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Abstract 

 
For navigation in complex environments, a robot needs to reach a compromise between the need 
for having efficient and optimized trajectories and the need for reacting to unexpected events. 
This paper presents a new sensor-based Path Planner which results in a fast local or global 
motion planning able to incorporate the new obstacle information. In the first step the safest areas 
in the environment are extracted by means of a Voronoi Diagram. In the second step the Fast 
Marching Method is applied to the Voronoi extracted areas in order to obtain the path. The 
method combines map-based and sensor-based planning operations to provide a reliable motion 
plan, while it operates at the sensor frequency. The main characteristics are speed and reliability, 
since the map dimensions are reduced to an almost unidimensional map and this map represents 
the safest areas in the environment for moving the robot. In addition, the Voronoi Diagram can be 
calculated in open areas, and with all kind of shaped obstacles, which allows to apply the 
proposed planning method in complex environments where other methods of planning based on 
Voronoi do not work.  
 
 
Keywords: Voronoi Diagram, ath Planning, ast Marching. 

 
 
1. INTRODUCTION 
Since the 1980s mobile robot motion planning problems have become an important research 
topic that has attracted the attention of many researchers who have worked extensively to obtain 
efficient methods to solve these problems. This issue has been dealt with in two general ways: 
one approach has concentrated on solving motion planning problems using a previously known 
global environment or obstacle information and the robot characteristics, whilst the second 
approach has concentrated on planning motion using local sensor information and the robot 
characteristics.  
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In recent years, sensor-based path planning has emerged as a compromise between the need for 
reacting to unexpected environmental events and the need for having efficient optimized 
trajectories. Different variations of classical methods have been proposed to achieve an operative 
sensor-based path planning. One of these techniques is the Voronoi-based path planning. In 
order to use a sensor-based method an efficient and fast algorithm is required to extract and 
follow Voronoi Diagrams.  
 
The Voronoi Diagram has been studied by many researchers. The advantages of Voronoi-based 
path planning are that it diminishes the dimension of the problem to one and that the trajectories 
follow the maximum clearance map. This means that the trajectories are the safest ones. 
Moreover, the Voronoi-based navigation reminds of topological navigation and, because of that, it 
is similar to the human one in some aspects. However, most Voronoi-based methods have the 
difficulty of calculating the Voronoi Diagram by studying lines and polygons, finding the vertices 
and nodes, and creating a tree to find the path. In addition, the method is not very efficient in 
three dimensions and it does not work at all in higher dimensions. As an alternative to solve these 
problems, we propose the use of image processing methods.  
 
In order to calculate the trajectory, the new Motion Planning method is based on the combination 
of a Voronoi Diagram and the expansion of a wave from the start point to the goal following the 
Voronoi Diagram.  
 
The proposed sensor-based planning method uses a combination of sensor information and the 
known map of the environment. The Voronoi Diagram is built using image methods 
(skeletonization) based on the Breu method in 2D [7] and Gagvani in 3D [16]. This Voronoi 
Diagram (skeleton) is dilated and inverted to obtain a viscosity map. The next step is to calculate 
the trajectory in the image generated by the thick Voronoi Diagram using a wave expansion. The 
wave expansion is calculated solving the Eikonal equation for which the Fast Marching Method 
has been used, though there are other similar ones, such as the Tsiksitlis [54] method, MCC [32], 
and others.  
 
Then, the obtained path verifies the smoothness and safety considerations required for mobile 
robot path planning.  
 
The approach implemented in this work is based on the potential field method of the wave 
expansion, which repels a robot away from obstacles and towards the goal using a carefully 
designed artificial potential function. The main advantages of this method are:  
 

• It is easy to implement.  
• The computation time is low, so this algorithm works in Real-Time.  

 
2. RELATED WORK 

 
2.1 Voronoi Diagram 
The Voronoi concept has been used for four centuries. In his Traité de la Lumiére published in 
1644, Descartes uses diagrams similar to Voronoi to show the disposition of matter in the solar 
system and its environment. Algorithms of Voronoi Diagrams have been appearing since the 
1970s. See the surveys by Aurenhammer [2,3], de Berg [5], and Okabe [39] on various 
algorithms, applications, and generalizations of Voronoi Diagrams.  
 
