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Abstract 

 
This paper uses a fuzzy neural network (FNN) structure for identifying and controlling nonlinear 
dynamic systems such three links robot arm. The equation of motion for three links robot arm 
derived using Lagrange’s equation. This equation then combined with the equations of motion for 
dc. servo motors which actuated the robot. For the control problem, we present the forward and 
inverse adaptive control approaches using the FNN. Computer simulation is performed to view 
the results for identification and control. 
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1. INTRODUCTION 

In the past decade, the applications of intelligent control techniques (fuzzy control or neural-
network control) to the motion control of robotic manipulators have received considerable 
attention [1], [5]. In general, robotic manipulators have to face various uncertainties in their 
dynamics, such as payload parameter, friction, and disturbance. It is difficult to establish an 
appropriate mathematical model for the design of a model based control system. Thus, the 
general claim of these intelligent control approaches is that they can attenuate the effects of 
structured parametric uncertainty and unstructured disturbance by using their powerful learning 
ability without a detailed knowledge of the controlled plant in the design processes. Feed forward 
neural networks have been shown to obtain successful results in system identification and control 
[6]. Such neural networks are static input/output mapping schemes that can approximate a 
continuous function to an arbitrary degree of accuracy. Results have also been extended to 
recurrent neural networks [7], [9]. For example, Jin et al. [8] studied the approximation of 
continuous-time dynamic systems using the dynamic recurrent (DRNN) and a Hopfield-type 
DRNN was presented by Funahashi and Nakamura [7]. As is widely known, both fuzzy logic 
systems and neural network systems are aimed at exploiting human-like knowledge processing 
capability. Moreover, combinations of the two have found extensive applications. This approach 
involves merging or fusing fuzzy systems and neural networks into an integrated system to reap 
the benefits of both [10]. For instance, Lin and Lee [11] proposed a general neural network model 
for a fuzzy logic control and decision system, which is trained to control an unmanned vehicle. 
In this paper FNN is used to identify and control a three links robot arm. We present the forward 
and inverse identification as offline learning to use the parameters of this stage in control stage. 
For control problem, we present the indirect (forward) and direct (inverse) control. Computer 
simulation implements to view the results of robot arm application. 
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This paper is organized as follows. Section II presents the dynamic model of a three-link robot 
arm including actuator dynamics briefly [12], [14]. Section III shows the FNN structure.  Section IV 
FNN identification .Section V presents the FNN control. Section VI presents the simulation results 
finally section IX shows the conclusion. 
 

2. Dynamic model of three links Robot arm 

Dynamic modeling of a robot manipulator consists of finding the mapping between the forces 
exerted on the structures and the joint positions, velocities and accelerations. Two formulations 
are mainly used to derive the dynamic model: namely the Lagrange formulation and the Newton-
Euler formulation. A large number of authors and researchers [15], [17], used Lagrange's 
approach to drive the general form of robot equation of motion. The Lagrange equations thus 
taking on the alternative form [18]: 
 

     (1)     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1: Three Links Robot Arm 
 

Where ,  denote the vectors of joint link positions, velocities and acceleration 

respectively, I ( )   denotes the inertia matrix, n denote the number of link, P is the 

potential energy and  denoted the torque of n link. Consider the manipulator of Fig. (1), with 

links designed so that their mass centers, C1, C2, and C3, are located at the midpoints of 

segments O1O2, O2O3, and O3P, respectively. Moreover, the  link has a mass (mn )and a 

centroidal moment of inertia in a direction normal to the plane of motion (In ); while the joints are 

actuated by motors delivering torques , , and , the lubricant of the joints producing 

dissipative torques that we will neglect in this model. Under the assumption that gravity acts in the 
direction of Y axis. In general, the dynamic model of armature-controlled DC servo motors which 

shown below, on an - link robot manipulator can be expressed in the following form [17]: 

                                     (2)                                                                                                     

          (3)                                                                           

        (4)                                                              
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motor torque constants,  is the vector of armature currents,  is the diagonal 

matrix of the moment inertia,  is the diagonal matrix of torsional damping 

coefficients, denote the vectors of motor shaft positions, velocities, and 

accelerations, respectively,  is the vector of load torque,  is the vector of 

armature input voltages,  is the diagonal matrix of armature resistance,  

is the diagonal matrix of armature inductance, and  is the diagonal matrix of the back 

electromotive force (EMF) coefficients. In order to apply the dc servo motors for actuating an -

link robot manipulator, a relationship between the joint position  and the motor-shaft position  

can be represented as follows [17]: 
 

