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Abstract 
 
In this paper we present a new ATL model checking tool used for verification of open systems. An 
open system interacts with its environment and its behavior depends on the state of the system 
as well as the behavior of the environment. The Alternating-Time Temporal Logic (ATL) logic is 
interpreted over concurrent game structures, considered as natural models for compositions of 
open systems. In contrast to previous approaches, our tool permits an interactive design of the 
ATL models as state-transition graphs, and is based on client/server architecture: ATL Designer, 
the client tool, allows an interactive construction of the concurrent game structures as a directed 
multi-graphs and the ATL Checker, the core of our tool, represents the server part and is 
published as Web service. The ATL Checker includes an algebraic compiler which was 
implemented using ANTLR (Another Tool for Language Recognition). Our model checker tool 
allows designers to automatically verify that systems satisfy specifications expressed by ATL 
formulas. The original implementation of the model checking algorithm is based on Relational 
Algebra expressions translated into SQL queries. Several database systems were used for 
evaluating the system performance in verification of large ATL models. 
 
Keywords: ATL, Model Checking, Web Services, Relational Algebra, SQL. 

 
 

1. INTRODUCTION 
Model checking is a technology widely used for the automated system verification and represents 
a technique for verifying that finite state systems satisfy specifications expressed in the language 
of temporal logics. 
 
A Computation Tree Logic (CTL) specification is interpreted over Kripke structures, which are 
graph-like structures, in which nodes represent states and arcs represent transitions between 
states.  
 
The set of all paths through a Kripke structure is assumed to correspond to the set of all 
possible computations of a system. CTL logic is branching-time logic, meaning that its 
formulas are interpreted over all paths beginning in a given state of the Kripke structure. 
 
A CTL formula encodes properties that can occur along a particular temporal path as well as 
to the set of all possible paths. A path in a CTL model is interpreted as sequences of 
successive states of computations. The CTL syntax includes several operators for describing 

temporal properties of systems: A (for all paths), E (there is a path), ○ (at the next moment), ◊ 
(in future), □ (always) and U (until).  
 
A Kripke structure offers a natural model for the computations of a closed system, whose 
behaviour is completely determined by the state of the system. The compositional modelling and 
design of reactive systems requires each component to be viewed as an open system. 
 
The branching time temporal logic CTL has a limited value when applied to open systems [1], 
although it can be used successfully for domain oriented applications [2]. An open system is 
a system that interacts with its environment and whose behaviour depends on the state of the 



Florin Stoica 

International Journal of Logic and Computation (IJLP), Volume (4) : Issue (1) : 2016 2 

system as well as the behaviour of the environment. In order to construct models suitable for 
open systems, the Alternating-time Temporal Logic (ATL) was defined [3]. ATL represents an 
extension of CTL, which is interpreted over concurrent game structures (CGS). 
 

ATL replaces path quantifiers A and E by cooperation modalities of the form 〈〈A〉〉 ϕ (where 

A is a group of agents). Informally, 〈〈A〉〉 ϕ means that agents A have a collective strategy to 

enforce ϕ, regardless of the actions of all the other agents [4]. 
 
The model checking problem for ATL is to determine whether a given model satisfies a given 
ATL formula.  
 
Two most common methods of performing model checking are explicit enumeration of states of 
the model and respectively the use of symbolic methods. 
 
Symbolic model checkers analyse the state space symbolically using Ordered Binary Decision 
Diagrams (OBDDs), which were introduced in [5]. The binary decision diagram is a data structure 
for representing Boolean functions. With appropriate labelling of each state of the CGS structure, 
any expression on the Boolean variables represents a set of states of the structure. In contrast 
with explicit-state model checking, states in symbolic model checking are represented implicitly, 
as a solution to a logical equation. This approach saves space in memory since syntactically 
small equations can represent comparatively large sets of states [6]. A symbolic model checker 
represents the CGS structure itself symbolically using OBDDs to represent transition relations by 
Boolean expressions. The key to symbolic model checking is to perform all calculations directly 
using these Boolean expressions, rather than using the CGS structure explicitly. 
 
An efficient representation of the CGS structures using OBDDs can potentially allow much larger 
structures to be checked.  
 
ATL has been implemented in several symbolic tools for the analysis of open systems. 
 
In [2] is presented a verification environment called MOCHA for the modular verification of 
heterogeneous systems. The input language of MOCHA is a machine readable variant of reactive 
modules. Reactive modules provide a semantic glue that allows the formal embedding and 
interaction of components with different characteristics [7].  
 
In [8] is described MCMAS, a symbolic model checker specifically tailored to agent-based 
specifications and scenarios. MCMAS supports specifications based on CTL and ATL, 
implements OBDD-based algorithms optimized for interpreted systems and supports fairness, 
counter-example generation, and interactive execution (both in explicit and symbolic mode).  
 
MCMAS has been used in a variety of scenarios including web-services, diagnosis, and security. 
 
MCMAS takes a dedicated programming language called ISPL (Interpreted Systems 
Programming Language) as model input language. An ISPL file fully describes a multi-agent 
system (both the agents and the environment). 
 
The aim of our research was to develop a reliable, easy to maintain, scalable model checker tool 
to improve applicability of ATL model checking in design of general-purpose computer software. 
 
In the following we will present a short justification for the choice of the explicit-state model 
technique. 
 
In [9] is presented a comparison between RULEBASE, a symbolic model checker developed at 
IBM Haifa Research Laboratory and the explicit LTL (Linear Temporal Logic) model checker 
SPIN [10]. The software verified was a distributed storage subsystem software application. The 
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state space size handled by SPIN was 10
8
 in a 3-process model. Using symbolic model checking, 

RULEBASE keeps a compressed representation of the state space and thus was able to manage 
10

150
 states. On the other hand, because of the limit on state size, RULEBASE could not 

represent a state large enough to include the information needed for more than 2-process 
configuration [9]. 
 
Most hardware designs are based on a clocked-approach and thus are synchronous. For these 
systems, the symbolic model checking approach is more appropriate [11]. 
 
On the other hand, for nondeterministic, high-level models of hardware protocols, it has 
previously been argued that explicit model checking is better than symbolic model checking [12]; 
this is because the communication mechanisms inherent in protocols tend to cause the BDDs in 
symbolic model checking to blow up [13].  
 
In their basic form, symbolic approaches tend to perform poorly on asynchronous models where 
concurrent interleaving are the main source of explosion of the BDD representation, and explicit-
state model-checkers have been the preferred approach for such models [13]. 
 
