumption Statements. In these right 
Assumption Statements, the formulas are examined against various statements. After this 
examination, the system is ready to give results whether Truth False value, which is then 
recorded in the truth table.  Once the results are recorded, the user can access the results from 
the truth table for the intended application. The work also demonstrates an algorithm that clearly 
illustrates the stages of calculating and implementing the tool. The system’s application is 
comprehensively demonstrated by its interface, which guides the use of the system and makes 
this tool user friendly.  
 
1.1 Statement of Problem 
During the Discrete Mathematics classes, students struggle to calculate the propositional logics of 
compound proposition. Yet in this cutting edge era, the Information Communication Technology 
(ICT) tools have been employed and applied to automate all challenging mathematical, physics, 
engineering and any other scientific problems. Considering all the theorems, axioms and 
statements the student has to undergo in order to derive the logic that would help him come up 
with results, the process tends to be cumbersome. It is in view of this that the AEPLT was 
introduced to automate the calculation of the propositional logic of the conjuction, disjunction, 
conditional and bi-conditional.  
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1.2 Literature Review 
The propositional logic is one of the topics under Discrete Mathematics course or discipline. Before 
tackling propositional logic, it is inevitable to first look at the Discrete Mathematics which is the 
overall course. In fact, the significance of Discrete Mathematics as the basis for formal approaches 
to software development has been noted by many scholars such as Dijkstra, Gries, and Schneider 
[1,2,3]. This position continues to be espoused by the ITiCSE working group [4] among others 
[5,6,7,8]. The idea that Discrete Mathematics can be viewed as software engineering mathematics 
has been popularized by the Woodcock and Loomes textbook [9]. In [1] it was emphasized that the 
application of Discrete mathematics to the software development problem has been the subject of 
extensive research. He added that much of the initial effort was directed to formal verification, the 
process of showing the equivalence of two software system presentations. He also indicated that 
Discrete Mathematics pedagogy has a rich background. Whereas in [10,11,12,13] they pointed out 
that Discrete Mathematics literature dates back even to the first proposed computing curricula. In 
[14, 15] they described Discrete Mathematics as the study of mathematical structures and objects 
that are fundamentally discrete rather than continuous. They gave some examples of objects with 
discrete values as integers, graphs, or  statement in logic. From their description they also pointed 
out that concepts from Discrete Mathematics were useful for describing objects and problems in 
computer algorithms and programming languages. They further emphasized that these had 
applications in cryptography, automated theorem proving and software development. This 
description is also supported in [16] where they discussed Discrete Mathematics as the study of 
mathematical structures that do not support or require the notion of continuity. They outlined the 
topics of Discrete Mathematics to include: logic, sets, numbers theory, combinatorics, graphs, 
algorithms, probability, information, complexity, computability, etc. Also in [1] it was pointed out 
Discrete Mathematics underlying modern software engineering theory that included: propositional 
and first-order predicate logic, reasoning, proof techniques, induction, finite set theory, relations 

and graphs. the Discrete Mathematics classes, students struggle to calculate the propositional 

logics of compound proposition.  
 
The research on the propositional logic was envisaged as far back as 1854 by a Mathematician 
George Boole [17, 18] who established the rules of symbolic logic in his book titled, The Laws of 
Thought. Since then, a lot of scholars had been researching on the significance of propositions 
towards building the reasoning capacity of the learners, engineers and other scientists. Many 
scholars have come up with various definitions to the concepts of propositional logic. Others have 
separated definitions of propositional and logic. [19] defined logic as the science of reasoning 
correctly. He further emphasised that this subject has a long history, and narrates that the person 
generally agreed to have founded formal logic was Aristotle who is method of formal reasoning 
was called the syllogism. He also pointed out that in nineteen century philosophers and 
mathematicians like Boole, De Morgan, Frege and others, became interested in modeling the 
laws of thought. In [14] he classified logic as the branch of philosophy concerned with analyzing 
the patterns of reasoning by which a conclusion is drawn from a set of premises, without 
reference to meaning or context. They further emphasized its importance as a formalization of 
reasoning, a formal language for deducing knowledge from a small number of explicit stated 
premises, hypotheses, axioms and facts. They also pointed out that logic was a formal framework 
for representing knowledge. They also defined proposition as the underlying meaning of a simple 
declarative sentence, which is either true or false. In this definition, the truth or falsehood of a 
proposition was indicated by assigning it one of the truth values T, for true and F for false. They 
also cited some examples of propositions as: mammals are warm blooded, the sun orbits the 
earth, four is a prime number, Joan is taller than John, etc. A practical example was given from a 
statement: “In 1938 Hitler seized Austria, (and) in 1939 he seized former Czechoslovakia and in 
1941 he attacked the former USSR while still having a non-aggression pact with it.” This 
statement was expressed in atomic propositions as: p = in 1939 Hitler seized Austria; q = 1939 he 
seized former Czechoslovakia; r = 1941 he attacked the former USSR, and s = in 1949 Hitler had 
a non-aggression pact with the USSR. This was formalized in propositional logic as: 

