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Abstract 

 
This paper presents a method of model based hierarchical and distributed control for discrete event 
robotic systems. Based on the hierarchical approach, the Petri net is translated into the detailed 
Petri net from the highest conceptual level to the lowest local control level. A coordination 
algorithm through communication between the coordinator and the local controllers, is specified 
and the overall distributed control system is implemented using multithread programming. By the 
proposed method, modeling, simulation and control of large and complex robotic systems can be 
performed consistently using extended Petri nets. 
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1.  INTRODUCTION 
Large and complex robotic systems such as flexible manufacturing systems are commonly 
decomposed into a hierarchy of abstraction levels: planning, scheduling, coordination and local 
control. Each level operates on a certain time horizon. The planning level determines at which time 
each product will be introduced in the system. The scheduling level produces a sequence of times 
for the execution of each operation on each machine or a total ordering of all the operations. The 
coordination level updates the state representation of the system in real time, supervises it and 
makes real-time decisions. The local control level implements the real-time control of machines 
and devices etc., interacting directly with the sensors and actuators. All the emergency procedures 
are implemented at this level, so real-time constraints may be very hard. At each level, any 
modeling has to be based on the concepts of discrete events and states, where an event 
corresponds to a state change [1]. 
 
A manufacturing cell is an elementary manufacturing system consisting of some flexible machines 
(machine tools, assembly devices, or any complex devices dedicated to complex manufacturing 
operations), some local storage facilities for tools and parts and some handling devices such as 
robots in order to transfer parts and tools. Elementary manufacturing cells are called workstations. 
At the local control level of manufacturing cells many different kinds of machines can be controlled, 
and specific languages for different application domains are provided; for example, block diagrams 
for continuous process control and special purpose languages for CNC or robot programming. For 
common sequential control of such machines, special purpose real-time computers named 
Programmable Logic Controllers (PLCs) are used. PLCs are replacements for relays, but they 
incorporate many additional and complex functions, such as supervisory and alarm functions and 
start-up and shut-down operations, approaching the functionalities of general purpose process 
computers. The most frequent programming languages are based on ladder or logic diagrams and 
boolean algebra. However, when the local control is of greater complexity, the above kinds of 
languages may not be well adapted. The development of industrial techniques makes sequential 
control for manufacturing cells more large and complicated one, in which some subsystems 
operate concurrently and cooperatively. Conventional representation methods based on 
flowcharts, time diagrams, state machine diagrams, etc. can not be used for such systems [2]. 



Gen’ichi Yasuda 

International Journal of Robotics and Automation (IJRA), Volume (2) : Issue (1) : 2011                           28 

 

 

 
To realize control systems for complex robotic systems such as flexible manufacturing cells, it is 
necessary to provide effective tools for describing process specifications and developing control 
algorithms in a clear and consistent manner. In the area of real-time control of discrete event 
systems the main problems that the system designer has to deal with are concurrency, 
synchronization, and resource sharing problems. For this class of problems, Petri nets have 
intrinsic favorable qualities and it is very easy to model sequences, choices between alternatives, 
rendez-vous and concurrent activities by means of Petri nets [2]. When using Petri nets, events are 
associated with transitions. Activities are associated to the firing of transitions and to the marking of 
places which represents the state of the system. The network model can describe the execution 
order of sequential and parallel tasks directly without ambiguity. Moreover, the formalism allowing 
a validation of the main properties of the Petri net control structure (liveness, boundedness, etc.) 
guarantees that the control system will not fall immediately in a deadlocked situation. In the field of 
flexible manufacturing cells, the last aspect is essential because the sequences of control are 
complex and change very often [3,4]. In addition to its graphic representation differentiating events 
and states, Petri nets allows the modeling of true parallelism and the possibility of progressive 
modeling by using stepwise refinements or modular composition. Libraries of well-tested subnets 
allow components reusability leading to significant reductions in the modeling effort. The possibility 
of progressive modeling is absolutely necessary for large and complex systems, because the 
refinement mechanism allows the building of hierarchically structured net models. Furthermore, a 
real-time implementation of the Petri net specification by software called a token player can avoid 
implementation errors, because the specification is directly executed by the token player and the 
implementation of these control sequences preserves the properties of the model. In this approach, 
the Petri net model is stored in a database and the token player updates the state of the database 
according to the operation rules of the model. For control purposes, this solution is very well suited 
to the need of flexibility, because, when the control sequences change, only the database needs to 
be changed. Some techniques derived from Petri nets have been successfully introduced as an 
effective tool for describing control specifications and realizing the control in a uniform manner. 
However, in the field of flexible manufacturing cells, the network model becomes complicated and 
it lacks of readability and comprehensibility [5]. Therefore, the flexibility and expandability are not 
satisfactory in order to deal with the specification change of the control system. Despite the 
advantages offered by Petri nets, the synthesis, correction, updating, etc. of the system model and 
programming of the controllers are not simple tasks. 
  
