
J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 27

Automated Education Propositional Logic Tool (AEPLT): Used
For Computation in Discrete Mathematics

J. Mbale mbalej@yahoo.com
Centre of Excellence in Telecommunications (CoE)
Department of Computer Science
Faculty of Science
University of Namibia
Windhoek, 340, Namibia

Abstract

The Automated Education Propositional Logic Tool (AEPLT) is envisaged. The AEPLT is an
automated tool that simplifies and aids in the calculation of the propositional logics of compound
propositions of conjuction, disjunction, conditional, and bi-conditional. The AEPLT has an
architecture where the user simply enters the propositional variables and the system maps them
with the right connectives to form compound proposition or formulas that are calculated to give
the desired solutions. The automation of the system gives a guarantee of coming up with correct
solutions rather than the human mind going through all the possible theorems, axioms and
statements, and due to fatigue one would bound to miss some steps. In addition the AEPL Tool
has a user friendly interface that guides the user in executing operations of deriving solutions.

Keywords: Compound proposition, propositional variables, propositional logic, truth table,

connective and SEMINT specific parser.

1. INTRODUCTION

This work envisages a solution of automating the calculation of the propositional logic which is
user friendly. This paper introduces the Automated Education Propositional Logic Tool (AEPLT)
designed for the stated task. The AEPLT automatically calculates the propositional logics of
compound propositions of conjuction, disjunction, conditional, and bi-conditional. The AEPLT
architecture is composed of the following components: Proposition Process (PP), Operator,
SEMINT Specific Parser, Assumption Statements, T/F and Truth Table. Once the user activates
the system, the SEMINT Specific Parser automatically extracts the propositional variables from
the PP and connectives from Operator. The SEMINT Specific Parser has the ability of forwarding
the compound propositions or formulas to the right Assumption Statements. In these right
Assumption Statements, the formulas are examined against various statements. After this
examination, the system is ready to give results whether Truth False value, which is then
recorded in the truth table. Once the results are recorded, the user can access the results from
the truth table for the intended application. The work also demonstrates an algorithm that clearly
illustrates the stages of calculating and implementing the tool. The system’s application is
comprehensively demonstrated by its interface, which guides the use of the system and makes
this tool user friendly.

1.1 Statement of Problem
During the Discrete Mathematics classes, students struggle to calculate the propositional logics of
compound proposition. Yet in this cutting edge era, the Information Communication Technology
(ICT) tools have been employed and applied to automate all challenging mathematical, physics,
engineering and any other scientific problems. Considering all the theorems, axioms and
statements the student has to undergo in order to derive the logic that would help him come up
with results, the process tends to be cumbersome. It is in view of this that the AEPLT was
introduced to automate the calculation of the propositional logic of the conjuction, disjunction,
conditional and bi-conditional.

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 28

1.2 Literature Review
The propositional logic is one of the topics under Discrete Mathematics course or discipline. Before
tackling propositional logic, it is inevitable to first look at the Discrete Mathematics which is the
overall course. In fact, the significance of Discrete Mathematics as the basis for formal approaches
to software development has been noted by many scholars such as Dijkstra, Gries, and Schneider
[1,2,3]. This position continues to be espoused by the ITiCSE working group [4] among others
[5,6,7,8]. The idea that Discrete Mathematics can be viewed as software engineering mathematics
has been popularized by the Woodcock and Loomes textbook [9]. In [1] it was emphasized that the
application of Discrete mathematics to the software development problem has been the subject of
extensive research. He added that much of the initial effort was directed to formal verification, the
process of showing the equivalence of two software system presentations. He also indicated that
Discrete Mathematics pedagogy has a rich background. Whereas in [10,11,12,13] they pointed out
that Discrete Mathematics literature dates back even to the first proposed computing curricula. In
[14, 15] they described Discrete Mathematics as the study of mathematical structures and objects
that are fundamentally discrete rather than continuous. They gave some examples of objects with
discrete values as integers, graphs, or statement in logic. From their description they also pointed
out that concepts from Discrete Mathematics were useful for describing objects and problems in
computer algorithms and programming languages. They further emphasized that these had
applications in cryptography, automated theorem proving and software development. This
description is also supported in [16] where they discussed Discrete Mathematics as the study of
mathematical structures that do not support or require the notion of continuity. They outlined the
topics of Discrete Mathematics to include: logic, sets, numbers theory, combinatorics, graphs,
algorithms, probability, information, complexity, computability, etc. Also in [1] it was pointed out
Discrete Mathematics underlying modern software engineering theory that included: propositional
and first-order predicate logic, reasoning, proof techniques, induction, finite set theory, relations

and graphs. the Discrete Mathematics classes, students struggle to calculate the propositional

logics of compound proposition.