Concurrent software is asynchronous as the different components might be running on different 
processors or be interleaved by the scheduler of the operating system. Taking into account the 
above considerations, in our tool we are using an explicit-state model technique. 
 
The most pressing challenge in model checking today is scalability [6]. A model-checking tool 
must be efficient, in terms of the size of the models it can reason about and the time and space it 
requires, in order to scaling its verification ability to handle real-world applications. 
 
An orthogonal approach to increase the capacity of an explicit-state model checker tool is to 
exploit the memory and computational resources of multiple computers in a distributed computing 
environment [13]. Following this idea, our tool is based on Web Services technology to address 
the time constraints in verification of large models. 
 
In this paper we will present a model-checking algorithm based on procedure from [3]. For a 

set A of agents and a set Θ of states, implementation of almost all ATL operators imply the 

computation of function Pre(A, Θ) – the set of states from which agents A can enforce the 

system into some state in Θ in one move [7]. Our main contribution presented in this paper is 

the implementation of function Pre(A,Θ) using Relational Algebra expressions, translated 

then into SQL statements. Other original approach is represented by the generation of an 
ATL model checker using ANTLR (Another Tool for Language Recognition) from our 
specification grammar of ATL. 
 
The ATL semantics is implemented in our model checker tool by attaching of specific actions 
to grammatical constructions within specification grammar of ATL. The actions are written in 
target language of the generated parser, in this case Java. These actions are incorporated in 
source code of the parser and are activated whenever the parser recognizes a valid syntactic 
construction in the translated ATL formula. 
 
The paper is organized as follows. In section 2 we present the definition of the concurrent game 
structure. In section 3 is defined the ATL syntax, and section 4 contains ATL semantics. In 
section 5 is described the implementation of an ATL model checker in ANTLR. In section 6 we 
introduce some relational algebra concepts which are used in our implementation of the ATL 
model checking algorithm. These concepts are applied in section 7. In section 8 are presented 
several examples of computations based on results obtained in section 7. In section 9 is 
described the architecture of our ATL model checker tool: the server part, published as a Web 
service and a GUI client developed in C#. A performance analysis of our ATL model checker is 
made in section 10. Conclusions are presented in section 11. 
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2. THE CONCURRENT GAME STRUCTURE 
A concurrent game structure is defined in [3] as a tuple S=〈Λ,Q,Γ,γ,M,d,δ〉 with the following 

components: a nonempty finite set of all agents  Λ = {1, …, k}; a finite set of states Q; a finite set 

of propositions (or observables) Γ; the labelling (or observation) function γ; a nonempty finite set 

of moves M; the alternative moves function d and the transition function δ. For each state 

q∈Q, γ (q) ⊆ Γ is the set of propositions true at q. For each player a∈{1,…,k} and each state q∈Q, 

the alternative moves function d: Λ×Q → 2
M
  associates the set of available moves of agent a at 

state q. In the following, the set d(a,q) will be denoted by da(q). For each state q∈Q, a tuple 

〈j1,…,jk〉 such that ja∈da(q) for each player a∈Λ, represents a move vector at q. We define the 

move function D : Q → 2M , with M  the set of all move vectors such that D(q)⊆d1(q) 
×…×dk(q) is the set of move vectors at q. We write  

( )
a a

q Q

D d q
∈

= U      (1) 

for the set of available moves of agent a within the game structure S. 
 

The transition function δ(q,j1,…,jk), associates to each state q∈Q and each move vector 〈j1,…,jk〉 ∈ 

D(q) the state that results from state q if every player a∈{1,…,k} chooses move ja.  
 

A computation of S is an infinite sequence λ =q0, q1,… such that qi+1 is the successor of  qi , ∀i ≥ 0 
[3]. A q-computation is a computation starting at state q. 
 

For a computation λ and a position i ≥0, we denote by λ [i ], λ [0,i ], and λ [i,∞ ] the i-th state of λ, 

the finite prefix q0, q1,…,qi of λ, and the infinite suffix qi , qi+1 … of λ, respectively [3]. 

 
3. ATL SYNTAX 
We denote by F

S
(A) the set of all syntactically correct ATL formulas, defined over a concurrent 

game structure S and a set of agents A  ⊆ Λ. 

 

Each formula from F
S
(A) can be obtained using the following rules:  

(R1) if p∈Γ then p∈ F
S
(A); 

(R2) if {ϕ, ϕ1, ϕ2} ⊆ F
S
(A) then {¬ ϕ, ϕ1∨ϕ2} ⊆ F

S
(A);  

(R3) if {ϕ, ϕ1, ϕ2} ⊆ F
S
(A) then {〈〈A〉〉○ϕ, 〈〈A〉〉□ϕ, 〈〈A〉〉 ϕ1 U ϕ2} ⊆ F

S
(A). 

 
The logic ATL is similar to the branching time temporal logic CTL, with difference that path 

quantifiers are parameterized by sets of players from Λ. The operator 〈〈 〉〉 is a path quantifier, and 

○ (next), ◊ (future), □ (always) and U (until) are temporal operators. A formula 〈〈A〉〉 ϕ 

expresses that the team A has a collective strategy to enforce ϕ [14]. Boolean connectives can 

be defined from ¬ and ∨ in the usual way. The ATL formula 〈〈A〉〉 ◊ ϕ is equivalent with 〈〈A〉〉 true 

U ϕ. 

 
4. ATL SEMANTICS 
Consider a game structure S=〈Λ,Q,Γ,γ,M,d,δ〉 with Λ={1,…,k} the set of players.  
 

A strategy for player a∈Λ is a function fa: Q
+→Da that maps every nonempty finite state sequence 

λ=q0,q1,…qn, n≥0, to a move of agent a denoted by fa(λ)∈Da ⊆ M. Thus, the strategy fa determines 

for every finite prefix λ of a computation a move fa(λ) for player a in the last state of λ.  
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Given a set A ⊆ {1,…,k} of players, the set of all strategies of agents from A is denoted by FA ={ 

fa | a∈ A }. The outcome of FA is defined as Fout
A

: Q → P(Q
+
), where ( )

F
out q

A

 represents q-

computations that the players from A are enforcing when they follow the strategies from FA. In 

the following, for ( )Fout q
A

 we will use the notation ( , )out q F
A

. A computation λ=q0,q1,q2,… is in 

( , )out q F
A

if q0=q and for all positions i≥0, there is a move vector 〈j1,…,jk〉 ∈ D(qi) such that [3]: 

• ja=fa(λ[0,i]) for all players a∈ A, and  

• δ(qi, j1,…,jk)= qi+1.  
 