The Generalized Voronoi Diagram is the set of points where the distance to the two closest 
objects is the same [11]. Many algorithms have been proposed for constructing Generalized 
Voronoi Diagrams using the distance information provided by different external sensors like sonar 
sensors, laser scanners and stereo cameras. The method for construction of a Generalized Local 
Voronoi Diagram (GLVG) applied by Mahkovic in [31] uses measurements from a laser scanner. 
First, the points that belong to the same object are clustered, then the Voronoi Diagram is 
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generated, and finally, the edges outside the visible region and those which both side generator 
points belonging to the same object are deleted. In [53], Sudha constructs a Voronoi Diagram 
from a binary image of the workspace obtained using a digital camera.  
 
One class of algorithms involves incremental construction procedures based on the exploration of 
an unknown environment. It is the case of the approach proposed by Nagatani, Choset, and 
Thrun [35,9,11]. This algorithm does not consider the encoder errors and it cannot be used in a 
large environment.  
 
There are some path planning algorithms inspired by the Voronoi Diagram concept, such as the 
MAPRM method [57], which retracts sampled configurations onto the medial axis (or Generalized 
Voronoi Diagram). Also, the EquiDistance Diagram (EDD) [22] is based on the Voronoi roadmap 
idea, that is a roadmap formed by connecting the local maxima of a clearance function defined 
using distance functions. The main shortcoming of these methods is that their roadmap is 
constructed offline and the environment information must be provided in advance.  

 
Breu et al. [7] present a linear time (and hence asymptotically optimal) algorithm for computing 
the Euclidean distance transform of a two-dimensional binary image. The algorithm is based on 
the construction and regular sampling of the Voronoi Diagram whose sites consist of the unit 
(feature) pixels in the image. Their algorithm constructs the Voronoi Diagram where it intersects 
the horizontal lines passing through the image pixel centers. They also discuss the extensions to 
higher dimensional images and to other distance functions. The method proposed in this paper 
uses, in its first part, this algorithm.  
 

2.2 Potential Field-based Motion Planning 
From a theoretical point of view, the motion planning problem is well understood and formulated, 
and there is a set of classical solutions capable of computing a geometrical trajectory that avoids 
all known obstacles. Most of these general methods are not applicable if the environment is 
dynamic or there are no modelled obstacles. Hence, to avoid the problem of executing an 
unrealistic geometrical trajectory, in which the robot can collide with objects, obstacle avoidance 
algorithms have been developed to provide a robust way of coping with the problem.  
 
One of the classical methods for dynamically solving the collision avoidance problem is the 
potential field approach developed by O. Khatib [23]. This approach is based on the creation of 
an artificial potential field in which the target is an attractive pole and the obstacles are repulsive 
surfaces. The robot follows the gradient of this potential toward its minimum. The derived force 
induces a collinear and proportional acceleration enabling easy dynamic and kinematic control 
actions. This technique can be used at a global or local level depending on the information used 
to generate the potentials. The major advantage of this method is its simplicity and its capability 
of being used dynamically because of the easy treatment of fixed and mobile obstacles. Its major 
disadvantage is the possible existence of local minima and the oscillations for certain 
configurations of obstacles. In spite of this problem, this technique has been used extensively in 
reactive architectures because of its natural ability to encapsulate specific robot behaviors.  
 
In [33], Melchior at al. find an optimal trajectory using the Fast-Marching technique and compare 
it with the A* algorithm.According to Melchior, the solutions obtained with the Fast-Marching 
technique are the true approximations of the continuous and optimal trajectories. Thus the level 
line curvature and the gradient orientation are continuous; the robot can be oriented quasi-
continuously. However, the minimum length trajectory obtained by the A* algorithm is not the 
discrete approximation of the optimal length continuous trajectory.  
 
The Fast Marching Method has been used previously in Path Planning by Sethian [49,48], but 
using only an attractive potential. This method has some problems. The most important one that 
typically arises in mobile robotics is that optimal motion plans may bring robots too close to 
obstacles (including people), which is not safe. This problem has been dealt with by Latombe 
[26], and the resulting navigation function is called NF2. Melchior, Poty and Oustaloup [33,42] 
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present a fractional potential to diminish the obstacle danger level and to improve the 
smoothness of the trajectories; Philippsen [41] introduces an interpolated Navigation Function, 
but with trajectories too close to obstacles and without smooth properties; and Petres et al. [40] 
introduce efficient path-planning algorithms for Underwater Vehicles that take advantage of 

underwater currents. They developed an algorithm called , which is a continuous version of 

the  algorithm based on Fast Marching. The Voronoi-based Method presented in [18] tries to 

follow a maximum clearance map.  
 