The research on the propositional logic was envisaged as far back as 1854 by a Mathematician
George Boole [17, 18] who established the rules of symbolic logic in his book titled, The Laws of
Thought. Since then, a lot of scholars had been researching on the significance of propositions
towards building the reasoning capacity of the learners, engineers and other scientists. Many
scholars have come up with various definitions to the concepts of propositional logic. Others have
separated definitions of propositional and logic. [19] defined logic as the science of reasoning
correctly. He further emphasised that this subject has a long history, and narrates that the person
generally agreed to have founded formal logic was Aristotle who is method of formal reasoning
was called the syllogism. He also pointed out that in nineteen century philosophers and
mathematicians like Boole, De Morgan, Frege and others, became interested in modeling the
laws of thought. In [14] he classified logic as the branch of philosophy concerned with analyzing
the patterns of reasoning by which a conclusion is drawn from a set of premises, without
reference to meaning or context. They further emphasized its importance as a formalization of
reasoning, a formal language for deducing knowledge from a small number of explicit stated
premises, hypotheses, axioms and facts. They also pointed out that logic was a formal framework
for representing knowledge. They also defined proposition as the underlying meaning of a simple
declarative sentence, which is either true or false. In this definition, the truth or falsehood of a
proposition was indicated by assigning it one of the truth values T, for true and F for false. They
also cited some examples of propositions as: mammals are warm blooded, the sun orbits the
earth, four is a prime number, Joan is taller than John, etc. A practical example was given from a
statement: “In 1938 Hitler seized Austria, (and) in 1939 he seized former Czechoslovakia and in
1941 he attacked the former USSR while still having a non-aggression pact with it.” This
statement was expressed in atomic propositions as: p = in 1939 Hitler seized Austria; q = 1939 he
seized former Czechoslovakia; r = 1941 he attacked the former USSR, and s = in 1949 Hitler had
a non-aggression pact with the USSR. This was formalized in propositional logic as:

srqs ∧∧∧ .

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 29

[20] pointed out that many mathematical statements were constructed by combining one or more
propositions. He further stated that new prepositions called compound propositions are formed
from the existing propositions using logical connectives or operators. Whereas [19] defined
compound statements as the combination of primitive statements by means of logic connectives.
[19, 20] stated that letters were used to denote propositional variables or statement variables.
They gave the conventional letters used for propositional variables as: p, q, r, s, etc. The authors
also defined the truth table which displays the relationships between truth values that are true
(denoted T) if it is true proposition and false (denoted F) otherwise. They classified these
propositions as: (i) negation of p and denoted ¬ p. They defined as the truth value of the negation
of p was the opposite of the truth value of p, read as “not p”; (ii) the compound proposition
conjunction denoted p ∧ q, is true when both p and q are true and false otherwise; (iii) the
compound proposition disjunction denoted p ∨ q is false when both p and q are false and true
otherwise; the compound proposition conditional denoted p → q, is false when p is true and q is

false, and is true otherwise; (iv) the compound proposition exclusive or denoted p ⊕ q, is true

when exactly one of p and q is true and is false otherwise; (v) the compound proposition bi-
conditional denoted by p ↔ q, is true when p and q have the same truth value, and is false

otherwise.

2. THE AELPT SYSTEM ARCHITECTURE

The Propositional Computation architecture given in Figure 1 is an automated model which is
used to calculate the values of compound propositions: conjunction, disjunction, conditional and
bi-conditional. The architecture is composed of the following components: Proposition Process
(PP), Operator, SEMINT Specific Parser, Assumption Statements, T/F and Truth Table.