srqs ∧∧∧ . 
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[20] pointed out that many mathematical statements were constructed by combining one or more 
propositions. He further stated that new prepositions called compound propositions are formed 
from the existing propositions using logical connectives or operators. Whereas [19] defined 
compound statements as the combination of primitive statements by means of logic connectives. 
[19, 20] stated that letters were used to denote propositional variables or statement variables. 
They gave the conventional letters used for propositional variables as: p, q, r, s, etc. The authors 
also defined the truth table which displays the relationships between truth values that are true 
(denoted T) if it is true proposition and false (denoted F) otherwise. They classified these 
propositions as: (i) negation of p and denoted ¬ p. They defined as the truth value of the negation 
of p was the opposite of the truth value of p, read as “not p”; (ii) the compound proposition 
conjunction denoted p ∧ q, is true when both p and q are true and false otherwise; (iii) the 
compound proposition disjunction denoted p ∨ q is false when both p and q are false and true 
otherwise; the compound proposition conditional denoted p → q, is false when p is true and q is 

false, and is true otherwise; (iv) the compound proposition exclusive or denoted p ⊕ q, is true 

when exactly one of p and q is true and is false otherwise; (v) the compound proposition bi-
conditional denoted by p ↔ q, is true when p and q have the same truth value, and is false 

otherwise.  

 
2. THE AELPT SYSTEM ARCHITECTURE 

The Propositional Computation architecture given in Figure 1 is an automated model which is 
used to calculate the values of compound propositions: conjunction, disjunction, conditional and 
bi-conditional. The architecture is composed of the following components: Proposition Process 
(PP), Operator, SEMINT Specific Parser, Assumption Statements, T/F and Truth Table. 
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FIGURE 1: Preposition computation architecture. 

 
The user activates the Propositional Process (PP) which holds the propositional variables such as 
the p, q, r, s, etc. Once the PP is activated, the SEMINT Specific Parser (SemSP) automatically 
extracts the propositional variables and the logical connectives from the Operator, forming a 

compound statement or formula such as p ∧ q, p ∨ q, p → q, p ⊕ q and p ↔ q. The SemSP is 

intelligently designed to automatically pass the compound statement to the right Assumption 
Statements component. The Assumption Statement has pre-programmed statements that 
determine the final computed propositional statement whether true or false. Then either the true 
(T) or false (F) is selected from the T/F decision box and this result is recorded in underlying Truth 
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Table. This Truth Table then holds the results of the computed compound proposition such as 
conjuction, disjunction, conditional and bi-conditional. Then the user can pick the results his/her 
application purposes.  
 

3. IMPLEMENTATION OF AUTOMATED EDUCATION PROPOSITIONAL 
LOGIC TOOL 

The implementation of Automated Education Propositional Logic Tool is done by the algorithm 
illustrated in Figure 2.  
 

Yes

Proposition

p,q,r,s, etc

P=Null Exit
No

Conjuction

Truth TablePi=Pj

Disjuction

Map T/T/F/F

Condictional

Bi-Condictional
 

 

FIGURE 2: Preposition implementation algorithm. 