For a game structure S, we write q⊨ϕ to indicate that the formula ϕ is satisfied in the state q of 
the structure S.  
 
For each state q of S, the satisfaction relation ⊨ is defined inductively as follows:  

• for p∈ Γ, q⊨ p ⇔ p∈ γ(q)  
• q⊨¬ϕ ⇔ q⊭ ϕ  

• q⊨ ϕ1∨ϕ2 ⇔ q⊨ ϕ1 or q⊨ ϕ2 

• q⊨ 〈〈A〉〉 ○ φ ⇔ there exists a set FA of strategies, such that for all computations λ∈out(q, 

FA), we have λ[1] ⊨ ϕ (the formula ϕ  is satisfied in the successor of q within computation 

λ). 

• q⊨ 〈〈A〉〉 □ φ ⇔ there exists a set FA of strategies,  such that for all computations λ∈out(q, 

FA), and all positions i≥0, we have λ[i] ⊨ ϕ (the formula ϕ is satisfied in all states of 

computation λ). 

• q⊨ 〈〈A〉〉 φ1 U φ2 ⇔ there exists a set FA of strategies, such that for all computations 

λ∈out(q, FA), there exists a position i≥0 such that λ[i] ⊨ ϕ2 and for all positions 0≤j<i, we 

have λ[j] ⊨ ϕ1. 
 

The path quantifiers A, E of CTL can be expressed in ATL with 〈〈∅〉〉 and 〈〈Λ〉〉 respectively. As a 
consequence, the CTL duality axioms can be rewritten in ATL, and become validities in the basic 

semantics: 〈〈∅〉〉□ ϕ ≡ ¬〈〈Λ〉〉◊ ¬ϕ, 〈〈∅〉〉◊ ϕ ≡ ¬〈〈Λ〉〉□¬ϕ, where the Λ∈{1,…,k} describe the set of 
agents. 

 
5. IMPLEMENTATION OF A MODEL CHECKER IN ANTLR 
From a formal point of view, implementation of an ATL model checker will be accomplished 
through the implementation of an algebraic compiler C in two steps [15]. 

 

First, we need a syntactic parser to verify the syntactic correctness of a formula ϕ. Second, we 
should deal with the semantics of the ATL language, respectively with the implementation of the 

ATL operators: ¬, ∨, ∧,→, ◊, ○, □ and U. 
 

The algebraic compiler C translates the ATL formula ϕ to the set of nodes Q' over which formula ϕ 

is satisfied. That is, C(ϕ)=Q' where Q'={q∈Q| q⊨ ϕ}. 

 
We choose the ANTLR (Another Tool for Language Recognition) for implementation of the 
algebraic compiler. ANTLR [16] is a compiler generator which takes as input a grammar, and 
generates a recognizer for the language defined by the grammar. 
 

Translation of a formula ϕ of an ATL model to the set of nodes Q' over which formula ϕ is 
satisfied is accomplished by attaching of specific actions to grammatical constructions within 
specification grammar of ATL. These actions are written in Java, the target language of the 
generated parser. When ANTLR generates code using our ATL grammar as input, these actions 
are incorporated in the source code of the parser and are activated whenever the parser 
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recognizes a valid syntactic construction in the translated ATL formula. In case of the algebraic 
compiler C, the attached actions define the semantics of the ATL model checker, i.e., the 

implementation of the ATL operators. 
 
The model checker generated by ANTLR from our ATL specification grammar takes as input the 

concurrent game structure S and the formula ϕ, and provides as output Q'={q∈Q| q ⊨ ϕ} – the set 

of states where the formula ϕ  is satisfied. 
 

The algebraic compiler C implements the following ATL model checking algorithm [17], [3]: 

Algorithm 1.  ATL model checking algorithm 
Input: the concurrent game structure S and the formula ϕ 

Output: Q'={q∈Q| q ⊨ ϕ} – the set of states where the formula ϕ  is satisfied. 

function EvalA(ϕ) as set of states ⊆ Q 

case ϕ=p:  

    return [p] = {q ∈ Q | p ∈ γ(q)}; 
case ϕ= ¬θ:  

    return Q \ EvalA(θ); 

 case ϕ=θ1∨θ2:  

    return EvalA(θ1)∪ EvalA(θ2); 

 case ϕ=θ1∧θ2:  

    return EvalA(θ1) ∩ EvalA(θ2) ); 

 case ϕ=θ1→θ2:  

    return ( Q \ EvalA(θ1) ) ∪ EvalA(θ2); 

 case ϕ =〈〈A〉〉○θ:  

    return Pre(A,EvalA(θ)); 

  case ϕ =〈〈A〉〉□θ: 

      ρ:=Q; τ:= EvalA(θ); τ0:= τ; 

     while ρ ⊈ τ do 

  ρ := τ; τ:=Pre(A, ρ)∩τ0; 

     wend 

     return  ρ; 

  case ϕ = 〈〈A〉〉 θ1 U θ2: 

     ρ:= ∅; τ:= EvalA(θ2); τ0:= EvalA(θ1); 

    while τ ⊈ ρ do 

      ρ := ρ ∪ τ; 

  τ:=Pre(A, ρ)∩τ0; 

    wend 

    return  ρ; 
end function  

 
The corresponding action included in the ANTLR grammar of ATL language for implementing the 
□ operator is: 
 
’<<A>> #’ f=formula 
{ 

HashSet r=new HashSet(all_SetS); 
HashSet p=$f.set; 
while (!p.containsAll(r)) 
{ 
   r=new HashSet(p); 
   p=Pre(r); 
   p.retainAll($f.set); 
} 
$set=r; 
trace(”atlFormula”); 
printSet(”<<A>>#”+$f.text,r); 

} 
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For the □ ATL operator we use in ANTLR the # symbol. Also, we denote the ◊ ATL operator with 
~ symbol and the ○ operator is replaced by @ symbol. 
 
In our implementation the all_Set is Q, and means all states of the model. The formula represents 
a term from a production of the ATL grammar, and p, r, f variables are sets used in the internal 
implementation of the algebraic compiler. Functions trace() and printSet() are debugging 
functions. 
 
In case of large ATL models, with many states and agents, it is very important for the model 

checker tool to have an efficient implementation for Pre(A, ρ) function – the set of states from 

which agents A can enforce the system into some state in ρ in one move – which appears in 

several ATL operators. In the following, we made an original formalization of the Pre() function 
using Relational Algebra (RA) concepts. Then, we will translate the obtained relational algebra 
expression into a SQL statement, which represents a concise implementation of the Pre() 
function, ready to be executed using a very efficient query optimizer on a database server. 