The author proposes a Petri net based specification and real-time control method for large and 
complex robotic systems. Based on the hierarchical and distributed structure of the system, the 
specification procedure is a top-down approach from the conceptual level to the detailed level such 
that the macro representation of the system is broken down to generate the detailed Petri nets at 
the local machine control level. Then the Petri nets are decomposed and assigned to the machine 
controllers to perform distributed control using Petri net based multitask processing. An algorithm is 
proposed for coordination of machine controllers such that the behavior of the distributed control 
system is the same as that of the original system. By the proposed method, modeling, simulation 
and control of large and complex robotic systems can be performed consistently using Petri nets. 
 

2. DISCRETE EVENT SYSTEM MODELING USING EXTENDED PETRI NETS 
From the viewpoint of discrete event process control, an overall robotic system can be viewed as a 
set of distinct events and conditions mutually interrelated in a complex form. An event is the start or 
end of an activity of a process executed by a subsystem. A condition is a state in the process such 
as operation mode. Considering the nature of discrete event systems which are characterized by 
the occurrence of events and changing conditions, the condition-event net based specification 
method has been investigated. The Petri net is one of the effective means to represent 
condition-event systems. The specification method is a graphical model used as a tool to identify 
types of events, conditions, and their mutual interrelation.  
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In the condition-event systems, bumping occurs when despite the holding of a condition, the 
preceding event occurs. This can result in the multiple holding of that condition and the Petri net is 
said to be unsafe. When we consider not only the modeling but also the actual well-designed 
control of robotic systems, the guarantee of safeness and the capability to represent input and 
output signals from and to the machines are required. Thus, the fundamental Petri net which is 
called the Place/Transition net should be modified and extended in order to represent the activity 
contents and control strategies for the system control in detail. 
 
The extended Petri net consists of the following six elements: (1) Place, (2) Transition, (3) Directed 
arc, (4) Token, (5) Gate arc, (6) Output signal arc [6]. A place represents a condition of a system 
element or action. A transition represents an event of the system. A directed arc connects a place 
to a transition and vice versa, and its direction shows the input and output relation between them, 
thus places and transitions are alternately connected using directed arcs. A token is placed in a 
place to indicate that the condition corresponding to the place is holding. A gate arc connects a 
transition with a signal source, and it either permits or inhibits the occurrence of the event which 
corresponds to the connected transition. Gate arcs are classified as permissive or inhibitive, and 
internal or external. An output signal arc sends the signal from a place to an external machine. The 
axioms for the extended Petri net execution are as follows. A transition is firable or enabled if and 
only if it satisfies all the following firability conditions: 

 
(1) It does not have any output place filled with a token. 
(2) It does not have any empty input place. 
(3) It does not have any internal permissive arc signaling 0. 
(4) It does not have any internal inhibitive arc signaling 1. 
 