Assumption

Statements

Conjuction

Assumption

Statements

Disjunction

Assumption

Statements

Conditional

Assumption

Statements

Bi-conditional

Proposition Process (PP)

p,q,r,s, etc

T/F

SEMINT Specific Parser (SemSP)

Truth Table

Operator

FIGURE 1: Preposition computation architecture.

The user activates the Propositional Process (PP) which holds the propositional variables such as
the p, q, r, s, etc. Once the PP is activated, the SEMINT Specific Parser (SemSP) automatically
extracts the propositional variables and the logical connectives from the Operator, forming a

compound statement or formula such as p ∧ q, p ∨ q, p → q, p ⊕ q and p ↔ q. The SemSP is

intelligently designed to automatically pass the compound statement to the right Assumption
Statements component. The Assumption Statement has pre-programmed statements that
determine the final computed propositional statement whether true or false. Then either the true
(T) or false (F) is selected from the T/F decision box and this result is recorded in underlying Truth

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 30

Table. This Truth Table then holds the results of the computed compound proposition such as
conjuction, disjunction, conditional and bi-conditional. Then the user can pick the results his/her
application purposes.

3. IMPLEMENTATION OF AUTOMATED EDUCATION PROPOSITIONAL
LOGIC TOOL

The implementation of Automated Education Propositional Logic Tool is done by the algorithm
illustrated in Figure 2.

Yes

Proposition

p,q,r,s, etc

P=Null Exit
No

Conjuction

Truth TablePi=Pj

Disjuction

Map T/T/F/F

Condictional

Bi-Condictional

FIGURE 2: Preposition implementation algorithm.

From Figure 2, the propositional variables are activated into the decision box. In the decision box,
if the propositional variables are null, then the process is exit. This would imply that the variables
are empty and the process can not be continued. At the same instance, if the propositional
variables are not null, the pair or set of such statements are passed on to the adjacent decision
box. Let Pi be the first propositional variable and Pj be the second one. The pair or the set of
propositional variables are mapped to a connective forming a compound statement or formula.
Then the mapped propositional variables are forwarded to the right compound proposition where
the formula would be computed through a series of statements. These statements make a
complete algorithm that determines true and false solution. Below, the statements are discussed:
A. Conjuction (p ∧ q):

• True and True is True, because both sides of the conjuction are True, then the
proposition holds True

• True and False is False, because a proposition cannot be both True and False at
the same time, hence False

• False and True is False, because a proposition cannot be both True and False at
the same time, therefore False

• False and False is False, because a proposition holds to be False on both sides of
conjuction, hence False.

B. Disjunction (p ∨ q):

• True or True is True, because both sides of the disjunction are True, then the
proposition holds True

• True or False is True, because at least one side of the disjunction is True, therefore,
the proposition is True

• False or True is True, because at least one side of the disjunction is True, hence,
the proposition is True

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 31

• False or False is False, because all the sides of disjunction hold False, then the
proposition is False.

C. Conditional (p → q):

• True implies True is True, hence the proposition holds True

• True implies False is False, this result takes precedence to make the proposition
False

• False implies True is True, this result takes precedence to make the proposition
True

• False implies False is False, which is True from the statement, hence the
proposition is True.

D. Bi-Conditional (p ↔ q):

• True implies True and is implied by true, it gives True, hence the proposition holds
True

• True implies False and False implies True, therefore the proposition is False
because what is False is never True and vice versa

• False implies True and True implies False, hence the proposition is False because
it is not True that what is False is True and vice versa

• False implies False and False implies False, hence the proposition is True,
because False is False.

After the formulas examine the four compound statements, then from the decision box the
results are produced and recorded in the Truth Table. Therefore, the user can pick the
results for the intended application.

E. The Application Interface: Propositional Tool:
The AEPLT has a user friendly interface. It has a pull down menu, where the user can select
what he/she wants to calculate such as conjuction, disjunction, conditional, and bi-
conditional as illustrated in Figure 3.

FIGURE 3: Compound propositional input window.

From Figure 3, if you select conjuction from a pull down menu, then the Figure 4 appears. This
figure has entry or input spaces for entering the variables of propositions p and q that are True (T)
and False (F). Every after entering values True (T) and False (F), one can still view the individual
results without checking on the Truth Table by pressing on the button “View Result”. When you
press on “View Button”, the system will display Truth Table conjuction results. Similar calculations
can be done on others such as the disjunction, conditional and bi-conditional.