 
From Figure 2, the propositional variables are activated into the decision box. In the decision box, 
if the propositional variables are null, then the process is exit. This would imply that the variables 
are empty and the process can not be continued. At the same instance, if the propositional 
variables are not null, the pair or set of such statements are passed on to the adjacent decision 
box. Let Pi be the first propositional variable and Pj be the second one. The pair or the set of 
propositional variables are mapped to a connective forming a compound statement or formula. 
Then the mapped propositional variables are forwarded to the right compound proposition where 
the formula would be computed through a series of statements. These statements make a 
complete algorithm that determines true and false solution. Below, the statements are discussed: 
A. Conjuction (p ∧ q): 

• True and True is True, because both sides of the conjuction  are True, then the 
proposition holds True 

• True and False is False, because a proposition cannot be both True and False at 
the same time, hence False 

• False and True is False, because a proposition cannot be both True and False at 
the same time, therefore False  

• False and False is False, because a proposition holds to be False on both sides of 
conjuction, hence False. 

B. Disjunction (p ∨ q): 

• True or True is True, because both sides of the disjunction  are True, then the 
proposition holds True 

• True or False is True, because at least one side of the disjunction is True, therefore, 
the proposition is True 

• False or True is True, because at least one side of the disjunction is True, hence, 
the proposition is True  
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• False or False is False, because all the sides of disjunction hold False, then the 
proposition is False. 

C. Conditional (p → q): 

• True implies True is True, hence the proposition holds True 

• True implies False is False, this result takes precedence to make the proposition 
False 

• False implies True is True, this result takes precedence to make the proposition 
True  

• False implies False is False, which is True from the statement, hence the 
proposition is True. 

D. Bi-Conditional (p ↔ q): 

• True implies True and is implied by true, it gives True, hence the proposition holds 
True 

• True implies False and False implies True, therefore the proposition is False 
because what is False is never True and vice versa 

• False implies True and True implies False, hence the proposition is False because 
it is not True that  what is False is True and vice versa  

• False implies False and False implies False, hence the proposition is True, 
because False is False. 

After the formulas examine the four compound statements, then from the decision box the 
results are produced and recorded in the Truth Table. Therefore, the user can pick the 
results for the intended application.  

E. The Application Interface: Propositional Tool: 
The AEPLT has a user friendly interface. It has a pull down menu, where the user can select 
what he/she wants to calculate such as conjuction, disjunction, conditional, and  bi-
conditional as illustrated in Figure 3. 

 

 

 

FIGURE 3: Compound propositional input window. 

 
From Figure 3, if you select conjuction from a pull down menu, then the Figure 4 appears. This 
figure has entry or input spaces for entering the variables of propositions p and q that are True (T) 
and False (F). Every after entering values True (T) and False (F), one can still view the individual 
results without checking on the Truth Table by pressing on the button “View Result”. When you 
press on “View Button”, the system will display Truth Table conjuction results. Similar calculations 
can be done on others such as the disjunction, conditional and bi-conditional. 
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FIGURE 4: The Conjuction Window for Input. 

 

4. CONCLUSION 

Development in all sectors of work, require correct planning in order to provide tools that will yield 
the intended results. As in [19], logic was defined as the science of reasoning correctly. Once the 
implementers reason correctly in strategizing and planning in executing their tasks, positive 
results would be achieved. Hence, in this work, the AEPLT was envisaged to come up with 
automated systems which will always give a precise propositional logic results. The system has 
an architecture where the user simply enters the propositional variables and whole calculation is 
done giving accurate results.  
 
The envisaging of this model, Automated Education Propositional Logic Tool (AEPLT) has scored 
a number of achievements. First it has allowed the users, who are in this case the students to 
concretely use this automated model, rather than calculating the propositional logic of compound 
propositions of conjuction, disjunction, conditional and bi-conditional manually. Secondly, the 
automated model has a user friendly interface where the student enters the propositional 
variables and then the system automatically maps  them with the right connectives to form 
compound proposition or formula that are calculated to yield the intended results. Thirdly, during 
the execution, this automated system gives a guarantee of producing correct results rather than 
when it is done manually whereby due to fatigue or exhaustion, the user may bound to key-in 
incorrect input and thereafter result into wrong output. 
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