2.3 Grid-based Planning Methods 
In the navigation of mobile robots, many methods consist on a grid-based representation of the 
environment. This representation can have occupied or free cells (binary representation), or each 
cell can have an associated weight that represents the difficulty of traversing that area.  
 

This grid is usually approximated by a graph, with the nodes situated in the center of each cell. 
Many algorithms have been developed to find a path in the graph. Dijkstra’s algorithm computes 
the optimal path between a single source point to any other point in the graph. This algorithm is 

indeed efficient, but suffers from metrication errors [13], as shown in Fig. 1.  uses a heuristic to 
focus the search from a particular start location towards the goal, and thus produces a path from 

a single location to the goal very efficiently [37]. , Incremental , and  Lite are extensions 

of  that incrementally repair solution paths when changes occur in the underlying graph [52]. 
These incremental algorithms have been used extensively in robotics for mobile robot navigation 
in unknown or dynamic environments.  
 

Grid or graph based methods, such as Dijkstra’s or , calculate a navigation function 
constrained to movement choices along graph edges that are neither optimal for execution nor an 
exact solution. The graph based algorithms consider the image as an oriented graph in which a 
pixel is a node, and the 4 (or 8) connections to the neighboring pixels are the vertices of the 
graph.  
 
These methods can not converge to the solution of a continuous problem. Even for very fine 

grids, the paths restrict the agent’s heading to increments of  or  . This results in paths 
that are suboptimal in length and difficult to traverse in practice. The different metrics used lead to 
very different results.  
Frequently, a smoothing step is performed after planning to alleviate this problem, which yields to 
unsatisfactory results because it solves only locally the discrete nature of the problem.  
 
Various efforts have been made to overcome these shortcomings, including increasing the 
available headings or approximating continuous paths (see [36] and [14]), using suboptimal 
variants of the search algorithms to reduce computation time [28], and efficiently updating existing 
solutions when new information is received [52], [25].  
 
The fast marching method uses the L2 metric, instead of the L1 (Manhattan) of Dijkstra’s similar 
methods, and it makes an intrinsic interpolation that allows it to solve the continuous eikonal 
efficiently equation and to give the shortest path.  
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FIGURE 1: The Dijkstra Method gives multiple short paths but always following the conection between the 
graph points. Fast Marching Method gives the optimal diagonal path, because it interpolates, so the path 

obtained is the shortest. 

 

 
3. INTRODUCTION TO THE VORONOI DIAGRAM AND SKELETON  
The Voronoi Diagram concept is a simple but intuitively appealing one. Given a finite set of 
objects in a space, all locations in that space are associated with the closest member of the 
object set. The result is a partition of the space into a set of regions, Voronoi regions. The 
Generalized Voronoi Diagram is the frontier between these regions. Given its widespread use, it 
is not surprising that this concept has been discovered many times in many different places.  
 
The close relationship between the Voronoi Diagram and the medial axis has already been 
pointed out in literature [38]. In the field of computer vision, the skeleton of an object or image is 
the Medial Axis Transform, which coincides with the definition of the GVD used in robotics that 
uses lines. This is not to be confused with the Voronoi Diagram of a discrete set of points: for 

each point  in the set , there exists a boundary polygon enclosing all the intermediate points 

lying closer to  than to other points in the set  and the set of these polygons for a given point 

set is called the Voronoi Diagram.  
 
A very illustrative definition of the skeleton is given by the prairie-fire analogy: the boundary of an 
object is set on fire and the skeleton is made up of the loci where the fire fronts meet and quench 
each other.  
 

Based on Blum’s definition of a skeleton [6], the skeleton  of a set  is the locus of the centers 

of maximal disks. A maximal disk of  is a closed disk contained in  that is interiorly tangent to 

the boundary  and that is not contained in any other disk in . Each maximal disc must be 

tangent to the boundary in at least two different points. With every skeleton point  we also 

store the radius  of its maximal disk. The skeleton  is the set of centers of maximal 

disks in . The skeleton is desired to be a ‘graph-like’ retraction of the original set. For a good 

overview of skeletonization techniques, see [51].  
 