 
6. RELATIONAL ALGEBRA CONCEPTS 
In the following we present all Relational Algebra concepts used in our algorithm described in the 
next section. More detailed aspects can be found in [18]. 
 

In order to introduce the following definitions, we assume that a set D of data types is given, and 

for each D ∈ D, the set of possible values of data type D is denoted by val(D), which is also 

known as the domain of D. 
 
A relation schema RS defines a (finite) sequence A1, . . . , An of distinct attribute names. The set 

of given attribute names will be denoted by A = { A1, . . . , An}. Each attribute Ak has a data type 

Dk, and a set of possible values represented by val(Dk),  1,k n=  .  

 
A relation schema RS may be written as RS = (A1 : D1, . . ., An : Dn). 
 
A tuple t with respect to the relation schema RS = (A1 : D1, . . . , An : Dn) is a sequence (d1, . . . , 

dn) of n values such that di ∈ val(Di ), 1,i n= . 

 
Relations are sets of tuples. 
 

A relational database schema consists of a finite set of relation names R, and for every relation R 

∈ R is also considered its relation schema sch(R). 

 
The Relational Algebra (RA) consists from the set of all finite relations over which are defined 
some operations. A query is an expression in the RA. The operations of RA can be nested to 
arbitrary depth such that complex queries can be evaluated. The final result will be a relation. 
 
For the purpose of this paper, in the following we present from the set of RA operations only 
selection, projection (with renaming) and cartesian product. 
 

The selection is denoted by σ and is parameterized by a simple predicate  ω. The operation σω 
acts like a filter and selects a subset of the tuples of a relation, namely those which satisfy the 

predicate ω. The predicate ω has the form: 

expr operator expr, 

where expr is an expression built from attributes, constants, and data type operations (+, -, *, /, 
etc) and operator can be: 

• =, ≠ 
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• <, <=, >, >= 

• data type-dependent predicates (LIKE, IN or ∈, etc) 

For a given relation R and a predicate ω, the expression σω(R) corresponds to the following 
SQL query: 

select distinct * from R where ω 

More complex selection predicates may be constructed using the boolean connectives (∨,∧,¬). 
 

The projection πL eliminates all attributes of the input relation excepting those mentioned in the 

list L. If 
1
, ,

mi iL A A= … the projection πL(R) produces for each input tuple ( )1 1: , , :
n n

A d A d…  an 

output tuple 
1 1

( : , , : )
m mi i i iA d A d… . 

 
There are two useful generalized projection operators. The first one is used to provide attribute 
renaming: 

1 1
, ,i m im

B A B Aπ ← … ←  

The projection 
1 1

, , ( )
i m im

B A B A Rπ ← … ←  provide for each input tuple ( )1 1: , , :
n n

A d A d…  an output tuple 

11( : , , : )
mi m iB d B d… . 

 

The second generalized π operator is using computations to derive the values in new columns: 

' ',  || @ ||
( )

NAME EMAIL Account Domain
EMPLOYEEπ

←
  

where || operator represents string concatenation. 
 

The relational algebra expression 
1 , , ( )

mA A Rπ …  corresponds to the SQL query: 

select distinct 1, ,
m

A A…  from R 

and for the expression 
1 1 , , ( )

m mB A B A Rπ ← … ←  the equivalent SQL query is 

select distinct 1 1 m m  , ,   A as B A as B…  from R. 

In general, queries need to combine values from several relations. In RA, such queries are 

formulated using the Cartesian product, denoted by symbol ×. The Cartesian product R × V of two 

relations R, V is computed by concatenating each tuple r ∈ R with each tuple v ∈ V. 
 

If ( )1 1: , , :
n n

r A a A a= …  and ( )1 1: , , :
m m

v B b B b= …  then  

( )1 1 1 1 : , , : , : , , :
n n m m

r v A a A a B b B b• = … …
 

 

where • denotes tuple concatenation. The attribute names must be unique within a tuple r v• . 
R × V can be computed by the equivalent SQL query: 

select R.*, V.* from R, V 

The unique column name restriction is solved in SQL easily: a common attribute A of relations R 
and V may uniquely be identified by R.A respectively V.A. 
 

In RA, this solution is formalized by the renaming operator ρx(R). If R is a relation with schema 

( ) ( )1 1: , , :
n n

sch R A D A D= … , then ( )
1 1. , , . ( )

n nx x A A x A AR Rρ π ← … ←=  is a relation with schema 

( )1 1. : , , . :
n n

x A D x A D… . 
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Because the combination of Cartesian product and selection in queries is frequently, a special 

operator join has been introduced, denoted by ⋈θ: 

R ⋈θ V ≡ σθ (R × V) 

where the join predicate θ may refer to attribute names of R and V. 
 
The join operator combines tuples from two relations and acts like a filter, removing tuples without 
join partner: 

x.A x.B 
a1 b1 
a2 b2 
a3 b3 

 

⋈x.B=y.B 

y.B y.C 
b3 c3 
b4 c4 
b5 c5 

 

= 

 
A B C 
a3 b3 c3 

 

 
In SQL language, the relational algebra expression R ⋈θ V  can be written as:  

select * from R join V on θ. 

The left outer join operator denoted by θ, preserves all tuples in its left argument, even if a 
tuple does not fit with a partner in the join: 

x.A x.B 
a1 b1 
a2 b2 
a3 b3 

 

x.B=y.B 

y.B y.C 
b3 c3 
b4 c4 
b5 c5 

 

= 

A B C 
a1 b1 null 
a2 b2 null 
a3 b3 c3 

 

In the following the set of syntactically correct Relational Algebra (RA) expressions or queries is 
defined recursively and the resulting schema of each expression is given. 

 

1) For every relation R ∈ R, R is an RA expression with schema sch(R). 

2) A relation constant {(A1 : d1, . . . , An : dn)} is an RA expression if di ∈ val(Di ),  1,=i n . The 

schema of this expression is  (A1 : D1, . . . , An : Dn). 
Let ERA be an RA expression with schema RS = (A1 : D1, . . . , An : Dn). 

3) ( )σ =i jA A RAE , with i, j ∈ {1, …, n} is an RA expression with schema RS. 

4) ( )σ =iA d RAE , with i ∈ {1, …, n} and d ∈ val(Di ) is an RA expression with schema RS. 

5) 
1 1

, , ( )π ← … ←i m im
B A B A RAE  for 1, , {1, , }… ∈ …

m
i i n  and B1, …, Bm ∈ A such that Bj ≠ Bk for j≠k is 

an RA expression with schema 
11( : , , : )…

mi m iB D B D . 