IAn enabled transition fires when it does not have any external permissive arc signaling 0 nor any 
external inhibitive arc signaling 1. It is considered that the time required for firing is infinitely small. 
The firing of a transition removes a token from each input place and put a token in each output 
place connected to the transition. In any initial marking, there must not exist more than one token in 
a place. According to these rules, the number of tokens in a place never exceeds one, thus the Petri 
net is essentially a safe graph; the system is free from the bumping phenomenon. The assignment 
of tokens into the places of a Petri net is called marking and it represents the system state. The 
behavior of discrete event systems can be described in terms of system states and their changes. 
In order to simulate the dynamic behavior of a system, a state or marking in a Petri net is changed 
according to the transition firability conditions. Figure 1 shows the place and gate variables used to 
decide the firing of a transition.  

 

 

 

 

 

 
 
 
 
 

FIGURE 1: Place and gate variables associated with transition firing. 

 

Formally, the firability condition and external gate condition of a transition j  are defined using the 

logical variables in Figure 1 as follows: 
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where, 
 

M    : set of input places of transition j   

)(, kp I

mj  : state of input place  m  of transition j  at time sequence k  

N    : set of output places of transition j   

)(, kpO

nj  : state of output place n  of transition j  at time sequence k  

Q    : set of internal permissive gate signals of transition j   

)(, kg IP

qj  : internal permissive gate signal variable q  of transition j  at time sequence k  

R    :set of internal inhibitive gate signals of transition j   

)(, kg II

rj   : internal inhibitive gate signal variable r  of transition j  at time sequence k  

U    : set of external permissive gate signals of transition j   

)(, kg EP

uj  : external permissive gate signal variable u  of transition j  at time sequence k  

V    : set of external inhibitive gate signals of transition j   

)(, kg EI

vj  : external inhibitive gate signal variable v  of transition j  at time sequence k  
 

The state (marking) change, that is, the addition or removal of a token of an input place and an 
output place, is defined as follows: 
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or, 
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where, )(xRSTy = , or )(xSET  denotes that if 1=x then 0=y (reset), or 1=y (set), 

respectively. 

 

Figure 2 shows Petri net representations of an elementary machine control process with machine 
activity. For the extended Petri net, it is proved that, with the reversion of the existence of token in 
a place as well as the directions of input and output arcs of the place, the firability condition of the 
transitions of the net is not changed. So, two Petri net representations in Figure 2(a) and (b) are 
equivalent. The token in the place “Machine” indicates that the machine is free (Figure 2(a)) or the 
machine is operating (Figure 2(b)). Furthermore Figure 2(c) shows a hierarchical representation of 
a task; the place “Machine task A” is the macro representation of the detailed representation 
composed of the subtasks 1 and 2. A task executed by a robot or an intelligent machine tool can be 
seen as some connection of more detailed subtasks. For example, transferring an object from a 
start position to a goal position is a sequence of the following subtasks; moving the hand to the start 
position, grasping the object, moving to the goal position, and putting it on the specified place. 
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 Machine 

subtask 1 subtask 2 

Machine 

subtask 1 subtask 2 
Machine task A 

 

           (a)                                           (b)                                            (c) 

FIGURE 2: Petri net representation of elementary process with machine activity; 
 (a) with loop net, (b) with source and sink transitions, (c) macro representation of robotic task. 

 
For the actual machine control, output signal arcs are connected from associated places to the 
machine, and external gate arcs are connected from the machine to the transitions to coordinate 
the succeeding subtasks as shown in Figure 3. When a token enters a place that represents a 
subtask, the machine defined by the machine code is informed to execute a subtask with some 
control data that are defined as the place parameters. 

 

Machine 

subtask 2 subtask 3 subtask 4 subtask 5 subtask 1 

External machine 

 
 

FIGURE 3: Petri net representation of manufacturing process control with output arcs and external gates. 