A class of skeletonization approaches is based on distance transform. In this paper algorithms 
based on distance transform (DT) are used for computing the skeleton (Voronoi Diagram) of the 
binary image that represents the environment. This associates every pixel in image space with its 
distance to the nearest point to it. The distance transform is important for natural neighbor 
interpolation of a function and for morphological operations on images, such as medial axis and 
skeleton computation, and polygon morphing. Many efficient algorithms exist for the computation 
of the distance transform, or a close approximation of it (meaning that the distances are not 
exactly the true distances) for images. The medial surface/axis can be defined as the locus of 
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maximal circles (2D) or ball (3D). A particularly efficient algorithm that has been used for the 
calculation of the Voronoi Diagram (2D) in this work is due to Breu et al [7]. For its way of working 
it is not necessary to calculate vertices and nodes of the Voronoi Diagram and it can be used for 

all kinds of walls and obstacles, even curved ones. It runs in  time, where  is the number 

of image pixels. This algorithm is based on the construction and regular sampling of the Voronoi 
Diagram whose sites consist of the unit (feature) pixels in the image. The algorithm constructs the 
Voronoi Diagram where it intersects the horizontal lines passing through the image pixel centers. 
This algorithm has been used to compute the Voronoi Diagram in 2D environments.  
 
An important drawback of the skeletonization methods is the existence of spurious branches on 
the generated skeletons. This undesired fact is caused by the irregularities of the boundary. 
Boundary noise would cause the Voronoi Diagram to be very dense which would lead to the need 
for appropriately pruned it to generate the medial axis. Ogniewicz [38] reduced skeletons formed 
from raster boundary points to a simple form. This was achieved by pruning the hair nodes of the 
skeleton until a given minimum circumcircle was reached. On the other hand, it has been 
demonstrated that hair nodes correspond to a location of minimum curvature on the boundary 
[4,6]. This means that for a sampled boundary curve, three adjacent points are co-circular, with 
their center at the skeleton hair. For the simplification of the skeleton, the hairs should be 
retracted to their parent node location. The central point of the three is moved towards the parent 
node until it coincides with the parent node circumcircle, resulting in smoothing outward-pointing 
salients of the boundary.  
 
The process is repeated from the other side of the boundary, also retracting those salients. This 
may displace some of the points involved in the first smoothing step, but the process is 
convergent and a small number of iterations suffices to produce a smoothed curve having the 
same number of points as the original one, but with a simplified skeleton.  
 
In order to extract the skeleton in 3D, the algorithm described in [16] has been implemented. That 
skeletonization method for 3D objects is based on a quasi-Euclidean distance transform. Once 
the distance transform value at every object point is known, a linded list of all the object points is 
created. One pass is done over the list to test if a local maximum of it satisfies the condition:  
 

  (1) 

   

Where  is a thinness parameter,  is the distance transform of the voxel  and  is 

the mean of the neighbors’ distance transform. The effect of boundary noise is reduced by 
choosing a thinness parameter that removes most of the ‘hairs’ in the skeleton.  

 

4.  INTUITIVE INTRODUCTION OF THE EIKONAL EQUATION AND THE 
FAST MARCHING PLANNING METHOD 

The ideal planner always drives the robot in a smooth and safe way to the goal point. In nature 
there are phenomena with the same way of working: electromagnetic waves. If there is an 
antenna at the goal point that emits an electromagnetic wave, then the robot could drive himself 
to the destination following the waves to the source. The concept of the electromagnetic wave is 
especially interesting because the potential has all the good properties desired for the trajectory, 

such as smoothness (it is ) and the absence of local minima.  

 
Maxwell’s laws govern the propagation of the electromagnetic waves and can be modelled by the 
wave equation:  

 
 

(2) 
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A solution of the wave equation is called a wave. The moving boundary of a disturbance is called 
a wave front. The wave front can be described by the Eikonal equation. The reasoning that 
demonstrates it can be followed in [12].  
 
In Geometrical Optics, Fermat’s least time principle for light propagation in a medium with space 

varying refractive index  is equivalent to the Eikonal equation and can be written as 

 where the Eikonal  is a scalar function whose isolevel contours are 

normal to the light rays. This equation is also known as Fundamental Equation of the Geometrical 
Optics.  
 
The Eikonal (from the Greek ‘eikon’, which means ‘image’) is the phase function in a situation for 
which the phase and amplitude are slowly varying functions of position. Constant values of the 
Eikonal represent surfaces of constant phase, or wave fronts. The normals to these surfaces are 
rays (the paths of energy flux). Thus the Eikonal equation provides a method for ’ray tracing’ in a 
medium of slowly varying the refractive index (or the equivalent for other kinds of waves).  
In the Sethian notation [47] the eikonal equation is written as  
 

  (3) 

   

where  represents the wave front (time),  is the slowness index of the medium, and 

 in 2D or  in 3D.  