 
7. USING RELATIONAL ALGEBRA IN MODEL CHECKING ALGORITHM 
For a concurrent game structure S presented in section 2, can be defined a directed multi-graph 

GS=(X,U), where X=Q, and (b,e) ∈ U ⇔ ∃ 〈j1,…,jk〉 ∈  D(b) such as δ(b,j1,…,jk) = e. The labelling 

function for the graph GS is defined as follows: L:U → M , ∀ u = (b,e) ∈ U, L(u) = 〈j1,…,jk〉, where 

δ(b,j1,…,jk) = e. 
 

We define the relation schema (B:QB, M1:D1, …, Mk:Dk, E:QE) where QB = {b ∈ Q | ∃ e ∈ Q such 

as (b, e) ∈ U}, QE = {e ∈ Q | ∃ b ∈ Q such as (b, e) ∈ U} and Di, i ∈ {1, …, k} = Λ was defined in 

(1), such as if RS is a relation name with schema defined above, (B:b, M1:j1, …, Mk:jk, E:e) ∈ RS 

⇔ 〈j1,…,jk〉 = L((b,e)). 
 

For a set A of m agents, A ⊆ Λ, A = {i1, …, im}, we define: 

1
, , , ,) ( )( π …=

i im
S B M M E SR RA  where , {1, , }∈ ∈ …

l
i l mA   and 
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1
, ,( () ( ))π ← °…°=

i im
L B LABEL M M E SR RA A  where the operator ° can be defined as follows: i ° j = i || ',' || 

j. 

For a set Θ ⊆ QE, b ∈ Pre(A, Θ) ⇔ ∃ , ( ) , 1,∈ ∈ =
l li i l

j d i l mb A   and ∃ e ∈ Θ such as  

1
( , (, ))∈

mi i Sb j ,…, j e R A  

and ∄e'∈QE \ Θ such as  

1
( ( )')∈

mi i Sb, j ,…, j ,e R A  

With other words, b ∈ Pre(A, Θ) ⇔ ∃ , ( ) , 1,∈ ∈ =
l li i l

j d i l mb A  such as  

1 1
: , , : {( : ) |   }( )π = ∈Θ

m mE i i i i EB b M : j ,…,M : j E Q E e e  

In the following, the set of states QE \ Θ is denoted by Q .  
 

Now we can design an algorithm to compute the function Pre(A, Θ) using RA expressions: 

 

Algorithm 2.  Computing ( , )Pre A Q  function using relational algebra expressions 

 
Step1  

, ( ) ) ( )( ( )π σ ∈Θ

Θ=
B LABEL E L L

R RA A   

, ( ) ) ( )( ( )π σ Θ

Θ∈
=

B LABEL L LE
R RA A   

 
Step2 

(( ))ρ Θ

Lx R A  
 

,( ( )) ( )ρ ΘΘ Θ=L Ly R RA A  

 . .  . .= ∧ =x B y B x LABEL y LABEL   

 
Step 3 

, ,  
. . , . ( )) ( )( ( )σ π Θ Θ

=

Θ = null

LABEL null LABEL L Ly x B y R RA A  

Step 4 
,

.( , ) ( ( ))π ΘΘ = null

x B LPre RA A  

 
The above algorithm can be implemented in SQL language as follows: 

Algorithm 3.  Computing ( , )Pre QA  function using SQL statements 

select distinct B from 
( 
   select distinct x.B, y.LABEL from  
   ( 
       select distinct B, LABEL from model  
       where E in Θ 
   ) x   
   left join  
   ( 
       select distinct B, LABEL from model  
       where E not in Θ 
   ) y 
   on x.B = y.B and x.LABEL = y.LABEL  
   where y.LABEL is null 
) z 
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We tested the above algorithm on three database servers: MySql, H2 and Microsoft SQL Server. 
Surprising, the MySQL and H2 deal much better with queries having the clause “IN” based on 

many values. Rewriting the above query using temporary tables to hold elements of the set Θ, 
was obtained a significant performance increase in all cases. 

 
8. SOME EXAMPLES 
In [19] is presented a CTL model for two processes competing for entrance into a critical section. 
 
In the following, we present an ATL model for the critical section problem solved using a mutex. 
Our solution improves the mentioned CTL model because it supports true concurrency: the two 
processes can request simultaneously entrance into critical section, and their access is restricted 
using a mutex managed by the operating system (represented in our model by an agent). 
 
If we consider our model presented in Figure 1 as a concurrent game structure 

S=〈Λ,Q,Γ,γ,M,d,δ〉, we will detail the semantics for the symbols from Γ - the set of propositions 

(labels from nodes representing states) and M – the set of agents moves. We have Γ = {I1, I2, W1, 
W2, E1, E2, L1, L2, F} with the following significations: 
 

 
 

FIGURE 1:  ATL model for two processes competing to entrance into a critical section. 

 

• Ii – the process i  is in Idle state, 1, 2i = ; 

• Wi – the process i  is in Waiting state (it is waiting to enter in critical section), 1, 2i = ; 

• Ei – the process i  is in Executing state (it is executing the code from critical section), 

1, 2i = ; 

• Li – the mutex is owned (Locked) by the process i, 1, 2i = ;  

• F – the mutex is not owned  by any process (it has Freed).  

The symbols from the set M = {l, e, i, f} ∪ {pd, dp, p-, -p} have the following significations: 

• l – a request to enter in critical section (lock the mutex); 

• e –  a request to execute code from the critical section; 

• i – there is no a request (idle); 

• f – release (free) the mutex, leave the critical section; 

• pd  – permission for agent 1, deny for agent 2; 

• dp  – permission for agent 2, deny for agent 1; 
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• p- – permission for agent 1, the agent 2 is idle (no request); 

• -p – permission for agent 2, the agent 1 is idle (no request). 
 

Using our model checking tool, we have verified that the following ATL formulas are satisfied by 
the model presented above:  

 
ATL formula Signification 

not(<<A>>~(E1 and E2)) Safety – Processes are not running simultaneously statements from 
the critical section 

Wi => not (<<A>># (not Ei)), 1, 2i =  
Warranty - each time one process tries to enter in critical section 
(owning the mutex), in the future it will succeed. 

not (<<A>>~ (not (Ii => << A>>@ Wi))), 

1, 2i =  

Nonblocking – each process can require any time to enter in the 
critical section 

<<A>>~ (E1 and (<<A>> E1 U (not E1 

and (<<A>> not E2 U E1)))) 

 
<<A>>~ (E2 and (<<A>> E2 U (not E2 

and (<<A>> not E1 U E2)))) 

Without imposed succession – the processes do not have the 
restriction to enter alternating in the critical section 

Ei => Li, 1, 2i =  
Owning the mutex – One process can execute the critical section 
only if it is owning the mutex  
 

not(<<A>>~ (not ((L1 or L2) => not 

(<<A>># (not F))))) 

Releasing the mutex – If one of the  processes is owning the mutex, 
in the future it must release (free) the mutex 
 

I1 and I2 => << A>>@ (W1 and W2) Concurrency – If there is no process into critical section, both 
processes can request simultaneously to enter in the critical section, 
without blocking. 