      (5) 

The governed equation of an n-link robot manipulator including actuator dynamics can be 
obtained as [1]: 
 

     (6) 

Where  represents the control effort vector, i.e. armature input voltages, 
 

 

                          (7) 

  

 

            (9) 

Where  is gravity vector, N represents the vector of external disturbance  and friction 

term . Then we can re-write Eqn. (6) as: 

 

              (10) 

 
By using method of numerical integration such Euler method for Eqn. (10) we can get position, 
velocity and acceleration for each link. 
 

3. Fuzzy Neural Networks (FNN) 
The Architecture of FNN shown in (fig, 2). FNN considered as a special type of neural network 
[19], this means special connection and node operation. Every layer and every node have its 
practical meaning because the FNN has the structure which is based on both the fuzzy rules and 
inference. In the following items each layer shown in (fig, 2) will be described: 
 

1- Input layer 

Input layer transmits the input linguistic variables  to the output without changed. 

2- Hidden layer I 
Membership layer represents the input values with the following Gaussian membership 
functions [20]: 
 
 

(8) 
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                 (11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 
FIGURE 2: Architecture of FNN 

 

Where  and  (i=1, 2, ... , n ; j=1, 2,.., m), respectively, are the mean and standard deviation 

of the Gaussian function in the j
th
 term of the i

th
 input linguistic variable  to the node of this 

layer. 
 

3-Hidden layer II 
Rule layer implements the fuzzy inference mechanism, and each node in this layer 
multiplies the input signals and outputs the result of the product. The output of this layer is 
given as [20]: 
 

             (12) 

 
          Where  represent the i

th
 output of rule layer. 

 
4- Output layer 

Layer four is the output layer, and nodes in this layer represent output linguistic variables. 
Each node , which computes the output as [20]: 

 

       (13) 

 
 
3.1 Learning Algorithm FNN Identifier 
There are three types of parameters in the fuzzy-neural network can be adapted, in the primes 
part: the center values and width values  of the Gaussian membership functions, whereas, 

in the consequence part: the consequence weights values
iw . Once the fuzzy-neural network 

has been initialized, a gradient decent based back-propagation algorithm is employed to adjust 
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the parameters of the fuzzy-neural network by using the training patterns. The main goal of 
supervised learning algorithm is to minimize the mean square error function [20]: 
 

            (14) 

Where  is the output of is fuzzy-neural network and  is the desired output. The gradient 

descent algorithm gives the following iterative equations for the parameter values [20]: 
 

             (15) 

              (16) 

              (17) 

Where � is the learning rate for each parameter in the system, i=1,2…n and j=1,2…m. Taking the 
partial derivative of the error function given by Eqn. (14), we can get the following equations: 

                  (18) 

         (19) 

        (20)  

4. Identification 
Two representations are available to identify a dynamical system depending on type of the output 
feedback these are parallel model and Series-parallel model [6]. In this paper the series-parallel 
identification model is desired. A series-parallel model that is obtained by feeding back the past 
values of the plant output (rather than the identifier output) as shown in (Fig,3). This implies that 
in this case the identification model has the form [6]: 

        (21) 

The identifier output is represented by  and the plant output is denoted by . 

 

5. FNN Control 
For system control problems, we focus on the adaptive control of dynamic systems using FNN. 
These algorithms denoted as “Fuzzy Neural Model Reference Controller” (FNMRC) in this type of 
controllers, back propagation training algorithm is used [16]. There are two distinct approaches 
for the FNMRC, the first one result in a direct scheme (inverse control) for the controller and the 
second result in an indirect scheme (forward control), the difference between the two may be 
shown in figure (4.1) and (4.2). 
 