 
The theory and the numerical techniques known as Fast Marching Methods are derived from an 
exposition to describe the movement of interfaces, based on a resolution of the equations on 
partial differential equations as a boundary condition problem. They have the merit of unifying the 
ideas relative to the evolution of fronts in a general framework.  
 
For the formulation of a front in evolution, having considered a generic limit, we introduce, for 
example, a unidimensional expansion, one curve in two dimensions (see Fig. 1), or one surface in 
three dimensions, which separates one region from another.  

 

FIGURE 2: Wave front propagating with velocity F 
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FIGURE 3: Formulation of the arrival function , for a unidimensional wavefront 

Let us imagine that the curve or surface moves in its normal direction with a known speed F. The 
objective would be to follow the movement of the interface while this one evolves. A large part of 
the challenge in the problems modelled as fronts in evolution consists on defining a suitable 
speed that faithfully represents the physical system.  
 
One way to characterize the position of a front in expansion is to compute the time of arrival T, in 
which the front reaches each point of the underlying mathematical space of the interface. It is 
evident that for one dimension (see fig. 2) we can obtain the equation for the arrival function T in 

an easy way, simply considering the fact that the distance  is the product of the speed  and the 

time .  

 

 
 
The spatial derivative of the solution function becomes the gradient  

 
and therefore the magnitude of the gradient of the arrival function  is inversely proportional 

to the speed.  

 
For multiple dimensions, the same concept is valid because the gradient is orthogonal to the level 

sets of the arrival function .  

 
This way, we can characterize the movement of the front as the solution of a boundary condition 

problem. If speed F depends only on the position, then the equation  can be 

reformulated as the eikonal equation  
 

  (4) 

   

As a simple example we defined a circular front  for two dimensions 

that advance with uniform speed. The evolution of the value of the arrival function  can be 

seen as time increases (i.e. , , , ...), and the arrival function comes to points 

of the plane in more external regions of the surface (see fig. 3). The boundary condition is that the 
value of the wave front is null in the initial curve.  
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FIGURE 4: Movement of a circular wave front, as a problem of boundary conditions  

The direct use of the Fast Marching Method does not guarantee a smooth and safe trajectory. 
From the way the front wave is propagated the shortest geometrical path is determined. This 
makes the trajectory unsafe because it touches the corners, walls, and obstacles, as shown in 
Fig. 4. This problem can be easily solved by enlarging the obstacles, but even in that case the 
trajectory tends to go close to the walls and it is not sufficiently smooth or safe enough.  
 
 
 

 

FIGURE 5: Trajectory calculated by Fast Marching Method directly. The trajectory is not safe because it 
touches the corners and walls.  

The image 4 shows that the Fast Marching Method can not be used directly  Fast Marching 
Methods are designed for problems in which the speed function never changes sign, so that the 
front is always moving forward or backward. This allows to convert the problem into a stationary 
formulation, because the front crosses each grid point only once. This conversion into a 
stationary formulation, in addition to a whole set of numerical tricks, gives it a tremendous speed 
to the method.  
 
The distance given by the wave propagation of the Fast Marching Method is the Geodesic 
distance, which is different from the Euclidean Distance, as shown in Fig. 5. In that figure it is 
possible to observe how the points on the left foot are farther from the start when Geodesic 
distance is used. The Geodesic distance is the length of the shortest path between the two 
points.  
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FIGURE 6: Difference between the Euclidean distance and the Geodesic distance calculated with the Fast 
Marching Method. The Geodesic distance is the distance of the minimum length inside the figure path and 

the Euclidean distance is the straight line distance 

Since its introduction, the Fast Marching Method approach has been successfully applied to a 
wide set of problems that arise in geometry, mechanics, computer vision, and manufacturing 
processes, see Sethian [48] for details. Numerous advances have been made to the original 
technique, including the adaptive narrow band methodology [1] and the Fast Marching Method for 
solving the static eikonal equation ([49],[48]). For further details and summaries of level set and 
fast marching techniques for numerical purposes, see [48].  

 

5. IMPLEMENTATION OF THE METHOD 
This method operates in two main steps. The first step consists on the calculation of the Voronoi 
Diagram of the 2D or 3D map of the environment (that is, the cells located equidistant to the 
obstacles). This process is done by means of morphological operations on the image of the 
environment map. In the second step, the Fast Marching Method is used to create a potential T(x) 
that represents the propagation of an electromagnetic wave. This potential is used to calculate 
the trajectories based on the potential surface defined by the slowness map. To be more precise, 
the planner follows the following steps:  
 

1. Modelling. A grid-based map of the environment is the model to be used. The a 
priori known map (if it is known) and the sensor information are integrated in an updated 
image of the environment with black and white cells. The only criteria to select the grid 
size is the computation time. The grid does not need to be uniform, being possible to use 
a triangular mesh.  
 