 

TABLE 1: ATL Formulas Satisfied By Our Model. 

 
In the following we will apply the Algorithm 3 for computing function Pre() with different arguments 
passed in the process of checking of two ATL formulas from Table 1. 
 
Example 1 
For the ATL model presented above, we check the following ATL formula: 
 

W1 => not (<<A>># (not E1))       (2) 

 
with its signification described in Table 1. The model checking algorithm will require some calls of 
function Pre() with certain arguments. In Table 2 are presented two computations of function 
Pre(): 



Florin Stoica 

International Journal of Logic and Computation (IJLP), Volume (4) : Issue (1) : 2016 13 

 

 {0, 3, 4, 5, 6, 7, 10}Q =  

 A={1} A={2} 

,
. , . ( )

LA BEL Lx B y
Rp

QQ
A

 

 

B LABEL 

0 NULL 

0 l 

2 NULL 

3 NULL 

4 NULL 

5 NULL 

6 NULL 

9 NULL 

10 NULL 
 

B LABEL 

0 l 

2 NULL 

3 NULL 

4 NULL 

5 NULL 

6 NULL 

9 NULL 

10 NULL 
 

( , )Pre QA  {0, 2, 3, 4, 5, 6, 9, 10}  {2, 3, 4, 5, 6, 9, 10}  

 

TABLE 2: Computations of function ( , )Pre QA  when checking the ATL formula (2). 

 

For A = {1} because i∈d1(0), 1( : 0, : , : ) {( : 4)}π =E EB M i E Q E , and 4∈Θ ⇒ 0 ∈ Pre(A, Θ). 

For A = {2}, d2(0) = {l, i}. We have 2( : 0, : , : ) {( :8)}π =E EB M i E Q E , but 8 ∉ Θ.  

Also, 2( : 0, : , : ) {( :1),( : 4), ( :10)}π =E EB M l E Q E E E , but 1 ∉ Θ.  

We conclude that 0 ∉ Pre(A, Θ). 

 
Example 2 
For the same ATL model, described in Figure 1, we consider the following formula: 

not (<<A>>~ (not (I1 => <<A>>@ W1)))              (3) 

with its signification also described in Table 1. In Table 3 are presented computations of function 
Pre() needed for checking the ATL formula (3): 
 

 {1, 6, 7, 8, 10}Q =  
 A={1} A={2} 

,
.. , )(
LA BEL Lx B y

Rp
QQ

A
 

 

B LABEL 

0 NULL 

3 NULL 

4 NULL 

5 NULL 

6 NULL 

7 NULL 

10 NULL 
 

B LABEL 

0 l 

0 NULL 

3 l 

4 e 

5 NULL 

6 NULL 

7 NULL 

10 NULL 
 

( , )Pre QA  {0, 3, 4, 5, 6, 7, 10}  {0, 5, 6, 7, 10}  
 

TABLE 3: Computations of function ( , )Pre QA when checking the ATL formula (3). 

 

For A = {2}, d2(3) = {l}. We have 2( :3, : , : ) {( : 4),( :10)}π =E EB M l E Q E E , but 4∉Θ.  
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Also, we have d2(4) = {e}, and  2( : 4, : , : ) {( :5),( : 6)}π =E EB M e E Q E E , but 5∉Θ. Thus, 3 ∉ 

Pre(A, Θ) and 4 ∉ Pre(A, Θ). 

 
9. PUBLISHING THE ATL MODEL CHECKER AS A WEB SERVICE 
Web services represent a standardized way for applications to expose their functionality over the 
Internet/Intranet, regardless of the platform or operating system upon which the service or the 
client is implemented. A Web service is accessible on the Web through an URL, and use a XML 
file, written using Web Service Definition Language (WSDL), to define its interfaces and bindings. 
 
We choose to publish our implementation of the ATL model checker as a Web service in order to 
make the core of our tool accessible to various clients. 
 
Our implementation is based on GlassFish/Tomcat as a Web container, and relies on 

• MySQL 

• SQLServer 

• H2  
 
as a database server. 
 
For testing purposes, the ATL model checker described in this paper is available online via a Web 
service hosted by mcheck-useit.rhcloud.com. 
 
The Web service will receive from a client the XML representation of a ATL model S and a ATL 

formula ϕ. The original form of the ATL model S is passed then to the algebraic compiler C 

generated by ANTLR using our ATL extended grammar. For a given ATL model (encoded as a 

directed multi-graph described in section 7) and an ATL formula ϕ, the Web service will parse the 
formula and will return to client the set of states in which the formula is satisfied if formula is 
syntactically correct, or a message describing the error from an erroneous formula. 
 
In order to notify the client about possible syntactical errors found in the verified ATL formula, we 
must override the default behavior of the ANTLR error-handling. A custom error-handling in lexer 
is installed as follows: 

 
@lexer::members { 

   @Override 

   public void reportError(RecognitionException re) { 

     throw new RuntimeException("Lexical error!\n\n" +     

                        "Position:" + re.line + ":" + re.charPositionInLine +  

                        " erroneous character: '" + (char)re.c + "'");  

        } 

} 

A syntactical error is reported if we install our handler in parser: 
 

@members { 

        @Override 

        public void reportError(RecognitionException re) { 

           throw new RuntimeException("Syntactical error!");  

} 

 

Finally, in case of occurrence of an error, we instruct ANTLR to throw that error, allowing the Web 
service to send it to the client: 
 

@rulecatch { 

       catch (RecognitionException err) { throw err; } 

} 
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Our model checking tool is based on a C# GUI client who allows interactive graphical 
development of the ATL models. For internal representation of an ATL model as a directed multi-
graph, our implementation is based on data structures provided by [20].  
 
Thus, an ATL model encoding is based on symmetrically stored forward and backward adjacency 
lists. This paradigm supports an edge-oriented way of handling graphs with multiple edges. 
 