 
Two important system controls in discrete event robotic systems are (a) parallel control, and (b) 
selective control. Figure 4 shows the Petri net representation of parallel control. In Figure 4 the 
parallel activities begin at the firing of transition t1 and end with transition t4. Transitions t2 and t3 
are said to be concurrent if they are causally independent. The subclass of Petri nets where each 
place has exactly one incoming arc and exactly one outgoing arc is known as marked graphs.  

 
 
 
 
 
 
 
 
 

FIGURE 4: Petri net representation of parallel control of robotic task. 

 
The subclass of Petri nets where each transition has exactly one incoming arc and exactly one 
outgoing arc is known as state machines. Any finite state machine and its state diagram can be 
modeled with a state machine. The structure of the place having two or more output transitions is 
referred to as a conflict. State machines allow the representation of conflicts, decisions, or choices, 
but not the synchronization of parallel activities. When two or more transitions are firable only one 
transition should fire using gate arcs or some arbitration rule, such as logical priority or specified 
order. Figure 5 shows an example Petri net with corresponding arbiters.  
 

t1 t2 

t3 

t4 
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FIGURE 5: Petri net representation of selective control of robotic task with arbiters. 

 
The Petri net described in detail with the above procedures can be used as a program for the 
system control, while features of discrete event systems such as ordering, parallelism, 
asynchronism, concurrency and conflict can be concretely described through the extended Petri 
net. The extended Petri net is a tool for the study of condition-event systems and used to model 
condition-event systems through its graphical representation. Analysis of the net reveals important 
information about the structure and the dynamic behavior of the modeled condition-event system. 
This information can then be used to evaluate the system and suggest improvements or changes. 
A Petri net model includes control algorithms, and is used to control the real robotic process by 
coincidence of the behavior of the real system with the Petri net model. 
 

3.  MODEL BASED HIERARCHICAL AND DISTRIBUTED CONTROL 
A specification procedure for discrete event robotic systems based on Petri nets is as follows. First, 
the conceptual level activities of the system are defined through a Petri net model considering the 
task specification corresponding to the aggregate discrete event process. The places which 
represent the subtasks indicated as the task specification are connected by arcs via transitions in 
the specified order corresponding to the flow of subtasks and a workpiece. The places representing 
the existence of machines used for the subtasks are also added to connect transitions which 
correspond to the beginning and ending of their subtasks. Then, the detailed Petri nets describing 
the subtasks are deduced based on activity specification and required control strategies for 
resources such as robots and other intelligent machines. At each step of detailed specification, 
places of the Petri net are substituted by a subnet in a manner which maintains the structural 
properties [7]. 
 
Since in the large and complex systems, the controllers are geographically distributed according to 
their physical (hardware) structure, it is natural to implement a hierarchical and distributed control 
system, where one controller is allocated to each control layer or block. For robotic systems 
composed of robots, machine tools, and conveyors, an example structure of hierarchical and 
distributed control is composed of one station or system controller and three machine or local 
controllers as shown in Figure 6, although each robot may be controlled by one robot controller. 
The detailed Petri net is decomposed into subnets, which are assigned to local controllers. 
 

 Arbiter (a)  Arbiter (b) 

(a) (b) 
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FIGURE 6: Example of distributed control system. 

 
In the decomposition procedure, a transition may be divided and distributed into different machine 
controllers as shown in Figure 7. The machine controllers should be coordinated so that these 
transitions fire simultaneously, that is, the aggregate behavior of decomposed subnets should be 
the same as that of the original Petri net. Decomposed transitions are called global transitions, and 
other transitions are called local transitions. 

 

 

t1 t2 

t11 t21 t12 t22 t32 t42 

decomposition 

t11,t12; t21,t22: global transition 
t32,t42:  local transition 

t3 t4 

(Machine 1) 

Machine 2 Machine 1 

(Machine 2) 

 
 

FIGURE 7: Decomposition of transitions. 