2. Object enlarging. In order to avoid unrealistic trajectories, the objects and walls 
are enlarged by the radius of the mobile robot before the calculation of the Voronoi 
Diagram to ensure it neither collides with obstacles or walls nor accepts passages 
narrower than the robot size. This allows to consider the robot as a point from now on.  
 
3. Filter. In order to remove the small ‘hairs’ of skeletons, an averaging filter is 
applied. This filter is applied over the binary image to eliminate the corners and avoid the 
appearance of hairs.  
 
4. Voronoi Diagram. Morphological image processing techniques are applied to 
the map to build the Voronoi Diagram. To be exact, a skeletonization of the image based 
in the Breu method (2D) [7] and Gagvani’s (3D) [16] is applied in order to obtain the 
Voronoi Diagram as shown in Fig. 5. This skeleton is an image in which the points of the 
Voronoi diagram are black and the others white, but there are no information of vertices 
and nodes. It is possible to calculate the nodes, but it is more practical to search the path 
over the image with the Fast Marching method, because the calculation time is smaller 
and it works even with curved obstacles and walls.  
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5. Dilatation After that, a dilatation is done in order to have a thick Voronoi Diagram 
(see Fig. 5) wherein to calculate the propagation of the wave front of the Fast Marching 
Method. This is done in order to obtain two advantages. First, the sharp angles between 
segments of the diagram are smoothed, which improves the continuity of the generated 
trajectories and frees them from sharp angles. Second, the Voronoi Diagram is thickened 
in order to eliminate excessive narrowing, and thereby to allow a better propagation of 
the wave front when applying the Fast Marching Method. This way, the trajectory can be 
calculated.This thickening of all the lines of the Voronoi Diagram is done in the same 
amount, but the grade of dilatation is the only design parameter of the method. It can be 
small enough to have no isolated points or big enough to have a tube in which non-
holonomic vehicles maneuver (see non-holonomic section) .  
 
6. Viscosity Map. In order to apply the FMM, it is necessary to invert the image 
(see Fig. 1) to obtain a viscosity (or slowness) map since the wave travels faster in the 
clearer zones and slower in the darker ones.  
 
 
7. Fast Marching Method. The next step is to calculate the trajectory in the image 
generated by the Voronoi Diagram using a wave expansion. The wave equation is 
approximated using the paraxial approximation used in optics. This way, the Eikonal 
equation is obtained. To solve the Eikonal equation the Fast Marching Method has been 
used. The Fast Marching Method is used to create a potential T(x) that represents the 
propagation of an electromagnetic wave in a viscosity map, to which the time is added as 
the third axis in 2D or the fourth axis in 3D. The origin of the wave is the goal point, which 
continues propagating until it reaches the current position of the robot. The Fast Marching 
Method produces a potential with a funnel-shaped surface, in which the time is the last 

axis, i.e. , .  

 
8. Path Calculation. This potential is used to calculate the trajectories based on 
the potential surface defined by the slowness map using the gradient method with the 
current position of the robot as the starting point and the goal position as the final point 

(see Fig. 1). The gradient determines the direction of travel after  has calculated 

.  

 
The algorithm steps are summarized in the flowchart in Fig.5.  The trajectory is obtained inside 
the safest areas provided by the thickened Voronoi Diagram and is properly smooth, especially at 
the angles, since the Fast Marching Method selects a continuous path in gradient terms. 
Moreover, the path extraction is very fast because the Fast Marching Method propagates in an 
almost unidimensional curve (although this is an approximation since the Voronoi Diagram is 
thickened in the perpendicular direction to the diagram curves).  
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FIGURE 7: Flowchart of the proposed planning algorithm 
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(a) Voronoi Diagram   (b) Thickened Voronoi Diagram 

 

FIGURE 8 : Map of the room used in the first experiment 

 

           

 

FIGURE 9: Trajectory calculated by Fast Marching Method in the inverted image of the thickened 
Voronoi Diagram of the room 