The functionality of the client part is accessible through a right-click contextual menu which 
allows: adding nodes, labelling nodes, deleting nodes, adding arcs, display nodes numbers, etc., 
as we can see from the Figure 2. 
 
In Figure 2, the labels of edges are associated with move vectors of agents depicted in Figure 1, 
and can be assigned in the ATL Designer in a dedicated window. 
 
An overview of the system architecture of the ATL checker tool presented in this paper is given by 
the UML package diagram depicted in the Figure 3. 
 
The ATL model checker tool contains the following packages: 

• The algebraic compiler (ATL Compiler) invoked through the Web Service (ATL Checker); 

• The GUI client application used for interactive construction of the ATL models as directed 
multi-graphs (ATL Designer); 

• The ATL non-GUI model package contains classes used for programmatic construction of 
huge ATL models.  
Are available ATL API Client libraries for Java and C#. 

• The XML API for ATL models package contains classes needed to encode the ATL model 
into XML.  
It is based on our XSD schema for specification of the XML representation of an ATL model; 

• The ATL GUI Model package is responsible with graphical representation of the ATL 
concurrent game structures represented as directed multi-graphs. 

 

 
 

FIGURE 2: ATL Designer – Checking The ATL Formulas (2) and (3). 
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FIGURE 3: The System Architecture of The ATL Model Checker Tool. 
 
All components of our ATL model checker tool can be downloaded from http://use-it.ro. 

 
10.  PERFORMANCE ANALYSIS OF THE ATL MODEL CHECKER 
In this section we evaluate the effectiveness of our approach in designing and implementing an 
ATL model checker and we report some experimental results. 
 
For the beginning we describe the usage of our model-checker to design a game strategy when 
playing Tic-Tac-Toe (called TTT for short in the rest of this paper). Although the game 
implemented is relatively simple, due to the large size of the structure representing the ATL 
model at the first moves, it represents a good opportunity to study the impact of technologies 
used to implement the model checker in its performance. 
 
In [21] is showed that the model checking of computation tree logic (CTL) formulae can be used 
for generating plans in deterministic as well as non-deterministic domains. Because ATL is an 
extension of CTL that includes notions of agents, their abilities and strategies (conditional plans) 
explicitly in its models, ATL is better suited for planning, especially in multi-agent systems [1]. 
 
ATL models generalize turn-based transition trees from game theory and thus it is not difficult to 
encode a game in the formalism of concurrent game structures, by imposing that only one agent 
makes a move at any given time step. 
 
The game TTT is played by two opponents with a turn-based modality on a 3×3 board. The two 
players take turns to put pieces on the board. A single piece is put for each turn and a piece once 
put does not move. A player wins the game by first lining three of his or her pieces in a straight 
line, no matter horizontal, vertical or diagonal. 
 
The implemented algorithm looks for infallible conditional plans to achieve a winning strategy that 
can be defined via ATL formulae. 
 
We consider a computer program playing TTT game with a user (human) and the ATL model 
checking algorithm is used to return a strategy to achieve a winning strategy for the computer. 
The TTT is a turn-based synchronous game. In such a system, at every transition there is just 
one agent that is permitted to make a choice (and hence determine the future). 
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Formally, a game structure S=〈Λ,Q,Γ,γ,M,d,δ〉 is turn-based synchronous if for every state q from 

Q, there exist a player a from the set of all agents Λ such that |db(q)| = 1 for all players b∈Λ\{a}. 
State q is the turn of player a. 
 
In the following we will show how to use the ATL formalizations in finding winning strategies in 
case of TTT game. 
 
10.1 Modelling The Game 
We transform the original problem into an ATL model checking problem. More specifically, we 

want to determine a strategy fa : Q
+
 → Da which leads the game into a winning state for the agent 

a∈Λ representing the computer. 
We suppose that positions of the board are numbered as in figure 4: 

0 1 2 

3 4 5 

6 7 8 
 

FIGURE 4: Labelling The Grids On The Board. 
 

Formally, the turn-based synchronous game structure of TTT is defined as follows: 

S=〈Λ,Q,Γ,γ,M,d,δ〉. 
 

The set of agents is Λ ={1,2} and we consider that computer is represented by agent 1 and the 
user is represented by the agent 2. 
 

Values of the board locations are denoted by xi ∈ {0,1,2}, where i ∈ {0,1,...,8}. The value 0 means 
an empty position, the value 1 denotes a previous move of the agent 1 and the value 2 

represents a move of the player 2. For the sequence of values 
l m n

x x x  we define 

min( ,1) min( ,1) min( ,1)
l m n l m n

x x x x x x= + +∑  where , , {0,1,...,8}l m n Î  . 

 

The set of propositions (or observables) Γ is defined as follows: 

Γ = {( 1 2 3 6 0 4 8 2 4 60,3,6 0,1,2
,  ,  ,  ,  

l l l l l ll l
x x x x x x x x x x x x T+ + + += =

 ) |  {0,1,2} for 0,8  and {1,2}
k

x k TÎ = Î }. 

A state labelled with value T  = 1 signifies that is turn of the player 1 for making the move and if 

T = 2 then the player 2 will make the next move. 
 
The set of possible movements of agents is M={0,1,2,3,4,5,6,7,8,9}. 
 

For the agent 1, the set of alternative movements in the state q∈Q, in case when movements are 
still possible, is defined as: 

1 2
0,3,6

1

1 2
0,3,6

{1,..., | 9 1, 1 ( )}

( )
{0 | 9 1, 2 ( )}

l l l

l

l l l

l

k k x x x q

d q
k x x x q

π

π

+ +

=

+ +

=

 = − ≥ ∈


= 
= − ≥ ∈



∑

∑
  

 
Analogue are defined the possible movements of the agent 2. 
 
The game stops (so no moves are possible) if the board moves locations are full i.e.: 

1 2
0,3,6

9l l l

l

x x x+ +

=

=∑  

Another situation where the game is not continuing is when a player won. The state q is a winning 

state for player 1 if  111 ( )qγ∈  and it is a winning state for player 2 if 222 ( )qγ∈ . 
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Alternation to move can be formalized as follows: for a transition ( )1 2, , 'q j j qδ = , there are the 

following cases: 

1  ( ) 2 ( ')q qγ γ∈ ⇒ ∈  or 2  ( ) 1 ( ')q qγ γ∈ ⇒ ∈  

In order to win the game, the player 1 (the computer) must follow two rules: 

1. Try to choose at next move a state from the set ⟪1⟫ ◊ (111), which favours the wining of 
the game in the future. 

2. Avoid to choose at next move a state from the set ⟪2⟫ ○ ( 222 ), to prevent the player 2 to 
win on the next move. 

 
10.2 Experimental Results 
The major impact on performance of the ATL model checker is represented by the 
implementation of the function Pre(), which was presented in detail in section 7 and is based 
exclusively on the database server used.  
 