 
By the Petri net model, the state of the discrete event system is represented as the marking of 
tokens, and firing of any transition brings about change to the next state. So the firability condition 
and state (marking) change before decomposition should be the same as those after 

decomposition. If transition j  is divided into s transitions 1j , 2j , , , sj , as shown in Figure 8, the 

firability condition of a transition after decomposition is described as follows: 

 

 

 

  

 

 
 

FIGURE 8: Place and gate variables after decomposition of transition. 
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From Eq. (1) and Eq.(5), 
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From Eq. (2) and Eq. (6), 
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where, 

 

S    : total number of subnets 

Msub   : set of input places of transition jsub  of subnet sub   

)(, kp I

mjsub : state of input place m of transition jsub  of subnet sub  at time sequence k  

Nsub   : set of output places of transition jsub  of subnet sub  

)(, kpO

njsub  : state of output place n  of transition jsub  of subnet sub  at time sequence k  

Qsub   : set of internal permissive gate signals of transition jsub  of subnet sub   

Rsub   : set of internal inhibitive gate signals of transition jsub  of subnet sub   

Usub   : set of external permissive gate signals of transition jsub  of subnet sub   

Vsub   : set of external inhibitive gate signals of transition jsub  of subnet sub   

 
The addition or removal of a token of a place connected to a decomposed transition is described as 
follows: 
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Consequently it is proved that the firability condition of the original transition is equal to AND 
operation of firability conditions of decomposed transitions. If and only if all of the decomposed 
transitions are firable, then the global transitions are firable. To utilize the above results, the 
coordinator program has been introduced to coordinate the decomposed subnets so that the 
aggregate behavior of decomposed subnets is the same as that of the original Petri net. In case that 
a transition in conflict with other transitions is decomposed, these transitions should be coordinated 
by the system controller. If arbitrations of the transitions are performed independently in separate 
subnets, the results may be inconsistent with the original rule of arbitration. Therefore the 
transitions should be arbitrated together as a group. On the other hand, arbitration of local 
transitions in conflict is performed by local machine controllers. In the hierarchical and distributed 
control system composed of one system controller and several machine controllers, the conceptual 
Petri net model is allocated to the Petri net based controller for management of the overall system, 
while the detailed Petri net models are allocated to the Petri net based controllers in the machine 
controllers. The control of the overall system is achieved by coordinating these Petri net based 
controllers. System coordination is performed through communication between the coordinator in 
the system controller and the Petri net based controllers in the machine controllers [8]. 
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4.  IMPLEMENTATION OF CONTROL SYSTEM 
The example robotic system has one or two robots, one machining center, and two conveyors, 
where one is for carrying in and the other one is for carrying out, as shown in Figure 9. The main 
execution of the system is indicated as the following task specification: 

 
(1) A workpiece is carried in by the conveyor CV1.  
(2) The workpiece is loaded to the machining center MC by the Robot. 
(3) The workpiece is processed by the machining center MC.  
(4) The workpiece is unloaded to the conveyor CV2 by the Robot.  
(5) The workpiece is carried out by the conveyor CV2. 

 
 

 

 

                                     

FIGURE 9: Example of robotic system; (a) with one robot, (b) with two robots. 

 

At the conceptual level the discrete event processes of the robotic system are represented as 
shown in Figure 10 for the systems with one robot and with two robots, respectively. In this step, if 
necessary, control conditions such as the capacity of the system between the respective subtasks 
must be connected to regulate the execution of the manufacturing process. For the system with one 
robot, the place “Robot” has two input transitions and two output transitions, but these transitions 
are not firable at the same time because a token is in the place “MC”, so they are not in conflict for 
firing. The firing of only one of these transitions is permitted using external gate arcs.  
 

Next, each place representing a subtask at the conceptual level is translated into a detailed subnet. 
Figure 11 shows the detailed Petri net representations of subtasks: loading, processing and 
unloading in Figure 10. While a Petri net at the conceptual level represents a flow of task-level 
commands, they represent sequences of motion-level operations. For registered subtasks, the 
translation procedure is automatically executed by software. 
 