 
The proposed method can also be used for sensor-based planning, working directly on a raw 
laser sensor image of the environment, as shown in Fig. 8 and 9. The data shown corresponds to 
the corner between two perpendicular aisles of the Carlos III University to the left of the robot, 
which is located in the center of the bottom of the scene. The image obtained from raw data may 
contain scattered pixels (see Fig. 7), and the dilatation of the image achieves the continuity and 
thickening of the lines representing the walls and obstacles (see Fig. 7). There are similar 
spurious lines behind the walls because the Voronoi diagram is made with an open image, but 
that path followed by the robot is correct. At this point the path planning steps described above 
are applied in the same sequence. The capability of using raw sensor data combined with the 
speed of the calculation allows this methodology to be used online to recalculate the trajectory at 
any time, avoiding this way dynamic obstacles and objects not present in the original map.  
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FIGURE 10: Data read by the robot (Local map) 

 

                         

FIGURE 11: Voronoi Diagram and Trajectory of the Local map 

 

6. RESULTS 
The proposed method has been tested using the manipulator robot Manfred shown in Fig. 16. It 
has a coordinated control of all the degrees of freedom in the system (the mobile base has 2 DOF 
and the manipulator has 6 DOF) to achieve smooth movement. This mobile manipulator uses a 
sensorial system based on vision and 3D laser telemetry to perceive and model 3D 
environments. The mobile manipulator will include all the capabilities needed to localize and 
avoid obstacles and to navigate safely through the environment.  
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FIGURE 12: The robot Manfred has been used to test the algorithms 

 

 

     

FIGURE 13: Trajectory calculated with Fast Marching over the Voronoi Diagram (Global map) 

To illustrate the capabilities of the proposed method different tests are presented in this section. 

In the first test (room test with a resolution of  pixels), a difficult test room 

environment and the floor of the laboratory environment have been used (Fig. 6 and Fig. 7).  
 
In the second test (laser test), the method is applied to a local environment path-planning task 
where the laser scanner measurement data are used to generate the trajectories, as it was 
explained in the previous section. Fig. 2 and 9 illustrate the achieved good trade-off between 
trajectory length, distances to obstacles and smooth changes in the trajectory. The Generalized 
Voronoi diagram of Fig. 13a goes behind the walls because the GVD is calculated on the image 
and in this image there is a possible path behind the walls.  
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The method has capabilities to generate adequate paths on a global scale as shown in Fig. 16. 
The results for the complete lab floor are shown in fig. 16 top (the environment map of the 
Robotics Lab of the Carlos III University) and fig. 16 bottom (the path obtained after applying the 
Fast Marching Method to the previous Voronoi Diagram image). The method provides smooth 
trajectories that can be used at low control levels without any additional smooth interpolation 
process.  
 
The last test (lab test) is dedicated to illustrate the capability of the proposed method of adapting 
to a changing environment taking into account possible dynamic features of the environment such 
as moving obstacles and persons in the vicinity of the robot, as shown in Fig. 16. During the 
motion, the robot observes the environment with its laser scanner, introduces the new information 
in the map and plans a new trajectory. Local observations (obstacle in the middle of the corridor) 
generate modified trajectories in order to avoid the detected obstacles. In the bottom map of the 
figure the obstacles detected block the corridor and the sensor-based global planner generates a 
completely different safe trajectory. The dimensions of the environment are 116x14 m (the cell 

resolution is 12 cm). The image resolution is  pixels. For this environment (lab floor) 

the first step (the Voronoi extraction) takes 0.05 s in a Pentium 4 at 2.2 Ghz, and the second step 
(Fast Marching) takes 0.15 s for a long trajectory, which makes a total of 0.20 s to apply the 
Voronoi FM method, as shown in table 1.  
 
The proposed method is highly efficient from a computational point of view because it operates 
directly over a 2D image map (without extracting adjacent maps), and due to the fact that 

Marching complexity is  and the Voronoi path calculation is also of complexity , where 

 is the number of cells in the environment map. 

 
A great advantage of the method presented is that it can work with any kind of shaped objects, as 
demonstrated in Fig. 16. The curvature in the shape of the obstacle is not a restriction for the 
application of the method, and nor is the presence of concavities.  
 