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 32

FIGURE 4: The Conjuction Window for Input.

4. CONCLUSION

Development in all sectors of work, require correct planning in order to provide tools that will yield
the intended results. As in [19], logic was defined as the science of reasoning correctly. Once the
implementers reason correctly in strategizing and planning in executing their tasks, positive
results would be achieved. Hence, in this work, the AEPLT was envisaged to come up with
automated systems which will always give a precise propositional logic results. The system has
an architecture where the user simply enters the propositional variables and whole calculation is
done giving accurate results.

The envisaging of this model, Automated Education Propositional Logic Tool (AEPLT) has scored
a number of achievements. First it has allowed the users, who are in this case the students to
concretely use this automated model, rather than calculating the propositional logic of compound
propositions of conjuction, disjunction, conditional and bi-conditional manually. Secondly, the
automated model has a user friendly interface where the student enters the propositional
variables and then the system automatically maps them with the right connectives to form
compound proposition or formula that are calculated to yield the intended results. Thirdly, during
the execution, this automated system gives a guarantee of producing correct results rather than
when it is done manually whereby due to fatigue or exhaustion, the user may bound to key-in
incorrect input and thereafter result into wrong output.

5. REFERENCES
[1] J. P. Cohoon and J. C. Knight. “Connecting Discrete Mathematics and Software

Engineering,” 36th ASEE/IEEE Frontiers in Education Conference, San Diego, CA, October
28 – 31, 2006.

[2] E. W. Dijkstra. “On the cruelty of really teaching computing science,” Communications of the
ACM, December 1989, pp. 1398-1404.

[3] D. Gries, and F. B. Schneider. “A logical approach to discrete math,” Springer-Verlag, New
York, 1993.

[4] V. L. Almstrum, C. N. Dean, D. Goelman, T. B. Hilburn, and J. Smith. “ITiCSE 2000 working
group report: support for teaching formal methods,” SIGCSE Bulletin, June 2001.

J. Mbale

International Journal of Logic and Computation (IJLP), Volume (3) : Issue (1) : 2012 33

[5] A. E. Fleury. “Evaluating discrete mathematics exercises”, SIGCSETechnical Symposium on
Computer Science Education, 1993, pp. 73-77.

[6] J. W. McGuffee. “The discrete mathematics enhancement project”, Journal of Computing in
Small Colleges, 2002, pp. 162-166.

[7] H. Saiedian. “Towards more formalism in software engineering education”, SIGCSE
Technical Symposium on Computer Science Education, 1993, pp. 193-197.

[8] K. Heninger. “Specifying Software Requirements Complex Systems: New Techniques and
Their Application”, IEEE Transactions on Software Engineering, Vol. SE-6, No. 1, January
1980.

[9] J. Woodcock, and M. Loomes. “Software Engineering Mathematics” Software Engineering
Institute, Series in Software Engineering, 1988.

[10] A. T. Berztiss. “The why and how of discrete structures”, SIGCSE Technical Symposium on
Computer Science Education, 1976, pp. 22-25.

[11] R. E. Prather. “Another look at the discrete structures course”, SIGCSE Technical
Symposium on Computer Science Education, 1976, pp. 247-252.

[12] J. P. Tremblay, and R. Manohar. “A first course in discrete structures with applications to
computer science,” SIGCSE Technical Symposium on Computer Science Education, 1974,
pp. 155-160.

[13] A. Tucker, (editor). “Computing curricula 1991: report of the ACM/IEEE-CS Joint curriculum
task force”, ACM Press, 1991.

[14] http://www.cs.pitt.edu/

[15] http://gear.kku.ac.pitt.edu/

[16] mason.gmu.edu/~asamsono/teaching/math125/Lecture1.pdf · PDF file

[17] http://docs.google.com/

[18] www-groups.dcs.st-and.ac.uk/history/Mathematicians/Boole.html

[19] Robin Hirsch. www.cs.ecl.ac.uk/staff/r.hirsch//teaching/1b12/

[20] www.coursehero.com/file/2552944/s11propositionallogicBW