 
 
 
 
 

 
 
 
 
 
 
 
(a) (b) 

FIGURE 10: Petri net representation of the example cell at the conceptual level; 
(a) with one robot, (b) with two robots. 

 

 

Conveyor CV1 
  

Conveyor CV2 
 

Machining 
center MC 

Robot R   

 

Conveyor CV1 
  

Conveyor CV2 
 

Machining 
center MC 

  
Robot R1   Robot R2   

 

Carrying in Loading Processing Unloading Carrying out 

Robot R1 

MC

 

Conveyor CV1 Conveyor CV2  

Robot R2 

1 4 6

2 5

3

 

Carrying in Loading Processing Unloading Carrying out 

Robot 

MC 

Conveyor CV1 Conveyor CV2 1 

2 

3 4 

5 

6 

(a) (b) 



Gen’ichi Yasuda 

International Journal of Robotics and Automation (IJRA), Volume (2) : Issue (1) : 2011                           36 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

FIGURE 11: Detailed Petri net representation of subtasks. 

 
The detailed Petri net representation of the example system is shown in Figure 12, where the 
detailed Petri net is not decomposed and the control system is centralized. For the distributed 
control system shown in Figure 6, the Petri net representations assigned to the machine controllers 
are shown in Figure 13. External permissive gate arcs from sensors for detecting the completion of 
work handling are employed. For example, for grasping action of a robot, the set of touch sensors 
on the fingers of the robot indicates whether the robot has or has not grasped a workpiece, and for 
moving action of a robot, the set of limit switch sensors for robot arm positioning indicates whether 
the robot has or has not reached a target position. 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 12: Detailed Petri net representation of whole system task. 
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 (a) Robot controller 

 
 
 
 
 
 

 (b) MC controller 
 

 Carrying in Waiting 

(Conveyor CV1) 

  

 

Carrying out Waiting 

(Conveyor CV2) 

 
(c) Conveyor controller 

 
FIGURE 13: Detailed Petri net representation of machine controllers with external permissive gate arcs from 

sensors for work handling. 

(    : global transition,    : local transition,                 : permissive gate arc) 

 
For the example robotic system, a hierarchical and distributed control system has been realized 
using a set of PCs. Each machine controller is implemented on a dedicated PC. The system 
controller is implemented on another PC. Communications among the controllers are performed 
using serial communication interfaces (RS-485). The names of global transitions and their conflict 
relations are loaded into the coordinator in the system controller. The connection structure of a 
decomposed Petri net model and conflict relations among local transitions are loaded into the Petri 
net based controller in a machine controller. Using the names of transitions in the subsystems, 
global transitions are defined; for example, G2: t0-2, t1-21, t2-22, t3-23 indicates that the global 
transition G2 is composed of the transition no.2 of System controller (subsystem no.0), the 
transition no.21 of Robot controller, the transition no.22 of MC controller (subsystem no.2), and the 
transition no.23 of Conveyor controller (subsystem no.3). Then, the coordinator information for the 
example distributed control system is as follows. 

 
G1: t0-1, t3-13        ; start of carring in 
G2: t0-2, t1-21, t2-22, t3-23  ; start of loading from CV1 
G3: t1-71, t3-73    ; end of grasp on CV1 
G4: t1-81, t2-82        ; end of putting on MC 
G5: t0-3, t1-31, t2-32   ; end of loading into MC   
G6: t0-4, t1-41, t2-42, t3-43  ; start of unloading from MC 
G7: t1-91, t2-92        ; end of grasp on MC 
G8: t0-5, t1-51, t3-53       ; end of putting on CV2 
G9: t0-6, t3-63   ; end of carring out 
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By executing the coordinator and Petri net based controllers algorithms based on loaded 
information, simulation experiments have been performed. The robot controller executes robot 
motion control through the transmission of command. The MC controller and the conveyor 
controller communicate with a dedicated PLC. The Petri net simulator initiates the execution of the 
subtasks attached to the fired transitions through the serial interface to the robot or other external 
machines. When a task ends its activity, it informs the simulator to proceed with the next 
activations by the external permissive gate arc. The detailed Petri net representation for real-time 
external machine control is shown in Figure 14.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

FIGURE 14: Detailed Petri net representation of external machine control. 