 
 

 
 

 
 

 
 

FIGURE 14: Evolution of the path when the robot reads information about the new obstacles that are not in 
the previous map and the robot can no pass throught the corridor 
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TABLE 1: Time comparison with other navigation Methods 

 

 

 Method  

Laser(100x100 

pixels)  

Room(628x412 

pixels)  

Lab 

floor(966x120 

pixels)  

 

 

 Voronoi 

FMM  

0.017 s  0.446 s  0.20 s  

Finite 

Differences  

1.72 s  164.8 s  55.6 s  

Finite 

Elements  

1.34 s  33.6 s  16.2 s  

 
 

                          
 

FIGURE 15: Voronoi Diagram and trajectory in an environment with curved shapes 

 
In Fig. 16, the proposed method has been applied to a open environment, that is to say, to a 
environment map that is not limited totally by walls, in which there are circular obstacles. This 
map represents a corner with columns. As can be seen in the figure, the algorithm is perfectly 
able to make a correct planning of trajectories.  

 
6.1 Comparison With Other Navigation Methods 
One interesting method that calculates exact navigation functions is the Harmonic Functions 
method. Harmonic functions provide optimal potential maps for robot navigation in the sense of 
minimum length over the potential surface and they are the solutions of the Laplace equation 

. It has been implemented by using finite differences [43,44] and the finite elements 

method (FEM) [17] with a high level (usually 1) for the boundary conditions for walls and 

obstacles and a low level (usually ) for objective. The finite differences method has been used to 

solve Laplace’s equation with the successive over-relaxation (SOR) method, which is an iterative 
method and, consequently very slow. The finite elements method (FEM) is particularly useful 
when a robust approximation is sought to solve partial differential equations on non-
homogeneous mesh. Solid mathematical foundations and a great deal of generality allow different 
implementations.  
 
In table 1 a comparison between the different exact navigation methods is shown. This table 
compares the SOR method, the Finite Elements Method and the proposed Voronoi Fast 
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Marching method. As can be seen, the difference in time in comparison with the other methods is 
very significant.  
 
6.2 Comparison With Other Navigation Method 

Graph-based methods, such as Dijkstra, , or , can be considered to compute a navigation 

function constrained to movement choices along graph edges or discrete transitions between grid 
cells. They thus produce paths that are not optimal for execution. The Fast Marching method 
proposed gives a navigation function that measures distances in the continuous domain, due to 
its intrinsic interpolation (see Fig. 2).  

  
 

FIGURE 17: Calculation of Tij as distance of the point (i,j) to the line L (interpolation) 
 

The graph methods are quite fast but they work in a graph. In our application the original map and 
the skeleton are binary images and they need to be transformed into its corresponding graph.  

In table 2 a comparison with Dijkstra’s and  methods is shown. As can be seen, these methods 

need a long time for the construction of the graph. The proposed method has also the advantage 
that it works in the continuous domain and its paths are smoother and not close to obstacles.  
 

Table 2. Time comparison with Graph Methods 

 

 

 

Method 

Graph 

Generation 

time  

Room(628x412 

pixels)  

Total 

time  

 

 

 

Voronoi 

FMM  

0.00 s  0.446 s  0.446

s   

Dijkstra 2.82 s  0.845 s  3.665

s  

A*  2.82 s  0.001 s  2.821

s   
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6.3 Extension to 3D 
The proposed method works also in 3D cases. But not only that the Fast Marching Method can 
work also in higher dimensionality cases. The process is shown in Figure 3. The fist step is to 
extract the 3D skeleton, that could be considered as the Voronoi transform. That is done cropping 
the obstacles until the skeleton is obtained. Once that is done, the Fast Marching Method is 
launched. Fast Marching works for cases of 3,4 or even more dimensions. As in the two-
dimensional case, the skeleton is interpreted as the boundary condition for the wave propagation. 
The process is shown in Figure 3, and as we can see the algorithms works well in the 3D-case.  
 

 

               

                    
 

FIGURE 17: Trajectory calculated with the proposed method in 3D 

 

 

7. CONCLUSION 
A sensor-based path planner is presented in this paper. The proposed method is able to deal 
simultaneously with both global and local planning requirements. The advantages of the 
approach can be summarized by the fact that the trajectories obtained are smooth and safe, and 
at the same time, free of local traps due to the integration of the real-time sensor information in 
the recalculation of the path.  
 
The method is easy to implement, the algorithm is very fast and can work online. It works in 
cluttered and changing environments with moving obstacles. The method is complete, i.e., the 
method is capable of finding a trajectory if it exists.  
 
As demonstrated along this work, the method can perform in all types of environments without 
restrictions in the form of the obstacles. The planner works with curved forms, open environments 
(not totally enclosed by walls), and concavities.  
 

The algorithm complexity is , where  is the number of cells in the environment map, which 

let us use the algorithm on line.  
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