In order to analyse their impact in the performance of the ATL model checker, were used three 
different database servers to implement the Web service, namely MySql 5.5, H2 1.3 and 
respectively Microsoft SQL Server 2008. 
 
ATL-Designer permits the selection of one of the three database servers mentioned above: 

 

 
 

FIGURE 5: The Selection of The Database Server. 

 
We have found important performance penalty due to the clause IN from the query presented in 
algorithm 2 from section 7, especially on Microsoft SQL Server 2008. 
 
Thus the initial query was optimized by removing the clause IN and replacing it with JOIN 
operations performed between tables. 
 

First of all, with states of the set Θ was built a temporary table in database server using the query: 

Database server Query syntax for building a table with states of the set Θ 
SQL Server 2008 insert into #Θ 

select distinct X.* from (values (q1), (q2), … (qn)) as X(E) 
MySQL 5.5/ H2 1.3 insert into `Θ` (E) values (q1), (q2), … (qn) 

 
 

TABLE 4: Specific queries to populate tables with given discrete values. 

 

where , 1,iq i n∈ Θ = . 

 
Then, to implement sub-queries were used temporary tables which have defined primary keys for 
fast access. 
 
Supplementary optimizations were made for SQL Server:  

• to reduce the transaction log and also to optimize insertions in tables of database 
atl, was used the directive: 
alter database atl set RECOVERY  SIMPLE 
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• to optimize data transfer between the database server and Web server, was 
maximized the dimension of packets for network data transfer with the directive: 
EXEC sp_configure 'network packet size (B)', '32767'; 

 
The MySQL server was configured only during the installation process. 
 
The H2 database supports the in-memory mode (the data is not persisted), well suited for high 
performance operations. Also, H2 database can emulate the behavior of specific databases 
(DB2, Oracle, MySQL, PostgreSQL, etc.). Using MySQL Compatibility Mode made it possible to 
also use MySQL specific code / syntax for the H2 database.  
 

Optimizations recommended in [22] are included in the following connection string for H2:  

jdbc:h2:mem:db1;MODE=MySQL;LOG=0;LOCK_MODE=0;UNDO_LOG=0;DB_CLOSE_

DELAY=60 

In Table 5 are presented the results showing the performance of our ATL model checker related 
to database server used: 

 

Total time necessary to determine the winning strategy (Tic-Tac-Toe game)  
Intel Core I5, 2.5 GHz, 4Gb RAM  

Number of 
states 

SQL Server 2008 
(seconds) 

MySQL 5.5 
(seconds) 

H2 1.3 (seconds) 

4791 ≈3.97 ≈1.86 ≈1.33 

4255 ≈3.37 ≈1.62 ≈1.17 

3732 ≈2.66 ≈1.41 ≈0.99 

3423 ≈2.32 ≈1.24 ≈0.90 

3683 ≈2.21 ≈1.21 ≈0.85 

2307 ≈1.97 ≈0.86 ≈0.58 

2236 ≈1.93 ≈0.75 ≈0.56 
 

TABLE 5: A comparative analysis of impact of database servers  
in performance of ATL model checker. 

 
In [23] is presented a comparison between Lurch (a random search model checker) and two well-
known model checker tools, SMV and SPIN, showing the time and memory required, and the 
accuracy achieved by each tool when playing the tic-tac-toe game. 
 
SPIN is a well-known explicit-state LTL (Linear Temporal Logic) model checker tool, and SMV is 
a symbolic CTL (Computation Tree Logic) model checker. 
 
Although the logics LTL and CTL have their natural interpretation over the computations of closed 
systems and the logic ATL is used for the specification and verification of open systems, in theory 
the expressive power of ATL beyond CTL (in the case of closed systems ATL degenerates to 
CTL) comes at no cost - the model checking complexity of synchronous ATL is linear in the size 
of the system and the length of the formula [3]. 
 
Results from [23] showed that both SMV and SPIN were able to find an optimal strategy for a 
player in less than one second, on a 3x3 board. 
 
As we can see from Table 5, the ATL model checker tool is not as fast as the CTL/LTL tools, but 
we must take into consideration that an ATL model is more expressive (with ATL we can quantify 
over the individual powers of one player or a cooperating team of players, ATL models capture 
various notions of synchronous and asynchronous interaction between open systems, etc.).  
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In [24] the Tic-Tac-Toe was implemented in the Reactive Modules Language (RML). RML is the 
model description language of the ATL model checker MOCHA, which was developed by Alur et 
al. [7]. Experimental results showed that the time necessary to find a winning strategy for a 
player, on a configuration with a Dural-Core 1.8Ghz CPU, was 1 minute and 6 seconds. Running 
on the same configuration, our ATL checker tool is able to find a winning strategy in about 4 
seconds using MySql as a database server and 2 seconds when H2 was used. 
 
By using a database-based technology in the core of the ATL model checker, our tool provides a 
good foundation for further improvement of its performance and scalability. 
 
In the actual stage of the development, experimental results are encouraging, showing that our 
tool is able to handle large systems efficiently. 

 
11.  CONCLUSIONS 
In this paper we built an ATL model checking tool, based on robust technologies (Java, .NET, 
SQL) and well-known standards (XML, SOAP, HTTP). The implementation of the ATL model 
checking algorithm is based on Java code generated by ANTLR using an original ATL grammar 
and provides error-handling for eventual lexical/syntax errors in formula to be analysed. The main 
contribution of this paper consists in implementation of ATL operators using Relational Algebra 
expressions translated into SQL queries. 
 
The C# implementation of the client part of our new tool (ATL Designer) allows an interactive 
graphical specification of the ATL model as a directed multi-graph. 
 
The server component of our tool (ATL Checker) was published as a Web service, exposing its 
functionality through standard XML interfaces.  
 
The ATL Designer, a ready to be deployed Web Service package for Tomcat 7.x and ATL API 
Client libraries for Java and C# can be downloaded from http://use-it.ro. 
 
Further investigation on improving performance will be done using in-memory databases (H2, 
HSQLDB).  Also, we are planning to approach time constraints [25] in our ATL model checker. 
Because the SQL queries used in verification a composite ATL formula might consist of many 
subqueries that can be run in parallel, we would start looking at using the horizontal scalability 
features such as Parallel Pipelined Table Functions (PTF) provided by Oracle databases. 
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