5.1 Learning Algorithm for Indirect FNN Control (Forward) 
Indirect control architecture usually requires an identified system model and the controller design 
is based on the learning algorithm. Our goal is to minimize the following cost function: 
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                 (22)  

 
Where ,  and are errors between reference outputs and robot’s link1, link2 and link3  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3: Series-Parallel identification model 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4.1: Direct FNN model reference learning controller 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 4.2: Indirect FNN model reference learning controller 
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output respectively, then the gradient of error  with respect to weights , mean and standard 

deviation of the Gaussian function are given: 
 

                      (23) 

 

 

 
The identifier can provide the system sensitivity  and it can be computed by the chain rule: 

 

 

 

                        (26)     

Where ,  are l
th
 output of FNN controller, O

th
 output of robot plant respectively and where: 

 

                                                                              

                                                                              

                                                                              

                                                                          

                                                                         

 

5.2 Learning Algorithm for Direct FNN Control (Inverse) 
The FNN inverse control is shown in the (fig, 5), in which two FNN are present, one for the 
inverse identification and the other for controller. The basic structure of the inverse controller 
consists of the controller network only, which is the same to the identifier network in the offline 
learning. The simple concept of the inverse controller is the controller block that represents the 
inverse transfer function of the robot plant, so the product result of the two blocks (robot plant and 

(24) 

(25) 
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controller) must equal unity. Hence the output of the robot plant will be equal to desired input of 
the controller. 
 
 
 
 
 
 
 
 
 
 
 
 
 

        FIGURE 5: FNN inverse control 
 

6. SIMULATION RESULTS  
In the following examples two methods of control presented in above sections are implemented 
by FNN for three links robot arm. The simulation carried by MATLABT software. The no. of rules 
and outputs are 50 and 3 respectively, in each method of control. The initial mean and standard 
of membership function were computed as Eqns. (27) and (28) [21], beside the 0.001values for 
weights. Following two examples are viewed. The most important parameters that affect the 
control performance of the robotic system are the external disturbance  , the friction term 

 , and the parameter variation of 3
rd

 link’s mass  . In all two example simulation, three 

circumstances including the: 
 
1- Nominal situation ( kg and N=0) at beginning. 

2- Parameter variation situation occurring at t=15 sec (  kg). 

3- Disturbance in addition, friction forces are also considered in this simulation. 
 
Hence, 

 

 
 

            (27) 

                                       (28) 

 
 Where  ,  are the predetermined maximal and minimal bounds of n

th 
input to FNN. 

 

6.1 Example 1 
In this example the forward control is implemented by FNN in each one the forward identifier is 
used to calculate the plant sensitivity, the initial parameters of identifier will take from final values 
proceed in the offline learning. The eighteen inputs are fed to FNN controller, the learning rate of 
weights, mean and standard are ,  and  respectively . figures 

(6.a) to (6.f) are shown the FNN forward control position response and mean square error for 
link1, link2 and link3 respectively for 100 epochs. 
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FIGURE 6: FNN forward control simulation results of position response and mean square error for Link1, 

Link2 and Link3 (a)-(f) 
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FIGURE 7: FNN inverse control simulation results of position response and mean square error for Link1, 

Link2 and Link3 (a)-(f) 
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6.2 Example 2 
The FNN inverse control presented in this example, the structure of controller same the structure 
of the inverse identifier which only changes the  input to inverse identifier by reference 

input  to inverse controller. Inverse identifier used here so that the parameters 

generated in offline learning considered initial parameters to online inverse identifier and inverse 
controller. The eighteen inputs are fed to FNN controller, the learning rate of weights, mean and 
standard are ,  and  respectively. Figures (7.a) to (7.f) 

are shown the FNN inverse control position response and mean square error for link1, link2 and 
link3 respectively for 100 epochs. 
 

7. CONCLUSION 
In this paper use FNN for identification and control for dynamic nonlinear systems such three 
links robot arm. From the previous examples we conclude that the FNN is powerful for identify 
and control nonlinear system, in example1 use indirect control with online forward identification 
and the gradient in mean square error is done and in example2 use the direct control technique 
with online inverse identification after use the parameters are get from offline inverse identification 
to use in online work. Table (1) shows the gradient mean square error for both examples for each 
link and the mean square error for each link when we applied the traditional PD control 
(Proportion and Derivative control) on them in order to compare the values of MSE among 
example1, example2 (they applied by FNN control) and PD control, the main difference between 
FNN control and traditional PD control is a PD control can’t adapt its gains (kp, kd) when some 
disturbance insert to plant in otherwise the FNN control can adapt its parameters (wc, mcij and scij) 
by online learning algorithm. 
For future work the control technique by FNN without identification will study to reduce load of 
computation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 1: Mean square error 
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