 
Experimental set up of the example of robotic system presented in this paper is shown in Figure 15. 
Control software on each PC is written using multithreaded programming [9]. Petri net simulation 
and task execution program through serial interface are implemented as threads in each machine 
controller. Real-time task execution using multithreaded programming is shown in Figure 16. In a 
multithreaded operating system, a thread is an independent flow of execution in a process and all 
threads share the code, data, heap, and system memory areas of that process. So all threads in a 
process can access all global data. Further, because each thread has a separate CPU state and its 
own stack memory, all local variables and function arguments are private to a specific thread. It’s 
easy for threads to interact with each other by the way of synchronization objects and intertask 
communications because they have some shared memory for communication as the process’s 
global data. Context switching between threads involves simply saving the CPU state for the 
current thread and loading the CPU state for the new thread [10].  
 
In the control system both the Petri net simulation thread and the task execution thread access to 
the external gate variables as shared variables; the task execution thread writes and the Petri net 
simulation thread reads. Mutual exclusive access control was implemented as shown in Figure 16, 
so that, while one thread accesses to the shared variables, the other thread can not access to them. 
The Petri net simulator thread waits for the external gate signal using an event object, and after the 
task execution threads write, the Petri net simulator thread reads and then the associated transition 
fires directly. Control software using multithreaded programming was written in Visual C# under OS 
Windows XP SP3 on general PCs.  
 
The Petri net modeling thread is executed as the main thread to perform the Petri net modeling, 
drawing and modification for task specification. For the example system, detailed Petri net models 
can be automatically generated using the database of robotic operations. When the transformation 
of graphic data of the Petri net model into internal structural data is finished, the Petri net simulation 
thread starts. Experiments using a real robot show that the Petri net simulation thread and the task 
execution threads proceed concurrently with even priority, and the values of external gate 
variables are changed successfully. 
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FIGURE 15: View of experimental set up of robotic system. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

FIGURE 16: Real-time execution of subtasks using multithreaded programming. 

 
Experimental results show that the decomposed transitions fire simultaneously as the original 
transition of the detailed Petri net of the whole system task [11]. The robots cooperated with the 
conveyors and the machining center, and the example robotic system performed the task 
specification successfully. Firing transitions and marking of tokens can be directly observed on the 
display at each time sequence using the simulator on each PC [12], as shown in Figure 17. During 
simulation and task execution, it is judged by the simulator that whether it is in a deadlocked 
situation or not, and the user can stop the task execution through the simulator at any time. 
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FIGURE 17:  View of Petri net simulator. 

 

 

5.  CONCLUSIONS 
A methodology of model based design and implementation using Petri nets to construct 
hierarchical and distributed control systems, which correspond to the hardware structure of robotic 
systems, has been proposed. By introduction of the coordinator, the Petri net based controllers are 
arranged according to the hierarchical and distributed nature of the overall system; the coordination 
mechanism is implemented in each layer repeatedly. The Petri net model in each Petri net based 
machine controller is not so large and easily manageable. The overall control structure of the 
example robotic system was implemented on general PCs using multithreaded programming. In 
accordance with the implementation using multithreaded programming, hierarchical and 
distributed implementation under a real-time operating system on a network of microcomputers 
connected via a serial bus is also possible, where each microcomputer is dedicated to the local 
Petri net model of a subsystem in the overall robotic system. Local Petri net models are so simple 
that they can be implemented on general PLCs. Thus, modeling, simulation and control of large 
and complex manufacturing systems can be performed consistently using Petri nets. 
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